--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-finetuned-go-emotions_dataset results: [] --- # distilbert-finetuned-go-emotions_dataset This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5221 - Accuracy: 0.5844 - F1: 0.5241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 262 | 1.9841 | 0.4993 | 0.3718 | | 2.1649 | 2.0 | 524 | 1.6903 | 0.5508 | 0.4546 | | 2.1649 | 3.0 | 786 | 1.5779 | 0.5732 | 0.4992 | | 1.5746 | 4.0 | 1048 | 1.5320 | 0.5800 | 0.5114 | | 1.5746 | 5.0 | 1310 | 1.5221 | 0.5844 | 0.5241 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1