abehandler commited on
Commit
72c9dcf
·
verified ·
1 Parent(s): 13126a7

Push model using huggingface_hub.

Browse files
Files changed (3) hide show
  1. README.md +160 -161
  2. model.safetensors +1 -1
  3. model_head.pkl +1 -1
README.md CHANGED
@@ -9,12 +9,11 @@ base_model: BAAI/bge-small-en-v1.5
9
  metrics:
10
  - accuracy
11
  widget:
12
- - text: approach affects entrepreneurship intention
13
- - text: innovation affects m & a success
14
- - text: total retail sales affects m & a success
15
- - text: stimulation of the sales staff in business organization affects entrepreneurship
16
- intention
17
- - text: country-level economy affects ceo pay
18
  pipeline_tag: text-classification
19
  inference: true
20
  model-index:
@@ -29,7 +28,7 @@ model-index:
29
  split: test
30
  metrics:
31
  - type: accuracy
32
- value: 0.8117647058823529
33
  name: Accuracy
34
  ---
35
 
@@ -61,17 +60,17 @@ The model has been trained using an efficient few-shot learning technique that i
61
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
62
 
63
  ### Model Labels
64
- | Label | Examples |
65
- |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
66
- | 0 | <ul><li>'oecd affects ceo pay'</li><li>'marketing and sales affects entrepreneurship intention'</li><li>'australian research affects entrepreneurship intention'</li></ul> |
67
- | 1 | <ul><li>'academic performance affects entrepreneurship intention'</li><li>'collectivism affects entrepreneurship intention'</li><li>'responsibility affects ceo pay'</li></ul> |
68
 
69
  ## Evaluation
70
 
71
  ### Metrics
72
  | Label | Accuracy |
73
  |:--------|:---------|
74
- | **all** | 0.8118 |
75
 
76
  ## Uses
77
 
@@ -91,7 +90,7 @@ from setfit import SetFitModel
91
  # Download from the 🤗 Hub
92
  model = SetFitModel.from_pretrained("abehandlerorg/setfit")
93
  # Run inference
94
- preds = model("innovation affects m & a success")
95
  ```
96
 
97
  <!--
@@ -123,12 +122,12 @@ preds = model("innovation affects m & a success")
123
  ### Training Set Metrics
124
  | Training set | Min | Median | Max |
125
  |:-------------|:----|:-------|:----|
126
- | Word count | 4 | 5.4661 | 13 |
127
 
128
  | Label | Training Sample Count |
129
  |:------|:----------------------|
130
- | 0 | 164 |
131
- | 1 | 175 |
132
 
133
  ### Training Hyperparameters
134
  - batch_size: (32, 32)
@@ -150,151 +149,151 @@ preds = model("innovation affects m & a success")
150
  ### Training Results
151
  | Epoch | Step | Training Loss | Validation Loss |
152
  |:------:|:----:|:-------------:|:---------------:|
153
- | 0.0006 | 1 | 0.303 | - |
154
- | 0.0276 | 50 | 0.2825 | - |
155
- | 0.0553 | 100 | 0.2567 | - |
156
- | 0.0829 | 150 | 0.2345 | - |
157
- | 0.1106 | 200 | 0.2347 | - |
158
- | 0.1382 | 250 | 0.1693 | - |
159
- | 0.1658 | 300 | 0.0862 | - |
160
- | 0.1935 | 350 | 0.0184 | - |
161
- | 0.2211 | 400 | 0.0042 | - |
162
- | 0.2488 | 450 | 0.0042 | - |
163
- | 0.2764 | 500 | 0.0263 | - |
164
- | 0.3040 | 550 | 0.0019 | - |
165
- | 0.3317 | 600 | 0.0058 | - |
166
- | 0.3593 | 650 | 0.0095 | - |
167
- | 0.3870 | 700 | 0.0011 | - |
168
- | 0.4146 | 750 | 0.0012 | - |
169
- | 0.4422 | 800 | 0.0009 | - |
170
- | 0.4699 | 850 | 0.0011 | - |
171
- | 0.4975 | 900 | 0.001 | - |
172
- | 0.5252 | 950 | 0.0215 | - |
173
- | 0.5528 | 1000 | 0.0024 | - |
174
- | 0.5804 | 1050 | 0.0034 | - |
175
- | 0.6081 | 1100 | 0.0008 | - |
176
- | 0.6357 | 1150 | 0.0161 | - |
177
- | 0.6633 | 1200 | 0.0132 | - |
178
- | 0.6910 | 1250 | 0.0009 | - |
179
- | 0.7186 | 1300 | 0.0073 | - |
180
- | 0.7463 | 1350 | 0.0089 | - |
181
- | 0.7739 | 1400 | 0.0166 | - |
182
- | 0.8015 | 1450 | 0.0005 | - |
183
- | 0.8292 | 1500 | 0.0005 | - |
184
- | 0.8568 | 1550 | 0.0006 | - |
185
- | 0.8845 | 1600 | 0.0098 | - |
186
- | 0.9121 | 1650 | 0.0005 | - |
187
- | 0.9397 | 1700 | 0.0005 | - |
188
- | 0.9674 | 1750 | 0.0263 | - |
189
- | 0.9950 | 1800 | 0.0006 | - |
190
- | 1.0227 | 1850 | 0.0005 | - |
191
- | 1.0503 | 1900 | 0.0089 | - |
192
- | 1.0779 | 1950 | 0.0074 | - |
193
- | 1.1056 | 2000 | 0.0057 | - |
194
- | 1.1332 | 2050 | 0.0006 | - |
195
- | 1.1609 | 2100 | 0.0004 | - |
196
- | 1.1885 | 2150 | 0.0004 | - |
197
- | 1.2161 | 2200 | 0.0006 | - |
198
- | 1.2438 | 2250 | 0.0005 | - |
199
- | 1.2714 | 2300 | 0.0004 | - |
200
- | 1.2991 | 2350 | 0.0088 | - |
201
- | 1.3267 | 2400 | 0.0004 | - |
202
- | 1.3543 | 2450 | 0.0005 | - |
203
- | 1.3820 | 2500 | 0.0004 | - |
204
- | 1.4096 | 2550 | 0.0118 | - |
205
- | 1.4373 | 2600 | 0.0004 | - |
206
- | 1.4649 | 2650 | 0.0149 | - |
207
- | 1.4925 | 2700 | 0.0004 | - |
208
- | 1.5202 | 2750 | 0.0004 | - |
209
- | 1.5478 | 2800 | 0.0003 | - |
210
- | 1.5755 | 2850 | 0.0004 | - |
211
- | 1.6031 | 2900 | 0.0004 | - |
212
- | 1.6307 | 2950 | 0.0136 | - |
213
- | 1.6584 | 3000 | 0.0083 | - |
214
- | 1.6860 | 3050 | 0.0094 | - |
215
- | 1.7137 | 3100 | 0.0088 | - |
216
- | 1.7413 | 3150 | 0.0004 | - |
217
- | 1.7689 | 3200 | 0.0003 | - |
218
- | 1.7966 | 3250 | 0.0004 | - |
219
- | 1.8242 | 3300 | 0.0004 | - |
220
- | 1.8519 | 3350 | 0.0101 | - |
221
- | 1.8795 | 3400 | 0.0112 | - |
222
- | 1.9071 | 3450 | 0.0003 | - |
223
- | 1.9348 | 3500 | 0.0117 | - |
224
- | 1.9624 | 3550 | 0.0003 | - |
225
- | 1.9900 | 3600 | 0.0003 | - |
226
- | 2.0177 | 3650 | 0.0003 | - |
227
- | 2.0453 | 3700 | 0.0083 | - |
228
- | 2.0730 | 3750 | 0.0003 | - |
229
- | 2.1006 | 3800 | 0.0132 | - |
230
- | 2.1282 | 3850 | 0.0003 | - |
231
- | 2.1559 | 3900 | 0.0003 | - |
232
- | 2.1835 | 3950 | 0.0003 | - |
233
- | 2.2112 | 4000 | 0.0004 | - |
234
- | 2.2388 | 4050 | 0.0003 | - |
235
- | 2.2664 | 4100 | 0.0003 | - |
236
- | 2.2941 | 4150 | 0.0003 | - |
237
- | 2.3217 | 4200 | 0.0003 | - |
238
- | 2.3494 | 4250 | 0.0003 | - |
239
- | 2.3770 | 4300 | 0.0079 | - |
240
- | 2.4046 | 4350 | 0.0003 | - |
241
- | 2.4323 | 4400 | 0.0003 | - |
242
- | 2.4599 | 4450 | 0.0003 | - |
243
- | 2.4876 | 4500 | 0.0057 | - |
244
- | 2.5152 | 4550 | 0.0003 | - |
245
- | 2.5428 | 4600 | 0.0003 | - |
246
- | 2.5705 | 4650 | 0.0003 | - |
247
- | 2.5981 | 4700 | 0.0003 | - |
248
- | 2.6258 | 4750 | 0.0003 | - |
249
- | 2.6534 | 4800 | 0.0003 | - |
250
- | 2.6810 | 4850 | 0.0003 | - |
251
- | 2.7087 | 4900 | 0.0003 | - |
252
- | 2.7363 | 4950 | 0.0003 | - |
253
- | 2.7640 | 5000 | 0.0019 | - |
254
- | 2.7916 | 5050 | 0.0157 | - |
255
- | 2.8192 | 5100 | 0.0003 | - |
256
- | 2.8469 | 5150 | 0.0098 | - |
257
- | 2.8745 | 5200 | 0.0003 | - |
258
- | 2.9022 | 5250 | 0.0117 | - |
259
- | 2.9298 | 5300 | 0.0003 | - |
260
- | 2.9574 | 5350 | 0.0003 | - |
261
- | 2.9851 | 5400 | 0.0087 | - |
262
- | 3.0127 | 5450 | 0.0002 | - |
263
- | 3.0404 | 5500 | 0.0003 | - |
264
- | 3.0680 | 5550 | 0.0085 | - |
265
- | 3.0956 | 5600 | 0.0159 | - |
266
- | 3.1233 | 5650 | 0.0003 | - |
267
- | 3.1509 | 5700 | 0.0053 | - |
268
- | 3.1786 | 5750 | 0.0003 | - |
269
- | 3.2062 | 5800 | 0.0086 | - |
270
- | 3.2338 | 5850 | 0.0002 | - |
271
- | 3.2615 | 5900 | 0.0003 | - |
272
- | 3.2891 | 5950 | 0.0055 | - |
273
- | 3.3167 | 6000 | 0.0002 | - |
274
- | 3.3444 | 6050 | 0.0092 | - |
275
- | 3.3720 | 6100 | 0.0153 | - |
276
- | 3.3997 | 6150 | 0.0002 | - |
277
- | 3.4273 | 6200 | 0.0002 | - |
278
- | 3.4549 | 6250 | 0.0002 | - |
279
- | 3.4826 | 6300 | 0.0003 | - |
280
- | 3.5102 | 6350 | 0.0101 | - |
281
- | 3.5379 | 6400 | 0.0003 | - |
282
- | 3.5655 | 6450 | 0.0003 | - |
283
- | 3.5931 | 6500 | 0.0091 | - |
284
- | 3.6208 | 6550 | 0.0002 | - |
285
- | 3.6484 | 6600 | 0.0085 | - |
286
- | 3.6761 | 6650 | 0.0003 | - |
287
- | 3.7037 | 6700 | 0.0002 | - |
288
- | 3.7313 | 6750 | 0.0002 | - |
289
- | 3.7590 | 6800 | 0.0068 | - |
290
- | 3.7866 | 6850 | 0.0003 | - |
291
- | 3.8143 | 6900 | 0.0079 | - |
292
- | 3.8419 | 6950 | 0.0175 | - |
293
- | 3.8695 | 7000 | 0.0066 | - |
294
- | 3.8972 | 7050 | 0.0003 | - |
295
- | 3.9248 | 7100 | 0.0002 | - |
296
- | 3.9525 | 7150 | 0.0065 | - |
297
- | 3.9801 | 7200 | 0.0094 | - |
298
 
299
  ### Framework Versions
300
  - Python: 3.10.12
 
9
  metrics:
10
  - accuracy
11
  widget:
12
+ - text: sales affects ceo pay
13
+ - text: time affects entrepreneurship intention
14
+ - text: operations planning affects entrepreneurship intention
15
+ - text: entrepreneurial self-efficacy affects entrepreneurship intention
16
+ - text: empirical training affects entrepreneurship intention
 
17
  pipeline_tag: text-classification
18
  inference: true
19
  model-index:
 
28
  split: test
29
  metrics:
30
  - type: accuracy
31
+ value: 0.9058823529411765
32
  name: Accuracy
33
  ---
34
 
 
60
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
 
62
  ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 1 | <ul><li>'board diversity affects ceo pay'</li><li>'perceptions of formal learning affects entrepreneurship intention'</li><li>'proactiveness affects entrepreneurship intention'</li></ul> |
66
+ | 0 | <ul><li>'sales and takeovers affects entrepreneurship intention'</li><li>'uk affects entrepreneurship intention'</li><li>'economics affects entrepreneurship intention'</li></ul> |
67
 
68
  ## Evaluation
69
 
70
  ### Metrics
71
  | Label | Accuracy |
72
  |:--------|:---------|
73
+ | **all** | 0.9059 |
74
 
75
  ## Uses
76
 
 
90
  # Download from the 🤗 Hub
91
  model = SetFitModel.from_pretrained("abehandlerorg/setfit")
92
  # Run inference
93
+ preds = model("sales affects ceo pay")
94
  ```
95
 
96
  <!--
 
122
  ### Training Set Metrics
123
  | Training set | Min | Median | Max |
124
  |:-------------|:----|:-------|:----|
125
+ | Word count | 4 | 5.4307 | 12 |
126
 
127
  | Label | Training Sample Count |
128
  |:------|:----------------------|
129
+ | 0 | 168 |
130
+ | 1 | 171 |
131
 
132
  ### Training Hyperparameters
133
  - batch_size: (32, 32)
 
149
  ### Training Results
150
  | Epoch | Step | Training Loss | Validation Loss |
151
  |:------:|:----:|:-------------:|:---------------:|
152
+ | 0.0006 | 1 | 0.3133 | - |
153
+ | 0.0277 | 50 | 0.289 | - |
154
+ | 0.0553 | 100 | 0.2506 | - |
155
+ | 0.0830 | 150 | 0.2243 | - |
156
+ | 0.1107 | 200 | 0.2388 | - |
157
+ | 0.1384 | 250 | 0.2084 | - |
158
+ | 0.1660 | 300 | 0.1316 | - |
159
+ | 0.1937 | 350 | 0.0142 | - |
160
+ | 0.2214 | 400 | 0.0065 | - |
161
+ | 0.2490 | 450 | 0.0037 | - |
162
+ | 0.2767 | 500 | 0.003 | - |
163
+ | 0.3044 | 550 | 0.002 | - |
164
+ | 0.3320 | 600 | 0.0018 | - |
165
+ | 0.3597 | 650 | 0.0026 | - |
166
+ | 0.3874 | 700 | 0.0013 | - |
167
+ | 0.4151 | 750 | 0.0012 | - |
168
+ | 0.4427 | 800 | 0.0284 | - |
169
+ | 0.4704 | 850 | 0.0145 | - |
170
+ | 0.4981 | 900 | 0.0053 | - |
171
+ | 0.5257 | 950 | 0.0075 | - |
172
+ | 0.5534 | 1000 | 0.005 | - |
173
+ | 0.5811 | 1050 | 0.0008 | - |
174
+ | 0.6087 | 1100 | 0.0008 | - |
175
+ | 0.6364 | 1150 | 0.0008 | - |
176
+ | 0.6641 | 1200 | 0.0007 | - |
177
+ | 0.6918 | 1250 | 0.0008 | - |
178
+ | 0.7194 | 1300 | 0.0009 | - |
179
+ | 0.7471 | 1350 | 0.0007 | - |
180
+ | 0.7748 | 1400 | 0.0008 | - |
181
+ | 0.8024 | 1450 | 0.0006 | - |
182
+ | 0.8301 | 1500 | 0.0006 | - |
183
+ | 0.8578 | 1550 | 0.0192 | - |
184
+ | 0.8854 | 1600 | 0.0005 | - |
185
+ | 0.9131 | 1650 | 0.002 | - |
186
+ | 0.9408 | 1700 | 0.0204 | - |
187
+ | 0.9685 | 1750 | 0.0039 | - |
188
+ | 0.9961 | 1800 | 0.0007 | - |
189
+ | 1.0238 | 1850 | 0.0005 | - |
190
+ | 1.0515 | 1900 | 0.0004 | - |
191
+ | 1.0791 | 1950 | 0.0005 | - |
192
+ | 1.1068 | 2000 | 0.0006 | - |
193
+ | 1.1345 | 2050 | 0.0004 | - |
194
+ | 1.1621 | 2100 | 0.0006 | - |
195
+ | 1.1898 | 2150 | 0.0004 | - |
196
+ | 1.2175 | 2200 | 0.0004 | - |
197
+ | 1.2452 | 2250 | 0.0018 | - |
198
+ | 1.2728 | 2300 | 0.0041 | - |
199
+ | 1.3005 | 2350 | 0.0004 | - |
200
+ | 1.3282 | 2400 | 0.0107 | - |
201
+ | 1.3558 | 2450 | 0.0005 | - |
202
+ | 1.3835 | 2500 | 0.0004 | - |
203
+ | 1.4112 | 2550 | 0.0004 | - |
204
+ | 1.4388 | 2600 | 0.0167 | - |
205
+ | 1.4665 | 2650 | 0.0068 | - |
206
+ | 1.4942 | 2700 | 0.0004 | - |
207
+ | 1.5219 | 2750 | 0.0064 | - |
208
+ | 1.5495 | 2800 | 0.0041 | - |
209
+ | 1.5772 | 2850 | 0.0004 | - |
210
+ | 1.6049 | 2900 | 0.0003 | - |
211
+ | 1.6325 | 2950 | 0.0004 | - |
212
+ | 1.6602 | 3000 | 0.0004 | - |
213
+ | 1.6879 | 3050 | 0.0003 | - |
214
+ | 1.7156 | 3100 | 0.0057 | - |
215
+ | 1.7432 | 3150 | 0.0044 | - |
216
+ | 1.7709 | 3200 | 0.0004 | - |
217
+ | 1.7986 | 3250 | 0.0166 | - |
218
+ | 1.8262 | 3300 | 0.0004 | - |
219
+ | 1.8539 | 3350 | 0.0032 | - |
220
+ | 1.8816 | 3400 | 0.0133 | - |
221
+ | 1.9092 | 3450 | 0.0003 | - |
222
+ | 1.9369 | 3500 | 0.0003 | - |
223
+ | 1.9646 | 3550 | 0.0052 | - |
224
+ | 1.9923 | 3600 | 0.0004 | - |
225
+ | 2.0199 | 3650 | 0.004 | - |
226
+ | 2.0476 | 3700 | 0.0003 | - |
227
+ | 2.0753 | 3750 | 0.0054 | - |
228
+ | 2.1029 | 3800 | 0.0057 | - |
229
+ | 2.1306 | 3850 | 0.0004 | - |
230
+ | 2.1583 | 3900 | 0.0272 | - |
231
+ | 2.1859 | 3950 | 0.0003 | - |
232
+ | 2.2136 | 4000 | 0.006 | - |
233
+ | 2.2413 | 4050 | 0.0044 | - |
234
+ | 2.2690 | 4100 | 0.0003 | - |
235
+ | 2.2966 | 4150 | 0.0167 | - |
236
+ | 2.3243 | 4200 | 0.0048 | - |
237
+ | 2.3520 | 4250 | 0.0086 | - |
238
+ | 2.3796 | 4300 | 0.0051 | - |
239
+ | 2.4073 | 4350 | 0.0003 | - |
240
+ | 2.4350 | 4400 | 0.0037 | - |
241
+ | 2.4626 | 4450 | 0.0003 | - |
242
+ | 2.4903 | 4500 | 0.0021 | - |
243
+ | 2.5180 | 4550 | 0.0003 | - |
244
+ | 2.5457 | 4600 | 0.004 | - |
245
+ | 2.5733 | 4650 | 0.0025 | - |
246
+ | 2.6010 | 4700 | 0.0003 | - |
247
+ | 2.6287 | 4750 | 0.0003 | - |
248
+ | 2.6563 | 4800 | 0.0003 | - |
249
+ | 2.6840 | 4850 | 0.0031 | - |
250
+ | 2.7117 | 4900 | 0.0168 | - |
251
+ | 2.7393 | 4950 | 0.0019 | - |
252
+ | 2.7670 | 5000 | 0.004 | - |
253
+ | 2.7947 | 5050 | 0.0003 | - |
254
+ | 2.8224 | 5100 | 0.0003 | - |
255
+ | 2.8500 | 5150 | 0.003 | - |
256
+ | 2.8777 | 5200 | 0.0003 | - |
257
+ | 2.9054 | 5250 | 0.0003 | - |
258
+ | 2.9330 | 5300 | 0.0171 | - |
259
+ | 2.9607 | 5350 | 0.0003 | - |
260
+ | 2.9884 | 5400 | 0.0162 | - |
261
+ | 3.0160 | 5450 | 0.0143 | - |
262
+ | 3.0437 | 5500 | 0.0134 | - |
263
+ | 3.0714 | 5550 | 0.0133 | - |
264
+ | 3.0991 | 5600 | 0.0003 | - |
265
+ | 3.1267 | 5650 | 0.0003 | - |
266
+ | 3.1544 | 5700 | 0.0093 | - |
267
+ | 3.1821 | 5750 | 0.0003 | - |
268
+ | 3.2097 | 5800 | 0.0003 | - |
269
+ | 3.2374 | 5850 | 0.0003 | - |
270
+ | 3.2651 | 5900 | 0.0003 | - |
271
+ | 3.2928 | 5950 | 0.0003 | - |
272
+ | 3.3204 | 6000 | 0.0029 | - |
273
+ | 3.3481 | 6050 | 0.0126 | - |
274
+ | 3.3758 | 6100 | 0.0003 | - |
275
+ | 3.4034 | 6150 | 0.0002 | - |
276
+ | 3.4311 | 6200 | 0.0003 | - |
277
+ | 3.4588 | 6250 | 0.0062 | - |
278
+ | 3.4864 | 6300 | 0.0002 | - |
279
+ | 3.5141 | 6350 | 0.0002 | - |
280
+ | 3.5418 | 6400 | 0.0003 | - |
281
+ | 3.5695 | 6450 | 0.0002 | - |
282
+ | 3.5971 | 6500 | 0.0041 | - |
283
+ | 3.6248 | 6550 | 0.0465 | - |
284
+ | 3.6525 | 6600 | 0.0148 | - |
285
+ | 3.6801 | 6650 | 0.0181 | - |
286
+ | 3.7078 | 6700 | 0.0037 | - |
287
+ | 3.7355 | 6750 | 0.0002 | - |
288
+ | 3.7631 | 6800 | 0.0003 | - |
289
+ | 3.7908 | 6850 | 0.0003 | - |
290
+ | 3.8185 | 6900 | 0.0034 | - |
291
+ | 3.8462 | 6950 | 0.0002 | - |
292
+ | 3.8738 | 7000 | 0.0148 | - |
293
+ | 3.9015 | 7050 | 0.0002 | - |
294
+ | 3.9292 | 7100 | 0.0003 | - |
295
+ | 3.9568 | 7150 | 0.0002 | - |
296
+ | 3.9845 | 7200 | 0.0003 | - |
297
 
298
  ### Framework Versions
299
  - Python: 3.10.12
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7ff4a5cc692963ca34ed6bcdd50b41b283618eaa7f67261e8cc597da4c77c9e5
3
  size 133462128
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f107d989783da0321cc1140454cfee2b9bc4d3c23573c80426975ebb9fc666d
3
  size 133462128
model_head.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b6bfd58619c075a6e8ba28052b168e8e84df72b7676c8476177c8af2f54465d6
3
  size 3935
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94e1e6cc42de8fabf6240381ffdaad310f6c7c23204ca9775ad2c1a612f212e4
3
  size 3935