Push model using huggingface_hub.
Browse files- README.md +160 -161
- model.safetensors +1 -1
- model_head.pkl +1 -1
README.md
CHANGED
@@ -9,12 +9,11 @@ base_model: BAAI/bge-small-en-v1.5
|
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
widget:
|
12 |
-
- text:
|
13 |
-
- text:
|
14 |
-
- text:
|
15 |
-
- text:
|
16 |
-
|
17 |
-
- text: country-level economy affects ceo pay
|
18 |
pipeline_tag: text-classification
|
19 |
inference: true
|
20 |
model-index:
|
@@ -29,7 +28,7 @@ model-index:
|
|
29 |
split: test
|
30 |
metrics:
|
31 |
- type: accuracy
|
32 |
-
value: 0.
|
33 |
name: Accuracy
|
34 |
---
|
35 |
|
@@ -61,17 +60,17 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
61 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
62 |
|
63 |
### Model Labels
|
64 |
-
| Label | Examples
|
65 |
-
|
66 |
-
|
|
67 |
-
|
|
68 |
|
69 |
## Evaluation
|
70 |
|
71 |
### Metrics
|
72 |
| Label | Accuracy |
|
73 |
|:--------|:---------|
|
74 |
-
| **all** | 0.
|
75 |
|
76 |
## Uses
|
77 |
|
@@ -91,7 +90,7 @@ from setfit import SetFitModel
|
|
91 |
# Download from the 🤗 Hub
|
92 |
model = SetFitModel.from_pretrained("abehandlerorg/setfit")
|
93 |
# Run inference
|
94 |
-
preds = model("
|
95 |
```
|
96 |
|
97 |
<!--
|
@@ -123,12 +122,12 @@ preds = model("innovation affects m & a success")
|
|
123 |
### Training Set Metrics
|
124 |
| Training set | Min | Median | Max |
|
125 |
|:-------------|:----|:-------|:----|
|
126 |
-
| Word count | 4 | 5.
|
127 |
|
128 |
| Label | Training Sample Count |
|
129 |
|:------|:----------------------|
|
130 |
-
| 0 |
|
131 |
-
| 1 |
|
132 |
|
133 |
### Training Hyperparameters
|
134 |
- batch_size: (32, 32)
|
@@ -150,151 +149,151 @@ preds = model("innovation affects m & a success")
|
|
150 |
### Training Results
|
151 |
| Epoch | Step | Training Loss | Validation Loss |
|
152 |
|:------:|:----:|:-------------:|:---------------:|
|
153 |
-
| 0.0006 | 1 | 0.
|
154 |
-
| 0.
|
155 |
-
| 0.0553 | 100 | 0.
|
156 |
-
| 0.
|
157 |
-
| 0.
|
158 |
-
| 0.
|
159 |
-
| 0.
|
160 |
-
| 0.
|
161 |
-
| 0.
|
162 |
-
| 0.
|
163 |
-
| 0.
|
164 |
-
| 0.
|
165 |
-
| 0.
|
166 |
-
| 0.
|
167 |
-
| 0.
|
168 |
-
| 0.
|
169 |
-
| 0.
|
170 |
-
| 0.
|
171 |
-
| 0.
|
172 |
-
| 0.
|
173 |
-
| 0.
|
174 |
-
| 0.
|
175 |
-
| 0.
|
176 |
-
| 0.
|
177 |
-
| 0.
|
178 |
-
| 0.
|
179 |
-
| 0.
|
180 |
-
| 0.
|
181 |
-
| 0.
|
182 |
-
| 0.
|
183 |
-
| 0.
|
184 |
-
| 0.
|
185 |
-
| 0.
|
186 |
-
| 0.
|
187 |
-
| 0.
|
188 |
-
| 0.
|
189 |
-
| 0.
|
190 |
-
| 1.
|
191 |
-
| 1.
|
192 |
-
| 1.
|
193 |
-
| 1.
|
194 |
-
| 1.
|
195 |
-
| 1.
|
196 |
-
| 1.
|
197 |
-
| 1.
|
198 |
-
| 1.
|
199 |
-
| 1.
|
200 |
-
| 1.
|
201 |
-
| 1.
|
202 |
-
| 1.
|
203 |
-
| 1.
|
204 |
-
| 1.
|
205 |
-
| 1.
|
206 |
-
| 1.
|
207 |
-
| 1.
|
208 |
-
| 1.
|
209 |
-
| 1.
|
210 |
-
| 1.
|
211 |
-
| 1.
|
212 |
-
| 1.
|
213 |
-
| 1.
|
214 |
-
| 1.
|
215 |
-
| 1.
|
216 |
-
| 1.
|
217 |
-
| 1.
|
218 |
-
| 1.
|
219 |
-
| 1.
|
220 |
-
| 1.
|
221 |
-
| 1.
|
222 |
-
| 1.
|
223 |
-
| 1.
|
224 |
-
| 1.
|
225 |
-
| 1.
|
226 |
-
| 2.
|
227 |
-
| 2.
|
228 |
-
| 2.
|
229 |
-
| 2.
|
230 |
-
| 2.
|
231 |
-
| 2.
|
232 |
-
| 2.
|
233 |
-
| 2.
|
234 |
-
| 2.
|
235 |
-
| 2.
|
236 |
-
| 2.
|
237 |
-
| 2.
|
238 |
-
| 2.
|
239 |
-
| 2.
|
240 |
-
| 2.
|
241 |
-
| 2.
|
242 |
-
| 2.
|
243 |
-
| 2.
|
244 |
-
| 2.
|
245 |
-
| 2.
|
246 |
-
| 2.
|
247 |
-
| 2.
|
248 |
-
| 2.
|
249 |
-
| 2.
|
250 |
-
| 2.
|
251 |
-
| 2.
|
252 |
-
| 2.
|
253 |
-
| 2.
|
254 |
-
| 2.
|
255 |
-
| 2.
|
256 |
-
| 2.
|
257 |
-
| 2.
|
258 |
-
| 2.
|
259 |
-
| 2.
|
260 |
-
| 2.
|
261 |
-
| 2.
|
262 |
-
| 3.
|
263 |
-
| 3.
|
264 |
-
| 3.
|
265 |
-
| 3.
|
266 |
-
| 3.
|
267 |
-
| 3.
|
268 |
-
| 3.
|
269 |
-
| 3.
|
270 |
-
| 3.
|
271 |
-
| 3.
|
272 |
-
| 3.
|
273 |
-
| 3.
|
274 |
-
| 3.
|
275 |
-
| 3.
|
276 |
-
| 3.
|
277 |
-
| 3.
|
278 |
-
| 3.
|
279 |
-
| 3.
|
280 |
-
| 3.
|
281 |
-
| 3.
|
282 |
-
| 3.
|
283 |
-
| 3.
|
284 |
-
| 3.
|
285 |
-
| 3.
|
286 |
-
| 3.
|
287 |
-
| 3.
|
288 |
-
| 3.
|
289 |
-
| 3.
|
290 |
-
| 3.
|
291 |
-
| 3.
|
292 |
-
| 3.
|
293 |
-
| 3.
|
294 |
-
| 3.
|
295 |
-
| 3.
|
296 |
-
| 3.
|
297 |
-
| 3.
|
298 |
|
299 |
### Framework Versions
|
300 |
- Python: 3.10.12
|
|
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
widget:
|
12 |
+
- text: sales affects ceo pay
|
13 |
+
- text: time affects entrepreneurship intention
|
14 |
+
- text: operations planning affects entrepreneurship intention
|
15 |
+
- text: entrepreneurial self-efficacy affects entrepreneurship intention
|
16 |
+
- text: empirical training affects entrepreneurship intention
|
|
|
17 |
pipeline_tag: text-classification
|
18 |
inference: true
|
19 |
model-index:
|
|
|
28 |
split: test
|
29 |
metrics:
|
30 |
- type: accuracy
|
31 |
+
value: 0.9058823529411765
|
32 |
name: Accuracy
|
33 |
---
|
34 |
|
|
|
60 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
|
62 |
### Model Labels
|
63 |
+
| Label | Examples |
|
64 |
+
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
65 |
+
| 1 | <ul><li>'board diversity affects ceo pay'</li><li>'perceptions of formal learning affects entrepreneurship intention'</li><li>'proactiveness affects entrepreneurship intention'</li></ul> |
|
66 |
+
| 0 | <ul><li>'sales and takeovers affects entrepreneurship intention'</li><li>'uk affects entrepreneurship intention'</li><li>'economics affects entrepreneurship intention'</li></ul> |
|
67 |
|
68 |
## Evaluation
|
69 |
|
70 |
### Metrics
|
71 |
| Label | Accuracy |
|
72 |
|:--------|:---------|
|
73 |
+
| **all** | 0.9059 |
|
74 |
|
75 |
## Uses
|
76 |
|
|
|
90 |
# Download from the 🤗 Hub
|
91 |
model = SetFitModel.from_pretrained("abehandlerorg/setfit")
|
92 |
# Run inference
|
93 |
+
preds = model("sales affects ceo pay")
|
94 |
```
|
95 |
|
96 |
<!--
|
|
|
122 |
### Training Set Metrics
|
123 |
| Training set | Min | Median | Max |
|
124 |
|:-------------|:----|:-------|:----|
|
125 |
+
| Word count | 4 | 5.4307 | 12 |
|
126 |
|
127 |
| Label | Training Sample Count |
|
128 |
|:------|:----------------------|
|
129 |
+
| 0 | 168 |
|
130 |
+
| 1 | 171 |
|
131 |
|
132 |
### Training Hyperparameters
|
133 |
- batch_size: (32, 32)
|
|
|
149 |
### Training Results
|
150 |
| Epoch | Step | Training Loss | Validation Loss |
|
151 |
|:------:|:----:|:-------------:|:---------------:|
|
152 |
+
| 0.0006 | 1 | 0.3133 | - |
|
153 |
+
| 0.0277 | 50 | 0.289 | - |
|
154 |
+
| 0.0553 | 100 | 0.2506 | - |
|
155 |
+
| 0.0830 | 150 | 0.2243 | - |
|
156 |
+
| 0.1107 | 200 | 0.2388 | - |
|
157 |
+
| 0.1384 | 250 | 0.2084 | - |
|
158 |
+
| 0.1660 | 300 | 0.1316 | - |
|
159 |
+
| 0.1937 | 350 | 0.0142 | - |
|
160 |
+
| 0.2214 | 400 | 0.0065 | - |
|
161 |
+
| 0.2490 | 450 | 0.0037 | - |
|
162 |
+
| 0.2767 | 500 | 0.003 | - |
|
163 |
+
| 0.3044 | 550 | 0.002 | - |
|
164 |
+
| 0.3320 | 600 | 0.0018 | - |
|
165 |
+
| 0.3597 | 650 | 0.0026 | - |
|
166 |
+
| 0.3874 | 700 | 0.0013 | - |
|
167 |
+
| 0.4151 | 750 | 0.0012 | - |
|
168 |
+
| 0.4427 | 800 | 0.0284 | - |
|
169 |
+
| 0.4704 | 850 | 0.0145 | - |
|
170 |
+
| 0.4981 | 900 | 0.0053 | - |
|
171 |
+
| 0.5257 | 950 | 0.0075 | - |
|
172 |
+
| 0.5534 | 1000 | 0.005 | - |
|
173 |
+
| 0.5811 | 1050 | 0.0008 | - |
|
174 |
+
| 0.6087 | 1100 | 0.0008 | - |
|
175 |
+
| 0.6364 | 1150 | 0.0008 | - |
|
176 |
+
| 0.6641 | 1200 | 0.0007 | - |
|
177 |
+
| 0.6918 | 1250 | 0.0008 | - |
|
178 |
+
| 0.7194 | 1300 | 0.0009 | - |
|
179 |
+
| 0.7471 | 1350 | 0.0007 | - |
|
180 |
+
| 0.7748 | 1400 | 0.0008 | - |
|
181 |
+
| 0.8024 | 1450 | 0.0006 | - |
|
182 |
+
| 0.8301 | 1500 | 0.0006 | - |
|
183 |
+
| 0.8578 | 1550 | 0.0192 | - |
|
184 |
+
| 0.8854 | 1600 | 0.0005 | - |
|
185 |
+
| 0.9131 | 1650 | 0.002 | - |
|
186 |
+
| 0.9408 | 1700 | 0.0204 | - |
|
187 |
+
| 0.9685 | 1750 | 0.0039 | - |
|
188 |
+
| 0.9961 | 1800 | 0.0007 | - |
|
189 |
+
| 1.0238 | 1850 | 0.0005 | - |
|
190 |
+
| 1.0515 | 1900 | 0.0004 | - |
|
191 |
+
| 1.0791 | 1950 | 0.0005 | - |
|
192 |
+
| 1.1068 | 2000 | 0.0006 | - |
|
193 |
+
| 1.1345 | 2050 | 0.0004 | - |
|
194 |
+
| 1.1621 | 2100 | 0.0006 | - |
|
195 |
+
| 1.1898 | 2150 | 0.0004 | - |
|
196 |
+
| 1.2175 | 2200 | 0.0004 | - |
|
197 |
+
| 1.2452 | 2250 | 0.0018 | - |
|
198 |
+
| 1.2728 | 2300 | 0.0041 | - |
|
199 |
+
| 1.3005 | 2350 | 0.0004 | - |
|
200 |
+
| 1.3282 | 2400 | 0.0107 | - |
|
201 |
+
| 1.3558 | 2450 | 0.0005 | - |
|
202 |
+
| 1.3835 | 2500 | 0.0004 | - |
|
203 |
+
| 1.4112 | 2550 | 0.0004 | - |
|
204 |
+
| 1.4388 | 2600 | 0.0167 | - |
|
205 |
+
| 1.4665 | 2650 | 0.0068 | - |
|
206 |
+
| 1.4942 | 2700 | 0.0004 | - |
|
207 |
+
| 1.5219 | 2750 | 0.0064 | - |
|
208 |
+
| 1.5495 | 2800 | 0.0041 | - |
|
209 |
+
| 1.5772 | 2850 | 0.0004 | - |
|
210 |
+
| 1.6049 | 2900 | 0.0003 | - |
|
211 |
+
| 1.6325 | 2950 | 0.0004 | - |
|
212 |
+
| 1.6602 | 3000 | 0.0004 | - |
|
213 |
+
| 1.6879 | 3050 | 0.0003 | - |
|
214 |
+
| 1.7156 | 3100 | 0.0057 | - |
|
215 |
+
| 1.7432 | 3150 | 0.0044 | - |
|
216 |
+
| 1.7709 | 3200 | 0.0004 | - |
|
217 |
+
| 1.7986 | 3250 | 0.0166 | - |
|
218 |
+
| 1.8262 | 3300 | 0.0004 | - |
|
219 |
+
| 1.8539 | 3350 | 0.0032 | - |
|
220 |
+
| 1.8816 | 3400 | 0.0133 | - |
|
221 |
+
| 1.9092 | 3450 | 0.0003 | - |
|
222 |
+
| 1.9369 | 3500 | 0.0003 | - |
|
223 |
+
| 1.9646 | 3550 | 0.0052 | - |
|
224 |
+
| 1.9923 | 3600 | 0.0004 | - |
|
225 |
+
| 2.0199 | 3650 | 0.004 | - |
|
226 |
+
| 2.0476 | 3700 | 0.0003 | - |
|
227 |
+
| 2.0753 | 3750 | 0.0054 | - |
|
228 |
+
| 2.1029 | 3800 | 0.0057 | - |
|
229 |
+
| 2.1306 | 3850 | 0.0004 | - |
|
230 |
+
| 2.1583 | 3900 | 0.0272 | - |
|
231 |
+
| 2.1859 | 3950 | 0.0003 | - |
|
232 |
+
| 2.2136 | 4000 | 0.006 | - |
|
233 |
+
| 2.2413 | 4050 | 0.0044 | - |
|
234 |
+
| 2.2690 | 4100 | 0.0003 | - |
|
235 |
+
| 2.2966 | 4150 | 0.0167 | - |
|
236 |
+
| 2.3243 | 4200 | 0.0048 | - |
|
237 |
+
| 2.3520 | 4250 | 0.0086 | - |
|
238 |
+
| 2.3796 | 4300 | 0.0051 | - |
|
239 |
+
| 2.4073 | 4350 | 0.0003 | - |
|
240 |
+
| 2.4350 | 4400 | 0.0037 | - |
|
241 |
+
| 2.4626 | 4450 | 0.0003 | - |
|
242 |
+
| 2.4903 | 4500 | 0.0021 | - |
|
243 |
+
| 2.5180 | 4550 | 0.0003 | - |
|
244 |
+
| 2.5457 | 4600 | 0.004 | - |
|
245 |
+
| 2.5733 | 4650 | 0.0025 | - |
|
246 |
+
| 2.6010 | 4700 | 0.0003 | - |
|
247 |
+
| 2.6287 | 4750 | 0.0003 | - |
|
248 |
+
| 2.6563 | 4800 | 0.0003 | - |
|
249 |
+
| 2.6840 | 4850 | 0.0031 | - |
|
250 |
+
| 2.7117 | 4900 | 0.0168 | - |
|
251 |
+
| 2.7393 | 4950 | 0.0019 | - |
|
252 |
+
| 2.7670 | 5000 | 0.004 | - |
|
253 |
+
| 2.7947 | 5050 | 0.0003 | - |
|
254 |
+
| 2.8224 | 5100 | 0.0003 | - |
|
255 |
+
| 2.8500 | 5150 | 0.003 | - |
|
256 |
+
| 2.8777 | 5200 | 0.0003 | - |
|
257 |
+
| 2.9054 | 5250 | 0.0003 | - |
|
258 |
+
| 2.9330 | 5300 | 0.0171 | - |
|
259 |
+
| 2.9607 | 5350 | 0.0003 | - |
|
260 |
+
| 2.9884 | 5400 | 0.0162 | - |
|
261 |
+
| 3.0160 | 5450 | 0.0143 | - |
|
262 |
+
| 3.0437 | 5500 | 0.0134 | - |
|
263 |
+
| 3.0714 | 5550 | 0.0133 | - |
|
264 |
+
| 3.0991 | 5600 | 0.0003 | - |
|
265 |
+
| 3.1267 | 5650 | 0.0003 | - |
|
266 |
+
| 3.1544 | 5700 | 0.0093 | - |
|
267 |
+
| 3.1821 | 5750 | 0.0003 | - |
|
268 |
+
| 3.2097 | 5800 | 0.0003 | - |
|
269 |
+
| 3.2374 | 5850 | 0.0003 | - |
|
270 |
+
| 3.2651 | 5900 | 0.0003 | - |
|
271 |
+
| 3.2928 | 5950 | 0.0003 | - |
|
272 |
+
| 3.3204 | 6000 | 0.0029 | - |
|
273 |
+
| 3.3481 | 6050 | 0.0126 | - |
|
274 |
+
| 3.3758 | 6100 | 0.0003 | - |
|
275 |
+
| 3.4034 | 6150 | 0.0002 | - |
|
276 |
+
| 3.4311 | 6200 | 0.0003 | - |
|
277 |
+
| 3.4588 | 6250 | 0.0062 | - |
|
278 |
+
| 3.4864 | 6300 | 0.0002 | - |
|
279 |
+
| 3.5141 | 6350 | 0.0002 | - |
|
280 |
+
| 3.5418 | 6400 | 0.0003 | - |
|
281 |
+
| 3.5695 | 6450 | 0.0002 | - |
|
282 |
+
| 3.5971 | 6500 | 0.0041 | - |
|
283 |
+
| 3.6248 | 6550 | 0.0465 | - |
|
284 |
+
| 3.6525 | 6600 | 0.0148 | - |
|
285 |
+
| 3.6801 | 6650 | 0.0181 | - |
|
286 |
+
| 3.7078 | 6700 | 0.0037 | - |
|
287 |
+
| 3.7355 | 6750 | 0.0002 | - |
|
288 |
+
| 3.7631 | 6800 | 0.0003 | - |
|
289 |
+
| 3.7908 | 6850 | 0.0003 | - |
|
290 |
+
| 3.8185 | 6900 | 0.0034 | - |
|
291 |
+
| 3.8462 | 6950 | 0.0002 | - |
|
292 |
+
| 3.8738 | 7000 | 0.0148 | - |
|
293 |
+
| 3.9015 | 7050 | 0.0002 | - |
|
294 |
+
| 3.9292 | 7100 | 0.0003 | - |
|
295 |
+
| 3.9568 | 7150 | 0.0002 | - |
|
296 |
+
| 3.9845 | 7200 | 0.0003 | - |
|
297 |
|
298 |
### Framework Versions
|
299 |
- Python: 3.10.12
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 133462128
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f107d989783da0321cc1140454cfee2b9bc4d3c23573c80426975ebb9fc666d
|
3 |
size 133462128
|
model_head.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3935
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94e1e6cc42de8fabf6240381ffdaad310f6c7c23204ca9775ad2c1a612f212e4
|
3 |
size 3935
|