abehandler commited on
Commit
253f5d5
·
verified ·
1 Parent(s): 1002b70

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,340 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ base_model: BAAI/bge-small-en-v1.5
9
+ metrics:
10
+ - accuracy
11
+ widget:
12
+ - text: approach affects entrepreneurship intention
13
+ - text: innovation affects m & a success
14
+ - text: total retail sales affects m & a success
15
+ - text: stimulation of the sales staff in business organization affects entrepreneurship
16
+ intention
17
+ - text: country-level economy affects ceo pay
18
+ pipeline_tag: text-classification
19
+ inference: true
20
+ model-index:
21
+ - name: SetFit with BAAI/bge-small-en-v1.5
22
+ results:
23
+ - task:
24
+ type: text-classification
25
+ name: Text Classification
26
+ dataset:
27
+ name: Unknown
28
+ type: unknown
29
+ split: test
30
+ metrics:
31
+ - type: accuracy
32
+ value: 0.8117647058823529
33
+ name: Accuracy
34
+ ---
35
+
36
+ # SetFit with BAAI/bge-small-en-v1.5
37
+
38
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
39
+
40
+ The model has been trained using an efficient few-shot learning technique that involves:
41
+
42
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
43
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
44
+
45
+ ## Model Details
46
+
47
+ ### Model Description
48
+ - **Model Type:** SetFit
49
+ - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
50
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
51
+ - **Maximum Sequence Length:** 512 tokens
52
+ - **Number of Classes:** 2 classes
53
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
54
+ <!-- - **Language:** Unknown -->
55
+ <!-- - **License:** Unknown -->
56
+
57
+ ### Model Sources
58
+
59
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
60
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
61
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
62
+
63
+ ### Model Labels
64
+ | Label | Examples |
65
+ |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
66
+ | 0 | <ul><li>'oecd affects ceo pay'</li><li>'marketing and sales affects entrepreneurship intention'</li><li>'australian research affects entrepreneurship intention'</li></ul> |
67
+ | 1 | <ul><li>'academic performance affects entrepreneurship intention'</li><li>'collectivism affects entrepreneurship intention'</li><li>'responsibility affects ceo pay'</li></ul> |
68
+
69
+ ## Evaluation
70
+
71
+ ### Metrics
72
+ | Label | Accuracy |
73
+ |:--------|:---------|
74
+ | **all** | 0.8118 |
75
+
76
+ ## Uses
77
+
78
+ ### Direct Use for Inference
79
+
80
+ First install the SetFit library:
81
+
82
+ ```bash
83
+ pip install setfit
84
+ ```
85
+
86
+ Then you can load this model and run inference.
87
+
88
+ ```python
89
+ from setfit import SetFitModel
90
+
91
+ # Download from the 🤗 Hub
92
+ model = SetFitModel.from_pretrained("abehandlerorg/setfit")
93
+ # Run inference
94
+ preds = model("innovation affects m & a success")
95
+ ```
96
+
97
+ <!--
98
+ ### Downstream Use
99
+
100
+ *List how someone could finetune this model on their own dataset.*
101
+ -->
102
+
103
+ <!--
104
+ ### Out-of-Scope Use
105
+
106
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
107
+ -->
108
+
109
+ <!--
110
+ ## Bias, Risks and Limitations
111
+
112
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
113
+ -->
114
+
115
+ <!--
116
+ ### Recommendations
117
+
118
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
119
+ -->
120
+
121
+ ## Training Details
122
+
123
+ ### Training Set Metrics
124
+ | Training set | Min | Median | Max |
125
+ |:-------------|:----|:-------|:----|
126
+ | Word count | 4 | 5.4661 | 13 |
127
+
128
+ | Label | Training Sample Count |
129
+ |:------|:----------------------|
130
+ | 0 | 164 |
131
+ | 1 | 175 |
132
+
133
+ ### Training Hyperparameters
134
+ - batch_size: (32, 32)
135
+ - num_epochs: (4, 4)
136
+ - max_steps: -1
137
+ - sampling_strategy: oversampling
138
+ - body_learning_rate: (2e-05, 1e-05)
139
+ - head_learning_rate: 0.01
140
+ - loss: CosineSimilarityLoss
141
+ - distance_metric: cosine_distance
142
+ - margin: 0.25
143
+ - end_to_end: False
144
+ - use_amp: False
145
+ - warmup_proportion: 0.1
146
+ - seed: 42
147
+ - eval_max_steps: -1
148
+ - load_best_model_at_end: False
149
+
150
+ ### Training Results
151
+ | Epoch | Step | Training Loss | Validation Loss |
152
+ |:------:|:----:|:-------------:|:---------------:|
153
+ | 0.0006 | 1 | 0.303 | - |
154
+ | 0.0276 | 50 | 0.2825 | - |
155
+ | 0.0553 | 100 | 0.2567 | - |
156
+ | 0.0829 | 150 | 0.2345 | - |
157
+ | 0.1106 | 200 | 0.2347 | - |
158
+ | 0.1382 | 250 | 0.1693 | - |
159
+ | 0.1658 | 300 | 0.0862 | - |
160
+ | 0.1935 | 350 | 0.0184 | - |
161
+ | 0.2211 | 400 | 0.0042 | - |
162
+ | 0.2488 | 450 | 0.0042 | - |
163
+ | 0.2764 | 500 | 0.0263 | - |
164
+ | 0.3040 | 550 | 0.0019 | - |
165
+ | 0.3317 | 600 | 0.0058 | - |
166
+ | 0.3593 | 650 | 0.0095 | - |
167
+ | 0.3870 | 700 | 0.0011 | - |
168
+ | 0.4146 | 750 | 0.0012 | - |
169
+ | 0.4422 | 800 | 0.0009 | - |
170
+ | 0.4699 | 850 | 0.0011 | - |
171
+ | 0.4975 | 900 | 0.001 | - |
172
+ | 0.5252 | 950 | 0.0215 | - |
173
+ | 0.5528 | 1000 | 0.0024 | - |
174
+ | 0.5804 | 1050 | 0.0034 | - |
175
+ | 0.6081 | 1100 | 0.0008 | - |
176
+ | 0.6357 | 1150 | 0.0161 | - |
177
+ | 0.6633 | 1200 | 0.0132 | - |
178
+ | 0.6910 | 1250 | 0.0009 | - |
179
+ | 0.7186 | 1300 | 0.0073 | - |
180
+ | 0.7463 | 1350 | 0.0089 | - |
181
+ | 0.7739 | 1400 | 0.0166 | - |
182
+ | 0.8015 | 1450 | 0.0005 | - |
183
+ | 0.8292 | 1500 | 0.0005 | - |
184
+ | 0.8568 | 1550 | 0.0006 | - |
185
+ | 0.8845 | 1600 | 0.0098 | - |
186
+ | 0.9121 | 1650 | 0.0005 | - |
187
+ | 0.9397 | 1700 | 0.0005 | - |
188
+ | 0.9674 | 1750 | 0.0263 | - |
189
+ | 0.9950 | 1800 | 0.0006 | - |
190
+ | 1.0227 | 1850 | 0.0005 | - |
191
+ | 1.0503 | 1900 | 0.0089 | - |
192
+ | 1.0779 | 1950 | 0.0074 | - |
193
+ | 1.1056 | 2000 | 0.0057 | - |
194
+ | 1.1332 | 2050 | 0.0006 | - |
195
+ | 1.1609 | 2100 | 0.0004 | - |
196
+ | 1.1885 | 2150 | 0.0004 | - |
197
+ | 1.2161 | 2200 | 0.0006 | - |
198
+ | 1.2438 | 2250 | 0.0005 | - |
199
+ | 1.2714 | 2300 | 0.0004 | - |
200
+ | 1.2991 | 2350 | 0.0088 | - |
201
+ | 1.3267 | 2400 | 0.0004 | - |
202
+ | 1.3543 | 2450 | 0.0005 | - |
203
+ | 1.3820 | 2500 | 0.0004 | - |
204
+ | 1.4096 | 2550 | 0.0118 | - |
205
+ | 1.4373 | 2600 | 0.0004 | - |
206
+ | 1.4649 | 2650 | 0.0149 | - |
207
+ | 1.4925 | 2700 | 0.0004 | - |
208
+ | 1.5202 | 2750 | 0.0004 | - |
209
+ | 1.5478 | 2800 | 0.0003 | - |
210
+ | 1.5755 | 2850 | 0.0004 | - |
211
+ | 1.6031 | 2900 | 0.0004 | - |
212
+ | 1.6307 | 2950 | 0.0136 | - |
213
+ | 1.6584 | 3000 | 0.0083 | - |
214
+ | 1.6860 | 3050 | 0.0094 | - |
215
+ | 1.7137 | 3100 | 0.0088 | - |
216
+ | 1.7413 | 3150 | 0.0004 | - |
217
+ | 1.7689 | 3200 | 0.0003 | - |
218
+ | 1.7966 | 3250 | 0.0004 | - |
219
+ | 1.8242 | 3300 | 0.0004 | - |
220
+ | 1.8519 | 3350 | 0.0101 | - |
221
+ | 1.8795 | 3400 | 0.0112 | - |
222
+ | 1.9071 | 3450 | 0.0003 | - |
223
+ | 1.9348 | 3500 | 0.0117 | - |
224
+ | 1.9624 | 3550 | 0.0003 | - |
225
+ | 1.9900 | 3600 | 0.0003 | - |
226
+ | 2.0177 | 3650 | 0.0003 | - |
227
+ | 2.0453 | 3700 | 0.0083 | - |
228
+ | 2.0730 | 3750 | 0.0003 | - |
229
+ | 2.1006 | 3800 | 0.0132 | - |
230
+ | 2.1282 | 3850 | 0.0003 | - |
231
+ | 2.1559 | 3900 | 0.0003 | - |
232
+ | 2.1835 | 3950 | 0.0003 | - |
233
+ | 2.2112 | 4000 | 0.0004 | - |
234
+ | 2.2388 | 4050 | 0.0003 | - |
235
+ | 2.2664 | 4100 | 0.0003 | - |
236
+ | 2.2941 | 4150 | 0.0003 | - |
237
+ | 2.3217 | 4200 | 0.0003 | - |
238
+ | 2.3494 | 4250 | 0.0003 | - |
239
+ | 2.3770 | 4300 | 0.0079 | - |
240
+ | 2.4046 | 4350 | 0.0003 | - |
241
+ | 2.4323 | 4400 | 0.0003 | - |
242
+ | 2.4599 | 4450 | 0.0003 | - |
243
+ | 2.4876 | 4500 | 0.0057 | - |
244
+ | 2.5152 | 4550 | 0.0003 | - |
245
+ | 2.5428 | 4600 | 0.0003 | - |
246
+ | 2.5705 | 4650 | 0.0003 | - |
247
+ | 2.5981 | 4700 | 0.0003 | - |
248
+ | 2.6258 | 4750 | 0.0003 | - |
249
+ | 2.6534 | 4800 | 0.0003 | - |
250
+ | 2.6810 | 4850 | 0.0003 | - |
251
+ | 2.7087 | 4900 | 0.0003 | - |
252
+ | 2.7363 | 4950 | 0.0003 | - |
253
+ | 2.7640 | 5000 | 0.0019 | - |
254
+ | 2.7916 | 5050 | 0.0157 | - |
255
+ | 2.8192 | 5100 | 0.0003 | - |
256
+ | 2.8469 | 5150 | 0.0098 | - |
257
+ | 2.8745 | 5200 | 0.0003 | - |
258
+ | 2.9022 | 5250 | 0.0117 | - |
259
+ | 2.9298 | 5300 | 0.0003 | - |
260
+ | 2.9574 | 5350 | 0.0003 | - |
261
+ | 2.9851 | 5400 | 0.0087 | - |
262
+ | 3.0127 | 5450 | 0.0002 | - |
263
+ | 3.0404 | 5500 | 0.0003 | - |
264
+ | 3.0680 | 5550 | 0.0085 | - |
265
+ | 3.0956 | 5600 | 0.0159 | - |
266
+ | 3.1233 | 5650 | 0.0003 | - |
267
+ | 3.1509 | 5700 | 0.0053 | - |
268
+ | 3.1786 | 5750 | 0.0003 | - |
269
+ | 3.2062 | 5800 | 0.0086 | - |
270
+ | 3.2338 | 5850 | 0.0002 | - |
271
+ | 3.2615 | 5900 | 0.0003 | - |
272
+ | 3.2891 | 5950 | 0.0055 | - |
273
+ | 3.3167 | 6000 | 0.0002 | - |
274
+ | 3.3444 | 6050 | 0.0092 | - |
275
+ | 3.3720 | 6100 | 0.0153 | - |
276
+ | 3.3997 | 6150 | 0.0002 | - |
277
+ | 3.4273 | 6200 | 0.0002 | - |
278
+ | 3.4549 | 6250 | 0.0002 | - |
279
+ | 3.4826 | 6300 | 0.0003 | - |
280
+ | 3.5102 | 6350 | 0.0101 | - |
281
+ | 3.5379 | 6400 | 0.0003 | - |
282
+ | 3.5655 | 6450 | 0.0003 | - |
283
+ | 3.5931 | 6500 | 0.0091 | - |
284
+ | 3.6208 | 6550 | 0.0002 | - |
285
+ | 3.6484 | 6600 | 0.0085 | - |
286
+ | 3.6761 | 6650 | 0.0003 | - |
287
+ | 3.7037 | 6700 | 0.0002 | - |
288
+ | 3.7313 | 6750 | 0.0002 | - |
289
+ | 3.7590 | 6800 | 0.0068 | - |
290
+ | 3.7866 | 6850 | 0.0003 | - |
291
+ | 3.8143 | 6900 | 0.0079 | - |
292
+ | 3.8419 | 6950 | 0.0175 | - |
293
+ | 3.8695 | 7000 | 0.0066 | - |
294
+ | 3.8972 | 7050 | 0.0003 | - |
295
+ | 3.9248 | 7100 | 0.0002 | - |
296
+ | 3.9525 | 7150 | 0.0065 | - |
297
+ | 3.9801 | 7200 | 0.0094 | - |
298
+
299
+ ### Framework Versions
300
+ - Python: 3.10.12
301
+ - SetFit: 1.0.3
302
+ - Sentence Transformers: 2.7.0
303
+ - Transformers: 4.40.1
304
+ - PyTorch: 2.2.1+cu121
305
+ - Datasets: 2.19.1
306
+ - Tokenizers: 0.19.1
307
+
308
+ ## Citation
309
+
310
+ ### BibTeX
311
+ ```bibtex
312
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
313
+ doi = {10.48550/ARXIV.2209.11055},
314
+ url = {https://arxiv.org/abs/2209.11055},
315
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
316
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
317
+ title = {Efficient Few-Shot Learning Without Prompts},
318
+ publisher = {arXiv},
319
+ year = {2022},
320
+ copyright = {Creative Commons Attribution 4.0 International}
321
+ }
322
+ ```
323
+
324
+ <!--
325
+ ## Glossary
326
+
327
+ *Clearly define terms in order to be accessible across audiences.*
328
+ -->
329
+
330
+ <!--
331
+ ## Model Card Authors
332
+
333
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
334
+ -->
335
+
336
+ <!--
337
+ ## Model Card Contact
338
+
339
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
340
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-small-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.40.1",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "1.13.0+cu117"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ff4a5cc692963ca34ed6bcdd50b41b283618eaa7f67261e8cc597da4c77c9e5
3
+ size 133462128
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6bfd58619c075a6e8ba28052b168e8e84df72b7676c8476177c8af2f54465d6
3
+ size 3935
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff