{
"cells": [
{
"cell_type": "markdown",
"source": [
"# | Abstract\n",
"\n",
"### The objective of this Notebook is to predict `HeartDisease` using all the Personal Key Indicators of the Human Beings with HeartDisease information by performing Data Exploration, Data Cleaning, Data preprocessing, Feature Engineering, Model Building, Interpreting the best model using SHAP and Build a Heart Disease Application using the best model we develop.\n",
"\n",
"* Dataset: Personal key Indicators of HeartDisease.\n",
"* Dataset has 319795 observations and 18 features [14 Categorical features and 4 Continuous Features] with just 27,373 (8.5%) HeartDisease (Target) observations.\n",
"\n",
"Categorical Features: \n",
"`HeartDisease`, `Smoking`, `AlcoholDrinking`, `Stroke`, `DiffWalking`, `Sex`, `AgeCategory`, `Race`, `Diabetic`, `PhysicalActivity`, `GenHealth`, `Asthma`, `KidneyDisease`, `SkinCancer`\n",
"\n",
"Continuous Features: \n",
"`BMI`, `PhysicalHealtH`, `MentalHealth`, `SleepTime`\n",
"\n"
],
"metadata": {
"id": "49oaZTnJcCiK"
},
"id": "49oaZTnJcCiK"
},
{
"cell_type": "markdown",
"id": "cfad766f",
"metadata": {
"id": "cfad766f"
},
"source": [
"# 1 | Importing libraries\n",
"- **For ML Models**: sklearn \n",
"- **For Data Manipulation**: numpy, pandas, sklearn\n",
"- **For Data Visualization**: matplotlib, seaborn, plotly"
]
},
{
"cell_type": "code",
"source": [
"!pip install category_encoders"
],
"metadata": {
"id": "47OTvliqdUtO",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "5d177ef6-d6cf-4758-80ef-f2efe8e29885"
},
"id": "47OTvliqdUtO",
"execution_count": 1,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
"Collecting category_encoders\n",
" Downloading category_encoders-2.6.0-py2.py3-none-any.whl (81 kB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m81.2/81.2 kB\u001b[0m \u001b[31m2.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: scikit-learn>=0.20.0 in /usr/local/lib/python3.9/dist-packages (from category_encoders) (1.2.2)\n",
"Requirement already satisfied: statsmodels>=0.9.0 in /usr/local/lib/python3.9/dist-packages (from category_encoders) (0.13.5)\n",
"Requirement already satisfied: numpy>=1.14.0 in /usr/local/lib/python3.9/dist-packages (from category_encoders) (1.22.4)\n",
"Requirement already satisfied: pandas>=1.0.5 in /usr/local/lib/python3.9/dist-packages (from category_encoders) (1.5.3)\n",
"Requirement already satisfied: patsy>=0.5.1 in /usr/local/lib/python3.9/dist-packages (from category_encoders) (0.5.3)\n",
"Requirement already satisfied: scipy>=1.0.0 in /usr/local/lib/python3.9/dist-packages (from category_encoders) (1.10.1)\n",
"Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.9/dist-packages (from pandas>=1.0.5->category_encoders) (2.8.2)\n",
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.9/dist-packages (from pandas>=1.0.5->category_encoders) (2022.7.1)\n",
"Requirement already satisfied: six in /usr/local/lib/python3.9/dist-packages (from patsy>=0.5.1->category_encoders) (1.16.0)\n",
"Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.9/dist-packages (from scikit-learn>=0.20.0->category_encoders) (3.1.0)\n",
"Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.9/dist-packages (from scikit-learn>=0.20.0->category_encoders) (1.2.0)\n",
"Requirement already satisfied: packaging>=21.3 in /usr/local/lib/python3.9/dist-packages (from statsmodels>=0.9.0->category_encoders) (23.1)\n",
"Installing collected packages: category_encoders\n",
"Successfully installed category_encoders-2.6.0\n"
]
}
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "135743bd",
"metadata": {
"id": "135743bd"
},
"outputs": [],
"source": [
"# Importing Required Libraries\n",
"# Install Numpy, Pandas, Matplotlib, Seaborn, Plotly, Category_encoders\n",
"\n",
"# For Data Manipulation\n",
"import os\n",
"import numpy as np\n",
"import pandas as pd\n",
"from pandas.api.types import CategoricalDtype\n",
"\n",
"pd.set_option('display.max_columns', None)\n",
"pd.set_option('display.max_rows', None)\n",
"\n",
"# For Data Visualization\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import plotly.express as px\n",
"import plotly.graph_objects as go\n",
"from plotly.subplots import make_subplots\n",
"\n",
"# For Data Preprocessing\n",
"from sklearn.preprocessing import LabelEncoder\n",
"import category_encoders as ce\n",
"from sklearn.model_selection import train_test_split \n",
"\n",
"# For ML models\n",
"from sklearn.metrics import r2_score, mean_squared_error \n",
"from sklearn import datasets, linear_model\n",
"from sklearn.linear_model import LinearRegression ,LogisticRegression\n",
"from sklearn.tree import DecisionTreeClassifier\n",
"from sklearn.neighbors import KNeighborsClassifier\n",
"from sklearn.naive_bayes import GaussianNB\n",
"from sklearn.ensemble import AdaBoostRegressor\n",
"from sklearn.ensemble import RandomForestClassifier\n",
"from sklearn.svm import SVC ,SVR\n",
"from sklearn.metrics import *\n",
"from sklearn.model_selection import GridSearchCV"
]
},
{
"cell_type": "markdown",
"id": "b1bb16f9",
"metadata": {
"id": "b1bb16f9"
},
"source": [
"# 2 | About the Dataset"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "1eafd8bc",
"metadata": {
"scrolled": true,
"colab": {
"base_uri": "https://localhost:8080/",
"height": 359
},
"id": "1eafd8bc",
"outputId": "d337776b-7759-492c-8bac-196a7a0bd59f"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Dataset has 319795 observations with 18 variables.\n",
"Target Distribution --> \n",
"No 91.440454\n",
"Yes 8.559546\n",
"Name: HeartDisease, dtype: float64\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
" HeartDisease BMI_value Smoking AlcoholDrinking Stroke PhysicalHealth \\\n",
"0 No 16.60 Yes No No 3.0 \n",
"1 No 20.34 No No Yes 0.0 \n",
"2 No 26.58 Yes No No 20.0 \n",
"3 No 24.21 No No No 0.0 \n",
"4 No 23.71 No No No 28.0 \n",
"\n",
" MentalHealth DiffWalking Sex AgeCategory Race Diabetic \\\n",
"0 30.0 No Female 55-59 White Yes \n",
"1 0.0 No Female 80 or older White No \n",
"2 30.0 No Male 65-69 White Yes \n",
"3 0.0 No Female 75-79 White No \n",
"4 0.0 Yes Female 40-44 White No \n",
"\n",
" PhysicalActivity GenHealth SleepTime Asthma KidneyDisease SkinCancer \n",
"0 Yes Very good 5.0 Yes No Yes \n",
"1 Yes Very good 7.0 No No No \n",
"2 Yes Fair 8.0 Yes No No \n",
"3 No Good 6.0 No No Yes \n",
"4 Yes Very good 8.0 No No No "
],
"text/html": [
"\n",
"
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
HeartDisease
\n",
"
BMI_value
\n",
"
Smoking
\n",
"
AlcoholDrinking
\n",
"
Stroke
\n",
"
PhysicalHealth
\n",
"
MentalHealth
\n",
"
DiffWalking
\n",
"
Sex
\n",
"
AgeCategory
\n",
"
Race
\n",
"
Diabetic
\n",
"
PhysicalActivity
\n",
"
GenHealth
\n",
"
SleepTime
\n",
"
Asthma
\n",
"
KidneyDisease
\n",
"
SkinCancer
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
No
\n",
"
16.60
\n",
"
Yes
\n",
"
No
\n",
"
No
\n",
"
3.0
\n",
"
30.0
\n",
"
No
\n",
"
Female
\n",
"
55-59
\n",
"
White
\n",
"
Yes
\n",
"
Yes
\n",
"
Very good
\n",
"
5.0
\n",
"
Yes
\n",
"
No
\n",
"
Yes
\n",
"
\n",
"
\n",
"
1
\n",
"
No
\n",
"
20.34
\n",
"
No
\n",
"
No
\n",
"
Yes
\n",
"
0.0
\n",
"
0.0
\n",
"
No
\n",
"
Female
\n",
"
80 or older
\n",
"
White
\n",
"
No
\n",
"
Yes
\n",
"
Very good
\n",
"
7.0
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
\n",
"
\n",
"
2
\n",
"
No
\n",
"
26.58
\n",
"
Yes
\n",
"
No
\n",
"
No
\n",
"
20.0
\n",
"
30.0
\n",
"
No
\n",
"
Male
\n",
"
65-69
\n",
"
White
\n",
"
Yes
\n",
"
Yes
\n",
"
Fair
\n",
"
8.0
\n",
"
Yes
\n",
"
No
\n",
"
No
\n",
"
\n",
"
\n",
"
3
\n",
"
No
\n",
"
24.21
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
0.0
\n",
"
0.0
\n",
"
No
\n",
"
Female
\n",
"
75-79
\n",
"
White
\n",
"
No
\n",
"
No
\n",
"
Good
\n",
"
6.0
\n",
"
No
\n",
"
No
\n",
"
Yes
\n",
"
\n",
"
\n",
"
4
\n",
"
No
\n",
"
23.71
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
28.0
\n",
"
0.0
\n",
"
Yes
\n",
"
Female
\n",
"
40-44
\n",
"
White
\n",
"
No
\n",
"
Yes
\n",
"
Very good
\n",
"
8.0
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
\n",
" \n",
"
\n",
"
\n",
" \n",
" \n",
" \n",
"\n",
" \n",
"
\n",
"
\n",
" "
]
},
"metadata": {},
"execution_count": 3
}
],
"source": [
"# Dataset Link\n",
"data_githublink = \"https://github.com/jkkn31/KrishnakanthNaik/blob/main/UI_to_Predict_HeartDisease/Data/heart_2020_cleaned.csv\"\n",
"\n",
"# Transforming above link to access data from above provided github link\n",
"data_githublink= data_githublink.replace(\"blob/\", \"\").replace(\"github.com\",\"raw.githubusercontent.com\")\n",
"data_githublink\n",
"\n",
"# Importing the data from github into dataframe\n",
"raw_df = pd.read_csv(data_githublink)\n",
"df = raw_df.copy()\n",
"\n",
"df.rename(columns={'BMI':'BMI_value'}, inplace=True)\n",
"print(f\"Dataset has {df.shape[0]} observations with {df.shape[1]} variables.\")\n",
"print(f\"Target Distribution --> \\n{100*df.HeartDisease.value_counts(normalize=True)}\")\n",
"df.head()"
]
},
{
"cell_type": "markdown",
"id": "102eda72",
"metadata": {
"id": "102eda72"
},
"source": [
"### Dataset has `319795` observations and `18` features [14 Categorical features and 4 Continuous Features] with just `27,373 (8.5%) HeartDisease (Target) observations`."
]
},
{
"cell_type": "markdown",
"id": "870ae4ed",
"metadata": {
"id": "870ae4ed"
},
"source": [
"\n",
"## Column Descriptions\n",
"- `HeartDisease`: Respondents that have ever reported having coronary heart disease (CHD) or myocardial infarction (MI).\n",
"- `BMI`: Body Mass Index (BMI).\n",
"- `Smoking`: Have you smoked at least 100 cigarettes in your entire life?\n",
"- `AlcoholDrinking`: Heavy drinkers (adult men having more than 14 drinks per week and adult women having more than 7 drinks per week\n",
"- `Stroke`: (Ever told) (you had) a stroke?\n",
"- `PhysicalHealth`: Now thinking about your physical health, which includes physical illness and injury, for how many days during the past 30 days was your physical health not good? (0-30 days).\n",
"- `MentalHealth`: Thinking about your mental health, for how many days during the past 30 days was your mental health not good? (0-30 days).\n",
"- `DiffWalking`: Do you have serious difficulty walking or climbing stairs?\n",
"- `Sex`: Are you male or female?\n",
"- `AgeCategory`: 13-categories of age. [ '18-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-64', '65-69', '70-74', '75-79', '80 or older']\n",
"- `Race`: Imputed race/ethnicity value.\n",
"- `Diabetic`: (Ever told) (you had) diabetes?\n",
"- `PhysicalActivity`: Adults who reported doing physical activity or exercise during the past 30 days other than their regular job.\n",
"- `GenHealth`: Would you say that in general your health is...\n",
"- `SleepTime`: On average, how many hours of sleep do you get in a 24-hour period?\n",
"- `Asthma`: (Ever told) (you had) asthma?\n",
"- `KidneyDisease`: Not including kidney stones, bladder infection or incontinence, were you ever told you had kidney disease?\n",
"- `SkinCancer`: (Ever told) (you had) skin cancer?"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "8a405d85",
"metadata": {
"scrolled": false,
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "8a405d85",
"outputId": "6a91ee15-aee4-4cf6-ece2-9ee91743ca28"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\n",
"RangeIndex: 319795 entries, 0 to 319794\n",
"Data columns (total 18 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 HeartDisease 319795 non-null object \n",
" 1 BMI_value 319795 non-null float64\n",
" 2 Smoking 319795 non-null object \n",
" 3 AlcoholDrinking 319795 non-null object \n",
" 4 Stroke 319795 non-null object \n",
" 5 PhysicalHealth 319795 non-null float64\n",
" 6 MentalHealth 319795 non-null float64\n",
" 7 DiffWalking 319795 non-null object \n",
" 8 Sex 319795 non-null object \n",
" 9 AgeCategory 319795 non-null object \n",
" 10 Race 319795 non-null object \n",
" 11 Diabetic 319795 non-null object \n",
" 12 PhysicalActivity 319795 non-null object \n",
" 13 GenHealth 319795 non-null object \n",
" 14 SleepTime 319795 non-null float64\n",
" 15 Asthma 319795 non-null object \n",
" 16 KidneyDisease 319795 non-null object \n",
" 17 SkinCancer 319795 non-null object \n",
"dtypes: float64(4), object(14)\n",
"memory usage: 43.9+ MB\n"
]
}
],
"source": [
"# checking the details (missing values, dtypes) of all the variables.\n",
"df.info()"
]
},
{
"cell_type": "markdown",
"id": "f545789b",
"metadata": {
"id": "f545789b"
},
"source": [
"#### Dataset has `18` features [14 Categorical features and 4 Continuous Features] with just `27,373 (8.5%) HeartDisease (Target) observations`.\n",
"\n",
"Categorical Features: \n",
"`HeartDisease`, `Smoking`, `AlcoholDrinking`, `Stroke`, `DiffWalking`, `Sex`, `AgeCategory`, `Race`, `Diabetic`, `PhysicalActivity`, `GenHealth`, `Asthma`, `KidneyDisease`, `SkinCancer`\n",
"\n",
"Continuous Features: \n",
"`BMI`, `PhysicalHealtH`, `MentalHealth`, `SleepTime`"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "f0467b2e",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "f0467b2e",
"outputId": "e2c0d34e-0830-48e2-8477-3373dcdc559c"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"HeartDisease 0\n",
"BMI_value 0\n",
"Smoking 0\n",
"AlcoholDrinking 0\n",
"Stroke 0\n",
"PhysicalHealth 0\n",
"MentalHealth 0\n",
"DiffWalking 0\n",
"Sex 0\n",
"AgeCategory 0\n",
"Race 0\n",
"Diabetic 0\n",
"PhysicalActivity 0\n",
"GenHealth 0\n",
"SleepTime 0\n",
"Asthma 0\n",
"KidneyDisease 0\n",
"SkinCancer 0\n",
"dtype: int64"
]
},
"metadata": {},
"execution_count": 5
}
],
"source": [
"# Checking Missing/null values in the dataset.\n",
"df.isnull().sum()"
]
},
{
"cell_type": "markdown",
"id": "c159b2cf",
"metadata": {
"id": "c159b2cf"
},
"source": [
"\n",
"* There are `no missing values` in the dataset, so Imputation methods are not required."
]
},
{
"cell_type": "markdown",
"id": "37ce6dc6",
"metadata": {
"id": "37ce6dc6"
},
"source": [
"# 3 | Univariate Analysis\n",
"\n",
"Categorical Features: \n",
"`HeartDisease`, `Smoking`, `AlcoholDrinking`, `Stroke`, `DiffWalking`, `Sex`, `AgeCategory`, `Race`, `Diabetic`, `PhysicalActivity`, `GenHealth`, `Asthma`, `KidneyDisease`, `SkinCancer`\n",
"\n",
"Continuous Features: \n",
"`BMI`, `PhysicalHealtH`, `MentalHealth`, `SleepTime`"
]
},
{
"cell_type": "markdown",
"id": "be7690db",
"metadata": {
"id": "be7690db"
},
"source": [
"## 3.1 | Continuous Feature Analysis:\n",
"\n",
"Continuous Features: \n",
"`BMI`, `PhysicalHealtH`, `MentalHealth`, `SleepTime`"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "77f31134",
"metadata": {
"id": "77f31134"
},
"outputs": [],
"source": [
"# Listing numerical and categorical features from our dataset.\n",
"numerical_feats = df.select_dtypes(include='number').columns.tolist()\n",
"categorical_feats = df.select_dtypes(include='object').columns.tolist()"
]
},
{
"cell_type": "markdown",
"id": "ce502116",
"metadata": {
"id": "ce502116"
},
"source": [
"### Descriptive Statistics of the Dataset"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "7ece0e10",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 300
},
"id": "7ece0e10",
"outputId": "bfc0de54-aef2-4b66-cd11-9cbae3a9cf92"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" BMI_value PhysicalHealth MentalHealth SleepTime\n",
"count 319795.000000 319795.00000 319795.000000 319795.000000\n",
"mean 28.325399 3.37171 3.898366 7.097075\n",
"std 6.356100 7.95085 7.955235 1.436007\n",
"min 12.020000 0.00000 0.000000 1.000000\n",
"25% 24.030000 0.00000 0.000000 6.000000\n",
"50% 27.340000 0.00000 0.000000 7.000000\n",
"75% 31.420000 2.00000 3.000000 8.000000\n",
"max 94.850000 30.00000 30.000000 24.000000"
],
"text/html": [
"\n",
"
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
BMI_value
\n",
"
PhysicalHealth
\n",
"
MentalHealth
\n",
"
SleepTime
\n",
"
\n",
" \n",
" \n",
"
\n",
"
count
\n",
"
319795.000000
\n",
"
319795.00000
\n",
"
319795.000000
\n",
"
319795.000000
\n",
"
\n",
"
\n",
"
mean
\n",
"
28.325399
\n",
"
3.37171
\n",
"
3.898366
\n",
"
7.097075
\n",
"
\n",
"
\n",
"
std
\n",
"
6.356100
\n",
"
7.95085
\n",
"
7.955235
\n",
"
1.436007
\n",
"
\n",
"
\n",
"
min
\n",
"
12.020000
\n",
"
0.00000
\n",
"
0.000000
\n",
"
1.000000
\n",
"
\n",
"
\n",
"
25%
\n",
"
24.030000
\n",
"
0.00000
\n",
"
0.000000
\n",
"
6.000000
\n",
"
\n",
"
\n",
"
50%
\n",
"
27.340000
\n",
"
0.00000
\n",
"
0.000000
\n",
"
7.000000
\n",
"
\n",
"
\n",
"
75%
\n",
"
31.420000
\n",
"
2.00000
\n",
"
3.000000
\n",
"
8.000000
\n",
"
\n",
"
\n",
"
max
\n",
"
94.850000
\n",
"
30.00000
\n",
"
30.000000
\n",
"
24.000000
\n",
"
\n",
" \n",
"
\n",
"
\n",
" \n",
" \n",
" \n",
"\n",
" \n",
"
\n",
"
\n",
" "
]
},
"metadata": {},
"execution_count": 7
}
],
"source": [
"df.describe()"
]
},
{
"cell_type": "markdown",
"id": "d9e60983",
"metadata": {
"id": "d9e60983"
},
"source": [
"### About Numerical Features:\n",
"1. `BMI` - Average BMI (Body Mass Index) of this dataset is 28.33 and most of the data is distributed between 12.02 to 31.42 with a maximum value of 94.85. There seems to be potentinal outlier in the dataset which we can investigate later in the notebook.\n",
"2. `PhysicalHealth` and `MentalHealth` are following same distribution with small proportion of data in 1st and 2nd quantiles. Most of the people are not well for hardly 2 to 3 days but a portion of people are suffering from so many days.\n",
"3. `Sleep Time [Average Sleep Time]` - As expected, the Average sleep time is around 7 hours with minimum of 1 hour and maximum of 24 hours which is shocking, definitely this is a data issue as no one can sleep for 1 hour or 24 hours on average per day."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "70caf0fd",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 499
},
"id": "70caf0fd",
"outputId": "7f608b05-95df-4cb0-83f9-12c54e58fa66"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABNYAAAHiCAYAAAAkpkGjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsL0lEQVR4nO3deVhU5f//8degIKKCu+a+hqi4IC6YZrnkilbmkqblkqa5lrmU5fKxXMoVl1LL3VTUUnAr0yzNNEtzw3JL0dLMDRQRhPn94Y/5OrKIZ2CGgefjurwuOO8zZ97DMMeZF/d9H5PZbDYLAAAAAAAAwGNxcXQDAAAAAAAAgDMiWAMAAAAAAAAMIFgDAAAAAAAADCBYAwAAAAAAAAwgWAMAAAAAAAAMIFgDAAAAAAAADCBYAwAAAAAAAAwgWAMAAAAAAAAMIFgDAAAAAAAADCBYAwDAyXl7e8vb21v+/v6KiIhIcp/58+fL29tbQUFBdu7OcUaOHClvb2/t27fPrvcbFBQkb29vrV+/3tDtDx8+bHlOZ8+encbdPZ59+/bJ29tbI0eOtNpu62PMDBJ+Bg//q1mzptq1a6e5c+fqzp07jm4z1XhOAQAwhmANAIBMIjIyUosWLXJ0G7DRhg0bLF+HhIQku19yoVeCCxcuyNvbW926dUvzHu3FGR5DpUqV9MILL+iFF15Qu3btVK1aNZ0+fVozZ85U165dnSpcSyve3t5q3Lixo9sAAMAusju6AQAAYDuTySQ3NzctXbpUr732mry8vBzdksO99dZbev3111WsWDFHt5JqsbGx2rRpkySpUKFC+uuvv/T777+revXqDumnWrVq2rx5s/LkyeOQ+3cGTZs21cCBA622hYeHq1OnTjp27JhWrVqlHj16OKg7AACQ3hixBgBAJuDi4qKOHTvq1q1b+uKLLxzdToZQuHBhlS9fXjlz5nR0K6n2448/6vr16/Lz89PLL78syXoEm73lzJlT5cuXV+HChR3WgzMqWbKkOnXqJEn65ZdfHNwNAABITwRrAABkEn369JG7u7uWLVum69evp+o23bp1k7e3ty5cuJColtw0vAfXYjp69Kh69+4tf39/1alTR4MHD9alS5ckSVFRUZoyZYoaN24sX19ftWnTRlu3bk22l9OnT2vkyJFq1KiRqlatqvr162vo0KE6efJkon3Xr19vWTPu7NmzGjp0qOrXr69KlSpp+/btklJeYy0qKkrz58/Xiy++KD8/P9WoUUMtWrTQuHHjdPbsWct+d+/eVXBwsPr166cmTZqoWrVq8vf3V9euXS0jy9LSxo0bJUlt27ZV27ZtJUmbN29WbGys1X4jR45U9+7dJUlfffWV1RpfQUFBCgoKUpMmTSRJ+/fvt6o/OHU0YcpeTEyMZs+erRYtWqhq1arq37+/pEdPN5Wk33//Xb169ZK/v7/8/PzUo0cPHTp0KNF+Dz5nSXn4dzG1j0GSbty4oalTp6pVq1aqVq2aatWqpe7du2vnzp1J3teff/6pYcOGqUmTJvL19VW9evXUrl07ffjhh/r333+TfayPo0CBApKkuLi4JOtff/21Xn75Zfn5+al69eoKDAzUZ599prt371r2iYuLU+fOneXt7a0VK1YkOsaBAwfk4+OjBg0aWL3mGzduLG9vb5nNZi1ZskStWrWSr6+vGjZsqAkTJiS7FmNyrl+/rsmTJ+u5556Tr6+v6tSpo169emn37t1W+yU8x5J08eJFq+csI0/nBQDAFkwFBQAgkyhcuLA6d+6sxYsX6/PPP9ewYcPS9f5+//13jRkzRhUrVlSDBg10/Phxbd26VSdOnNDatWvVo0cP/f333/L399f169f1yy+/aMiQIVqwYIEaNmxodazt27dr6NChiomJkY+Pj6pXr65Lly5py5Yt2rlzpxYsWKDatWsn6uHs2bN66aWXlDdvXtWtW1cRERHKnj3ltzf//vuvevbsqZMnT8rLy0t16tSRm5ubLly4oFWrVql06dIqW7aspPvh4ujRo1W4cGGVLVtW1apV03///aeDBw/qwIEDOnPmTKJpgEZFRkZqx44dcnV1VcuWLZU3b17VrFlTBw8e1I8//mi1ZlWtWrV05coV7d69W6VKlVKtWrUsNR8fH0lS8+bNtW3bNhUsWNDq5/3gvpIUHx+vN998UwcOHFDt2rXl7e2tvHnzpqrngwcP6oMPPlDp0qX19NNP69y5c/rpp5/0yy+/6NNPP1WDBg0M/zx8fHxS9RjOnj2rHj166J9//lHx4sXVoEED3b59W7///rveeOMNDR8+XL169bLsf/ToUXXp0kV3796Vt7e3mjRpoujoaIWHh2vp0qVq2rRpmozQO3r0qCSpXLlyiWoffPCBVq9erRw5cqhevXpyd3fX/v37NW3aNO3cuVOLFi1Szpw5lS1bNn388cdq166dpkyZonr16ql8+fKS7v++DB8+XGazWZMnT1a+fPkS3c///vc/rVmzRnXq1NGTTz6pX375RcuWLdP+/fu1cuVK5c6d+5GP4/Lly+ratavCw8NVrFgxNW3aVNeuXdPevXu1e/dujRo1Sq+99pokqVSpUnrhhRf01VdfycPDQ82bN7ccJ6mfAwAAmQHBGgAAmcjrr7+u1atXa8WKFerZs6fy58+fbve1atUqjR071jJlMTY2Vn369NFPP/2kzp07q2DBgtq+fbs8PDwkScHBwRo9erQ+++wzq5DkwoULeuedd5Q9e3Z99tlnql+/vqX2ww8/qH///nrnnXf0zTffyM3NzaqHTZs26ZVXXtG7776rbNmyparv4cOH6+TJk2rZsqU+/PBD5cqVy6qXW7duWb7Pnz+/Fi1apICAAJlMJsv28PBwvfrqq5o7d65eeOEFlShR4jF+cknbunWr7t69qyZNmliCrbZt2+rgwYPasGGDVbDWoUMHlSpVSrt371atWrU0adKkRMerVKmStm3bpnLlyiVZT/DPP//Izc1NW7duVZEiRR6r5zVr1uiNN97QkCFDLD+flStXaty4cRo5cqS2b98ud3f3xzpmgqZNmz7yMcTFxWnQoEH6559/9M4776hnz55ycbk/IePcuXPq2bOnpk6dqoYNG+rJJ5+UJC1btkx3797ViBEj1LNnT6vjnT592qb15OLj4/Xvv/9q48aN2rBhgzw9PdWlSxerfbZt26bVq1ercOHCWrZsmcqUKSPpflDWt29f/frrr5o1a5ZGjBgh6f600vfff18jR47UsGHDtHr1arm5uWns2LG6ePGiXn31VT311FNJ9rNhwwatWrVKVatWlSTdvn1b/fv3188//6yZM2fqvffee+RjGjNmjMLDw9WmTRtNnDjR8ho8cOCAevfurSlTpqhu3bry8fGRv7+//P399dVXXylfvnwp/t4BAJBZMBUUAIBMpGDBgnr55ZcVFRWlBQsWpOt91apVyxKqSZKrq6teeeUVSdKZM2c0duxYS6gmSS+++KLy5cunQ4cOWU1tXLJkiaKiovT2229bhWqS9PTTT6tz5876559/tGvXrkQ95M+fX8OGDUt1qHb48GHt3btXBQoU0IQJE6xCNUkqUaKEKlWqZPk+X758ql+/vlWoJt0PO/r166f4+Phkpxs+rgengSZo2bKlXF1dtXPnTkVGRqbJ/STlrbfeeuxQTZKKFy+ugQMHWv18unTpourVq+vKlSvatm1bWraZyM6dO/Xnn3+qefPm6t27tyVUk6TSpUtr5MiRiouL05o1ayzbr127JkmJftckGVpPbvbs2Zbpjj4+PmrUqJGmTp2q+vXra/Xq1SpZsqTV/suWLZMkDRgwwBKqSVKePHn0wQcfyGQyadWqVVZTQl944QW1aNFCx48f14wZM7Rx40aFhobqySefTHFk6iuvvGIJ1SQpV65cev/992UymbR27Vqr+0hKeHi4du7cKQ8PD73//vtWwba/v786d+6suLi4JKepAgCQVRCsAQCQybz++uvy8PDQl19+qf/++y/d7iepUTIJIULx4sUt0ykTZMuWTcWKFVNsbKzVelB79uyRJDVr1izJ+/H395d0PxR7WP369R/r4gQ//fSTJKl169apmgaX4MCBA5o7d67GjBmjUaNGaeTIkZb14s6dO5fq4yTn77//1i+//CJPT0+rkWn58uXT008/rbt376a4Pp0tTCaT1X0+jueeey7JqbetW7eWJP3666829fYoCWt8Jfe7kzBl9MiRI5ZtVapUkSSNGzdO+/bt071792zqoVKlSnrhhRcs/xo1aqTChQtrz549mjlzpu7cuWPZNzY21rL+XGBgYJLH8vb2VlRUlMLCwqxq48ePV9GiRbVo0SKNGTNGbm5u+vjjjxON4nxQq1atEm2rUKGCKlWqpKioKB0/fjzFx5bw/DVs2DDJ6cHt2rWTdP/1AQBAVsVUUAAAMpn8+fOrS5cuWrhwoebPn6933303Xe4nqRFOCSPUkhv9lDBCLCYmxrLt4sWLku6PTktJUhdkeOKJJ1LX7P/3zz//SLq/FlRqREZGasCAAfr555+T3ef27duP1UNSQkJCZDab1bx580RBSdu2bfXdd99p48aN6tChg8339bACBQqkGM6kpFixYkluL168uCSl2YUAkpPwuzNs2LAUR249+LvTu3dv/frrr9q/f7+6d+8uDw8P1axZU40aNdKLL7742FNBmzZtmmidvZiYGI0bN05r165Vjhw5NGXKFEn3L7IQGxurfPnyWY3mfFDx4sV14sQJXb582Wq7l5eXPvjgA/Xv319RUVEaNmyY1ejK5I6V3PawsLBHPj8J9ZSOIylRrwAAZCUEawAAZEK9evXSypUrtWrVKvXu3dvQMcxmc4r1B6fdPU7tYfHx8ZLuT3dLSfXq1RNty5EjR6rvx4iPP/5YP//8s+rUqaOBAweqYsWK8vT0VLZs2bR792716tXrkT+n1NiwYYOk+1e/fHB6rSTLtNlffvlFFy9eTDbkMCq9f4aplfB7YOQ2DRs2VMGCBZPd78GF/XPnzq2lS5fq119/1c6dO7V//379/PPP2rNnj+bPn68VK1ZYTdE0ws3NTaNGjdK6desUEhKid999N9UXhHh42vGDNm/ebPn62LFjNvWYFlLqFQCArIJgDQCATCh//vzq1q2bPvvsM82fPz/ZdaNcXV0lSVFRUYlqCaO70lvRokV1/vx5jRgxIskrG6alhBFu58+fT9X+27dvV7Zs2TRv3rxEU0fDw8PTpKejR4/q9OnTku5PK01uaqnZbFZISIjeeOONNLnftPD333+nuP3B37uUftckY79vRYsWlXT/Yg4PXoHyUUwmk2WhfUm6evWqPvroI4WGhmr69OmaOXPmY/fysNy5cytfvny6du2azp8/r7x58ypv3rxydXXV9evXFRUVleSotYRReA+P+gwNDVVoaKgqVqwoV1dXbdmyRc8884yef/75ZHu4ePGivL29E21P6vlJSkI9uec5uV4BAMhKWGMNAIBMqkePHsqVK5dWr16d7FStQoUKSZL++uuvRLWEtc/SW8Ii8tu3b7fbfW3atClVUzgjIiKUO3fuJNdj27JlS5r0lHDRgp49e+qPP/5I8l/CgvcJ+0r/F1Qlt0bYo+pp4ZtvvlFcXFyi7Qkjq/z8/CzbEn7Xzp49m2j/s2fPJhmsPeoxJKzz9+233z5m59YKFCigAQMGSJJOnjxp07ES3Lp1yzIFNWEKtKurq2rUqCHp/u/gw/7880+dOHFCHh4e8vHxsWz/559/NG7cOLm5uemTTz7Rxx9/rBw5cuh///tfigFvUr+jp0+fVlhYWKL7SErCGnU//vijIiIiEtUTRlomBJQJXF1d0/X3DgCAjIRgDQCATCpfvnzq1q2bYmJitHbt2iT3qV27tiTpiy++sFpkfe/evVq6dKld+uzZs6fc3d01efJkffPNN4nqMTEx2rp1qy5dumTzfVWrVk1169bV1atX9cEHHyQaPXXhwgX98ccflu/LlCmjmzdvWk3Bk6TFixdr3759NvcTFxdnCVjatGmT7H7+/v4qUqSITp8+raNHj0r6v9FESQVV0v3n39XVVeHh4UmGX2nh4sWLmj17ttW21atX6+DBgypYsKDVKDJfX1/lzJlTP/74o+UxSPev0jl69Ogkp4I+6jE899xzqlChgkJCQjRnzhyrtfuk+6P8fv31V6uLKHz55ZdJhlEJV5193HX7khITE6OJEyfKbDarRIkSKleunKWWcOXc2bNnW/Vx69Yt/e9//5PZbFbnzp0tU3Tj4+M1fPhwRUREaOjQoapUqZIqVKigYcOG6datWxo+fHiyz+/y5cutLlBw584dTZgwQWazWe3bt5e7u3uKj6NkyZJ65plndPv2bX344YdWV/M9ePCgVq1apWzZsqlr165WtytcuLCuXr2aZBgHAEBmw1RQAAAysZ49e2r58uW6detWkvU2bdpo4cKFOnjwoFq1aiVfX19dunRJR44c0WuvvaYvvvgi3XssXbq0pk6dqmHDhmngwIEqXbq0ypUrJw8PD12+fFnHjx9XVFSUvv76a8vUP1t8/PHHevXVVxUaGqrdu3fLz89Pbm5uCg8PV1hYmEaMGGGZPtenTx+98847Gjp0qFasWKGiRYvqxIkTOnPmjF577TUtXrzYpl52796t//77T2XKlLFcrTIpLi4uatWqlRYtWqQNGzaoatWqKlGihLy9vXX06FG99NJLqlixolxcXNS4cWM1adJEbm5uatCggXbu3Kl27dqpcuXKcnV1lZ+fn9q3b29T3wk6duyoBQsW6Ntvv5W3t7fOnTunI0eOyNXVVRMnTrS6YmuuXLnUs2dPzZkzR126dFHt2rVlMpl0+PBhlStXTjVr1tTBgwetjv+ox5A9e3bNmTNHvXr10qxZs7RixQp5e3srf/78unHjhsLCwnT16lWNGjXKMvpq1apVGjt2rCpUqKDy5csrW7ZsOnPmjE6cOKEcOXKof//+j/Uz2L59u2VKpHT/QgnHjx/Xv//+q5w5c+qjjz6yWousRYsW6tSpk1avXq02bdqoXr16cnd31/79+3Xt2jXVqFFDgwYNsuz/+eefa//+/QoICFCPHj0s27t166Zdu3Zp9+7d+uyzz5Lsu23bturYsaPq1q2rPHny6MCBA7py5YoqVqyowYMHp+rxjR8/Xl26dNHXX3+tX375RTVq1NC1a9e0f/9+xcXFaeTIkYlGvjVu3FjLli3TCy+8oJo1aypHjhwqW7as4fUeAQDIyBixBgBAJubl5aVXX3012bq7u7uWLFmiNm3a6Pbt29q1a5fi4uI0ffr0RKNQ0lPTpk21ceNGdenSRSaTST/99JO+//57Xb16Vc8++6xmzJih8uXLp8l9FSlSRGvXrtWgQYNUpEgR/fTTT/rhhx90584ddenSRc8++6xl37Zt22r+/PmqUaOGwsLC9MMPP6hw4cJasmSJGjdubHMvCVM7UxqtlqB169aS7k8hTJhmFxQUpKZNmyo8PFxff/211q5dazVC6cMPP1S7du1048YNhYaGau3atfrll19s7jtBzZo1tWzZMhUsWFA7d+7U6dOnFRAQoKVLlyZ5ldeBAwdq+PDhKlq0qPbt26eTJ0+qffv2WrRokWXa58Me9RjKlCmjr7/+WkOGDFHRokV16NAhffvttzp79qx8fHz0wQcfqG3btpb9Bw8erPbt28tkMmnv3r3auXOnoqOj1aFDB3399deWAC61Tpw4oa+++sry76efflLOnDnVqVMnbdiwQXXr1k10m/Hjx2vy5Mny8fHR/v37tXPnThUoUEBDhw7VkiVLLIFkWFiYZs6cKS8vL02ePNkqoDOZTJo4caLy5s2rOXPm6PDhw4nuZ/To0Xrrrbf0999/67vvvpMkde3aVStWrEj11U8TXi89e/ZUtmzZ9M033+jYsWMKCAjQ559/bhX2JXjrrbf0yiuvKC4uTlu2bNHatWstIwIBAMhsTOa0uJQVAAAAgAyhcePGunjxotW0ZgAAkD4YsQYAAAAAAAAYQLAGAAAAAAAAGECwBgAAAAAAABjAGmsAAAAAAACAAYxYAwAAAAAAAAwgWAMAAAAAAAAMyO7oBjKCgwcPymw2y9XV1dGtAAAAAAAAwMFiY2NlMplUs2bNFPcjWJNkNpvFUnMAAAAAAACQlOqciGBNsoxU8/X1dXAnAAAAAAAAcLQjR46kaj/WWAMAAAAAAAAMIFgDAAAAAAAADCBYAwAAAAAAAAwgWAMAAAAAAAAMIFgDAAAAAAAADCBYAwAAAAAAAAwgWAMAAAAAAAAMIFgDAAAAAAAADCBYAwAAAAAAAAwgWAMAAAAAAAAMIFgDAAAAAAAADCBYA9LA8uXL1a5dOy1fvtzRrQAAAAAAADshWANsdPPmTa1Zs0bx8fFas2aNbt686eiWAAAAAACAHRCsATb66KOPZDabJUlms1kfffSRgzsCAAAAAAD2QLAG2ODQoUM6fvy41bbjx4/r0KFDjmkIAAAAAADYDcEaYFB8fLymTJmSZG3KlCmKj4+3c0cAAAAAAMCeCNYAgw4cOKDIyMgka5GRkTpw4ICdOwIAAAAAAPZEsAYY5O/vr5w5cyZZy5kzp/z9/e3cEQAAAAAAsCeCNQAAAAAAAMAAgjXAoAMHDujOnTtJ1u7cucNUUAAAAAAAMjmCNcAgf39/5cmTJ8map6cnU0EBAAAAAMjkCNYAg1xcXDR8+PAka8OHD5eLCy8vAAAAAAAyMz75AzYoXLhwktsLFSpk504AAAAAAIC9EawBBpnNZn366acymUxW200mkz799FOZzWYHdQYAAAAAAOyBYA0w6MKFCzp48GCiAM1sNuvgwYO6cOGCgzoDAAAAAAD2QLAGGFSiRAlVrlw5yVqVKlVUokQJO3cEAAAAAADsiWANsMGtW7ceazsAAAAAAMg8CNYAg86fP6/z588nWTt37lyyNQAAAAAAkDkQrAEGXbp0yaY6AAAAAABwbgRrgEG1a9dWrly5kqzlzp1btWvXtnNHAAAAAADAngjWAINcXFw0cuTIJGsjR46UiwsvLwAAAAAAMjM++QM2qFGjhipVqmS1rVKlSqpevbqDOgIAAAAAAPZCsAbYaPTo0ZavTSaT1fcAAAAAACDzIlgDbOTl5aVOnTrJxcVFHTt2lJeXl6NbAgAAAAAAdkCwBqSBJ598UgUKFNCTTz7p6FYAAAAAAICdEKwBNoqOjtaMGTN05coVzZgxQ9HR0Y5uCQAAAAAA2AHBGmCjVatWKTIyUpIUGRmpVatWObgjAAAAAABgDwRrgA3+/vtvrV+/3mrb+vXr9ffffzuoIwAAAAAAYC8Ea4BBZrNZM2fOlNlsTtV2AAAAAACQuRCsAQaFh4fr+PHjSdaOHz+u8PBwO3cEAAAAAADsiWANAAAAAAAAMIBgDTCoZMmSqly5cpK1KlWqqGTJknbuCAAAAAAA2BPBGmCQyWTSyy+/nGTt5ZdflslksnNHAAAAAADAngjWAIPMZrO+/PLLJGsrV67k4gUAAAAAAGRyBGuAQVy8AAAAAACArI1gDTDoUSPSGLEGAAAAAEDmRrAGAAAAAAAAGECwBhj0qIsTcPECAAAAAAAyN4I1wKASJUooV65cSdZy5cqlEiVK2LkjAAAAAABgTwRrgEEXL17U7du3k6zdvn1bFy9etHNHAAAAAADAngjWAIOKFy+uPHnyJFnLkyePihcvbueOAAAAAACAPRGsAQZdvHhRkZGRSdYiIyMZsQYAAAAAQCZHsAYYVKJECVWuXDnJWpUqVVhjDQAAAACATI5gDbBBTExMktvv3r1r504AAAAAAIC9EawBBoWHh+vUqVNJ1k6dOqXw8HA7dwQAAAAAAOyJYA0wKD4+3qY6AAAAAABwbgRrgEGXL1+2qQ4AAAAAAJwbwRpgUJEiRWyqAwAAAAAA50awBgAAAAAAABhAsAYYdOnSJZvqAAAAAADAuRGsAQaZzWab6gAAAAAAwLkRrAEGmUwmm+oAAAAAAMC5EawBBj3xxBM21QEAAAAAgHMjWAMMKlmypHLkyJFkzd3dXSVLlrRzRwAAAAAAwJ4I1gCDLly4oLt37yZZi46O1oULF+zcEQAAAAAAsKcMF6x999136tChg2rWrKkGDRpo8ODBCg8PT7RfcHCwmjdvLl9fX7Vt21Y7d+50QLcAAAAAAADIqjJUsLZv3z4NGDBAFSpU0Jw5c/Tuu+/qxIkT6tmzp6Kjoy37bdq0Se+//75atmypBQsWqEaNGhowYIAOHTrkuOaR5ZQsWVKVK1dOslalShWmggIAAAAAkMlld3QDD9q0aZOKFSumjz76yHJFxfz58+vVV1/V0aNH5e/vL0maNWuWWrdurSFDhkiS6tWrpz///FNz5szRggULHNU+shiTyaTBgwerb9++iWqDBw/mqqAAAAAAAGRyGWrE2r1795QrVy6rQCJPnjySJLPZLEkKDw/XX3/9pZYtW1rdtlWrVtq7d69iYmLs1zCyvLCwsCS3Hz9+3M6dAAAAAAAAe8tQI9ZefPFFbdiwQStWrFDbtm1148YNTZs2TZUrV5afn58k6cyZM5KksmXLWt22fPnyio2NVXh4uMqXL//Y9202mxUVFWX7g0CWERcXp1mzZiVZmzVrlurUqaNs2bLZuSsAAAAAAGArs9mcqploGSpY8/f31+zZs/X2229r/PjxkiQfHx8tXLjQElDcvHlTkuTp6Wl124TvE+qPKzY2NtnRR0BS9u3bp/j4+CRr8fHxWrZsmerWrWvnrgAAAAAAQFpwc3N75D4ZKlj77bffNHz4cHXs2FHPPPOMbty4oblz56pPnz5auXKl3N3d0+2+XV1dVaFChXQ7PjKfXLlyacuWLcnWGzdurFKlStmxIwAAAAAAkBZOnTqVqv0yVLA2YcIE1atXTyNHjrRsq1Gjhp555hlt2LBBnTp1kpeXlyQpMjJShQoVsuwXEREhSZb64zKZTPLw8LChe2Q1FStWfGSdqaAAAAAAADif1F6QMENdvOD06dOqVKmS1baiRYsqX758On/+vCSpXLlykv5vrbUEZ86ckaurq0qWLGmfZpHl7d+/36Y6AAAAAABwbhkqWCtWrFiiqylevHhR169fV/HixSVJJUuWVJkyZbR161ar/TZv3qyAgIBUzX8F0sLJkydtqgMAAAAAAOeWoaaCdu7cWR999JEmTJigxo0b68aNG5o3b54KFCigli1bWvYbOHCghg0bplKlSqlu3bravHmzDh8+rOXLlzuwe2Q1DRs2VHBwcIp1AAAAAACQeWWoYK179+5yc3PTl19+qXXr1ilXrlyqUaOGZsyYoXz58ln2a9Omje7cuaMFCxZo/vz5Klu2rGbPnq2aNWs6sHtkNSVKlLCpDgAAAAAAnJvJbDabHd2Eox05ckSS5Ovr6+BO4EyWL1+u1atXJ1vv1KmTXnnlFTt2BAAAAAAA0kJqs6IMtcYa4Ew6depkUx0AAAAAADg3gjXAoH/++cemOgAAAAAAcG4Ea4BBcXFxNtUBAAAAAIBzI1gDDEqYb220DgAAAAAAnBvBGmDQjRs3bKoDAAAAAADnRrAGGNSwYUOb6gAAAAAAwLkRrAEGlS5dWtmzZ0+ylj17dpUuXdrOHQEAAAAAAHsiWAMMOn/+vO7du5dk7d69ezp//rydOwIAAAAAAPZEsAYYdPjwYZvqAAAAAADAuRGsAQbFxsbaVAcAAAAAAM6NYA0w6Pvvv7epDgAAAAAAnBvBGmDQoEGDbKoDAAAAAADnRrAGGFS2bFmb6gAAAAAAwLkRrAEGbdmyxaY6AAAAAABwbgRrgEHx8fE21QEAAAAAgHMjWAMMcnFJ+eXzqDoAAAAAAHBufPIHDGrevLlNdQAAAAAA4NwI1gCDtm3bZlMdAAAAAAA4N4I1wKDr16/bVAcAAAAAAM6NYA0wqE6dOjbVAQAAAACAcyNYAwz64osvbKoDAAAAAADnRrAGGNS9e3eb6gAAAAAAwLkRrAEGLV682KY6AAAAAABwbgRrgEHFixe3qQ4AAAAAAJwbwRpgkJ+fn011AAAAAADg3AjWAIOOHj1qUx0AAAAAADg3gjXAoGbNmtlUBwAAAAAAzo1gDTDom2++sakOAAAAAACcG8EaYFCxYsVsqgMAAAAAAOdGsAYYFBERYVMdAAAAAAA4N4I1wKC8efPaVAcAAAAAAM6NYA0AAAAAAAAwgGANMOjGjRs21QEAAAAAgHMjWAMMypMnj011AAAAAADg3AjWAIN2795tUx0AAAAAADg3gjXAIHd3d5vqAAAAAADAuRGsAQbVqFHDpjoAAAAAAHBuBGuAQT/++KNNdQAAAAAA4NwI1gCDfH19baoDAAAAAADnRrAGGBQeHm5THQAAAAAAODeCNcCgZs2a2VQHAAAAAADOjWANMOi///6zqQ4AAAAAAJwbwRpg0DfffGNTHQAAAAAAODeCNcCgxo0b21QHAAAAAADOjWANMIiLFwAAAAAAkLURrAEG/fbbbzbVAQAAAACAcyNYAwwaMWKETXUAAAAAAODcCNYAg0JDQ22qAwAAAAAA50awBhgUGxtrUx0AAAAAADg3gjXAoEOHDtlUBwAAAAAAzo1gDTAod+7cNtUBAAAAAIBzI1gDDIqIiLCpDgAAAAAAnBvBGmBQ4cKFbaoDAAAAAADnRrAGGPTvv//aVAcAAAAAAM6NYA0wqGLFijbVAQAAAACAcyNYAwwym8021QEAAAAAgHMjWAMMOnnypE11AAAAAADg3AjWAAAAAAAAAAMI1gAAAAAAAAADCNYAAAAAAAAAAzJksPbVV1/p+eefl6+vr+rWravevXsrOjraUt+xY4fatm0rX19fNW/eXOvWrXNgtwAAAAAAAMiKsju6gYfNmzdPCxYs0BtvvKEaNWro+vXr2rt3r+Li4iRJBw4c0IABA/TSSy/p3Xff1c8//6z33ntPuXLlUosWLRzcPbIST09PRUREpFgHAAAAAACZV4YK1s6cOaPZs2dr7ty5atSokWV78+bNLV/PmzdP1apV0/jx4yVJ9erVU3h4uGbNmkWwBruKjY21qQ4AAAAAAJxbhpoKun79epUoUcIqVHtQTEyM9u3blyhAa9WqlU6fPq0LFy7Yo01AknTnzh2b6gAAAAAAwLllqGDt999/15NPPqm5c+cqICBAVatWVefOnfX7779Lks6fP6/Y2FiVK1fO6nbly5eXdH/EGwAAAAAAAGAPGWoq6JUrV3T06FH9+eefGjNmjHLmzKlPP/1UPXv21DfffKObN29KSrx2VcL3CXUjzGazoqKijDcPJIHfKQAAAAAAnI/ZbJbJZHrkfhkqWEsIt2bOnKlKlSpJkqpXr67GjRtr+fLlatCgQbrdd2xsrMLCwtLt+Mia+J0CAAAAAMA5ubm5PXKfDBWseXp6Km/evJZQTZLy5s2rypUr69SpU2rdurUkKTIy0up2CVdm9PLyMnzfrq6uqlChguHbI+spVaqUzp8/n2Ldx8fHjh0BAAAAAIC0cOrUqVTtl6GCtQoVKiQbVNy9e1elSpWSq6urzpw5o4YNG1pqCWurPbz22uMwmUzy8PAwfHtkPSmFagl1fqcAAAAAAHA+qZkGKmWwixc8++yzunHjhtX0uevXr+vYsWOqUqWK3NzcVLduXW3bts3qdps3b1b58uVVokQJe7cMAAAAAACALCpDjVhr2rSpfH19NWjQIA0dOlQ5cuTQ/Pnz5ebmpi5dukiS+vXrp+7du2vs2LFq2bKl9u3bp9DQUE2fPt3B3QMAAAAAACAryVAj1lxcXDR//nzVqFFDH3zwgd566y3lzp1bK1asUKFChSRJ/v7+CgoK0q+//qpevXopNDRUEyZMUMuWLR3cPQAAAAAAALKSDDViTZLy58+vjz/+OMV9mjRpoiZNmtipIwAAAAAAACCxDDViDQAAAAAAAHAWBGsAAAAAAACAAQRrAAAAAAAAgAEEawAAAAAAAIABBGsAAAAAAACAAQRrAAAAAAAAgAEEawAAAAAAAIABBGsAAAAAAACAAQRrAAAAAAAAgAEEawAAAAAAAIABBGsAAAAAAACAAQRrAAAAAAAAgAEEawAAAAAAAIABBGsAAAAAAACAAQRrAAAAAAAAgAHZ0+pAd+7c0aZNmxQTE6NGjRqpePHiaXVoAAAAAAAAIMMxFKy9++67Onz4sEJDQyVJMTEx6tixo06ePClJypMnj5YsWaLKlSunXacAAAAAAABABmJoKui+ffvUrFkzy/ehoaE6efKkPvnkE4WGhqpgwYKaPXt2mjUJAAAAAAAAZDSGgrX//vvPaqrn9u3bVbVqVbVp00YVKlRQx44ddfjw4TRrEgAAAAAAAMhoDAVrOXPmVGRkpCTp3r172r9/vxo0aGCp58qVy1IHAAAAAAAAMiNDa6xVqVJFa9asUd26dbVjxw7dvn1bjRs3ttTPnz+vAgUKpFmTAAAAAAAAQEZjKFgbMmSIevfurfbt28tsNqt58+aqVq2apf7tt9/Kz88vzZoEAAAAAAAAMhpDwZqvr6+2bNmi3377TZ6enqpTp46lFhERoS5dulhtAwAAAAAAADIbQ8GaJOXPn19NmzZNtN3T01OvvvqqTU0BAAAAAAAAGZ3hYC0uLk5bt27Vvn37dPXqVQ0aNEje3t6KjIzU3r175efnp4IFC6ZlrwAAAAAAAECGYShYi4iIUO/evXX48GF5eHjozp07euWVVyRJHh4emjBhgp5//nm99dZbadosAAAAAAAAkFG4GLnRJ598opMnT+rzzz/X9u3bZTabLbVs2bKpefPm2rVrV5o1CQAAAAAAAGQ0hoK17777Tt26ddNTTz0lk8mUqF6mTBldvHjR5uYAAAAAAACAjMpQsBYZGakSJUokW793757i4uIMNwUAAAAAAABkdIaCtVKlSunYsWPJ1vfs2aPy5csbbgoAAAAAAADI6AwFay+99JLWrVunzZs3W9ZXM5lMiomJ0fTp0/Xjjz+qU6dOadooAAAAAAAAkJEYuiroq6++qlOnTumtt96Sp6enJGnYsGG6ceOG7t27p06dOqlDhw5p2igAAAAAAACQkRgK1kwmkyZMmKDnn39e27Zt07lz5xQfH69SpUqpZcuWql27dlr3CQAAAAAAAGQohoK1BP7+/vL390+rXgAAAAAAAACnYWiNNQAAAAAAACCrMzRirXHjxjKZTCnuYzKZtH37dkNNAQAAAAAAABmdoWCtTp06iYK1uLg4/f333/rtt99UsWJFVa5cOU0aBAAAAAAAADIiQ8HapEmTkq2dOHFCvXr1UmBgoOGmAAAAAAAAgIwuzddYq1Spkjp16qRPPvkkrQ8NAAAAAAAAZBjpcvGCAgUK6NSpU+lxaAAAAAAAACBDSPNg7fr161q3bp2KFi2a1ocGAAAAAAAAMgxDa6x17949ye2RkZE6c+aMYmNjNWXKFJsaAwAAAAAAADIyQ8Ga2WxOtM1kMqlEiRIKCAhQ+/btVb58eZubAwAAAAAAADIqQ8HasmXL0roPAAAAAAAAwKmky8ULAAAAAAAAgMwuVSPWvv76a0MHf/755w3dDgAAAAAAAMjoUhWsjRw58rEPbDKZCNYAAAAAAACQaaUqWPvuu+/Suw8AAAAAAADAqaQqWCtevHh69wEAAAAAAAA4FS5eAAAAAAAAABiQqhFrSbly5YrWrl2r48ePKzIyUvHx8VZ1k8mkJUuW2NwgAAAAAAAAkBEZCtZOnDih7t27Kzo6WmXLltWff/6pChUqKCIiQpcvX1apUqVUtGjRtO4VAAAAAAAAyDAMTQWdOnWqPDw8tHXrVi1atEhms1nvvvuudu3apenTp+vmzZsaNmxYWvcKAAAAAAAAZBiGgrXffvtNnTp1UrFixeTicv8QZrNZktSyZUsFBgZqypQpadclAAAAAAAAkMEYCtbi4+NVsGBBSZKnp6eyZcumGzduWOre3t46duxYmjQIAAAAAAAAZESGgrUSJUrowoUL9w/g4qISJUpo7969lvpvv/2mPHnypE2HAAAAAAAAQAaU6osX3Lx5U15eXpKkBg0aaOvWrRo6dKgk6eWXX9akSZMUHh4us9ms/fv3q0ePHunTMZyK2WzW3bt3Hd2Gw0RHRzu6hXSRI0cOmUwmR7cBAAAAAIBDmcwJi6M9QtWqVdWoUSMFBgbKz89P//77r7y9veXq6iqz2ax58+bpm2++kYuLi5599ln17dtXbm5u6d1/mjhy5IgkydfX18GdZC5ms1kjRoxQWFiYo1tBGvPx8dHkyZMJ1wAAAAAAmVJqs6JUj1hr3ry5duzYoR07dihXrlxq1qyZ2rZtq3r16slkMql///7q37+/bV0DAAAAAAAATiLVI9ak+9Patm/frtDQUO3evVtxcXEqUKCA2rRpo8DAQFWpUiU9e003jFhLP5l5KmiHDh0euU9wcLAdOrE/poICAAAAADKz1GZFjxWsPejmzZvasmWLQkND9euvv0qSSpcurbZt2yowMFAlS5Y0cliHIFiDUYGBgcnWQkJC7NgJAAAAAABIK6nNigxdFVSSvLy81LlzZy1fvlzff/+93n77beXMmVOzZs3Sc889p86dOxs9tCTp9u3bevrpp+Xt7W15MAmCg4PVvHlz+fr6qm3bttq5c6dN9wUYlVx4RqgGAAAAAEDmZzhYe1CRIkXUu3dvTZo0SU2aNJHZbNbvv/9u0zHnzp2ruLi4RNs3bdqk999/Xy1bttSCBQtUo0YNDRgwQIcOHbLp/gAAAAAAAIDHYXOw9vfff2v+/Plq27atnn/+eX333XeqWbOm3n//fcPHPH36tFauXKmBAwcmqs2aNUutW7fWkCFDVK9ePY0fP16+vr6aM2eOLQ8DMOzhddQYrQYAAAAAQNaQ6quCPujatWuW9dUOHToks9mscuXKadCgQQoMDFSJEiVsamrChAnq3LmzypYta7U9PDxcf/31l9555x2r7a1atdKUKVMUExMjNzc3m+4bsEVmvVgBAAAAAABILNXBWlRUlL799luFhoZq7969unfvngoVKqRXX301Ta8IunXrVv35558KCgrSsWPHrGpnzpyRpESBW/ny5RUbG6vw8HCVL18+TfoAAAAAAAAAUpLqYK1+/fq6e/euPDw8FBgYqMDAQNWrV08uLmmyTJsk6c6dO5o0aZKGDh2q3LlzJ6rfvHlTkuTp6Wm1PeH7hLoRZrNZUVFRhm+PrCs6OtrydVRUlOLj4x3YDQAAAAAAsJXZbJbJZHrkfqkO1gICAhQYGKgmTZooR44cNjWXnHnz5qlAgQJq3759uhw/JbGxsQoLC7P7/cL5xcTEWL7+448/mI4MAAAAAEAmkJrP96kO1ubNm2dTM49y8eJFffHFF5ozZ44iIyMlyTKCLCoqSrdv35aXl5ckKTIyUoUKFbLcNiIiQpIsdSNcXV1VoUIFw7dH1vXgiDVvb2+5u7s7sBsAAAAAAGCrU6dOpWo/QxcvSA8XLlxQbGys+vTpk6jWvXt3Va9eXVOnTpV0f621cuXKWepnzpyRq6urSpYsafj+TSaTPDw8DN8eWdeD06E9PDwI1gAAAAAAcHKpmQYqZaBgzcfHR0uXLrXaFhYWpokTJ2rcuHHy9fVVyZIlVaZMGW3dulVNmza17Ld582YFBAQwBQ8AAAAAAAB2k2GCNU9PT9WtWzfJWpUqVSxXHR04cKCGDRumUqVKqW7dutq8ebMOHz6s5cuX27NdAAAAAAAAZHEZJlhLrTZt2ujOnTtasGCB5s+fr7Jly2r27NmqWbOmo1sDAAAAAABAFpKhg7W6devqjz/+SLS9Q4cO6tChgwM6AgAAAAAAAO5zefQuAAAAAAAAAB5GsAYAAAAAAAAYQLAGAAAAAAAAGECwBgAAAAAAABhAsAYAAAAAAAAYQLAGAAAAAAAAGECwBgAAAAAAABhAsAYAAAAAAAAYQLAGAAAAAAAAGECwBgAAAAAAABhAsAYAAAAAAAAYQLAGAAAAAAAAGECwBgAAAAAAABhAsAYAAAAAAAAYQLAGAAAAAAAAGECwBgAAAAAAABhAsAYAAAAAAAAYQLAGAAAAAAAAGECwBgAAAAAAABhAsAYAAAAAAAAYQLAGAAAAAAAAGECwBgAAAAAAABhAsAYAAAAAAAAYkN3RDWRFZrNZd+/edXQbSCPR0dFJfo3MIUeOHDKZTI5uAwAAAACQARGsOcDdu3fVoUMHR7eBdNCtWzdHt4A0FhwcLHd3d0e3AQAAAADIgAjWAADIJAIDAy1fh4SEOLATAFkZ5yIAQFZCsOZguSo+L5MLT4OzM5vNksSUwUzCHH9Pt09+7eg2gMfy4AfZhO/5QAvA3jgXAQCyGhIdBzO5ZCdYywSI0wAAAAAAyHq4KigAAE7u4REij9oOAOmBcxEAICsiWAMAwIk96gMrH2gB2APnIgBAVkWwBgAAAAAAABhAsAYAAAAAAAAYQLAGAIATe9TV9rgaHwB74FwEAMiqCNYAAHBirGsEICPgXAQAyKoI1gAAAAAAAAADCNYAAAAAAAAAAwjWAAAAAAAAAAMI1gAAAAAAAAADsju6gazOHH/P0S0AeAivSwAAAABAahCsOYDZbLZ8ffvk145rBMAjPfh6BTKikJCQFK+2FxISYsduAGRVnIsAAFkVU0EBAHBiEyZMsKkOAGlh/PjxNtUBAHBWjFhzAJPJZPk6V8XnZXLhaQAyEnP8Pcto0gdfr0BGtG/fPpvqAJAWfvnlF5vqAAA4KxIdBzO5ZCdYAwAYVrdu3RTDs7p169qxGwBZVe3atVMMz2rXrm3HbgAAsB+mggIA4MRGjx5tUx0A0sIHH3xgUx0AAGdFsAYAgBPbsWOHTXUASAt79uyxqQ4AgLMiWAMAwIlNnz7dpjoApIVJkybZVAcAwFkRrAEA4MSGDh1qUx0A0sLIkSNtqgMA4KwI1gAAcGKMWAOQETBiDUBGEhgYaPkHpDeCNQAAAAAAkCm8++67KX4PpDWCNQAAAAAAkCkcOXIkxe+BtJbd0Q1kdeb4e45uAWnAbDZLkkwmk4M7QVrgdQlnEhISkuI0h5CQEDt2AyCr4lwEICNI7jwUGBjIeQjphmDNwW6f/NrRLQAAnNh33333yHqTJk3s1A2ArIpzEQBHO3/+/CPrpUqVslM3yEqYCgoAgBObMWOGTXUASAuciwA42ptvvmlTHTCKEWsOkCNHDgUHBzu6DaSR6OhodevWTZK0bNkyubu7O7gjpKUcOXI4ugUgRUOGDEnxA+uQIUPs1guArItzEQBHmzNnTorh2Zw5c+zYDbISgjUHMJlMhC+ZlLu7O88tALtq0qRJih9mmXoFwB44FwFwtEdN82QaKNILU0EBAHBihw8ftqkOAGlh+/btNtUBwFZxcXHKli1bkrVs2bIpLi7Ozh0hqyBYAwDAib333ns21QEgLcycOdOmOgDYauvWrcmGZ3Fxcdq6daudO0JWQbAGAIAT+/DDD22qA0BaGDx4sE11ALBVixYtbKoDRhGsAQDgxI4dO2ZTHQDSwvnz522qA4CtYmJibKoDRhGsAQDgxFauXGlTHQDSwldffWVTHQBsNWrUKJvqgFEEawAAOLEuXbrYVAeAtPDCCy/YVAcAW02cONGmOmBUhgrWtmzZon79+unpp59WjRo11K5dO61du1Zms9lqv+DgYDVv3ly+vr5q27atdu7c6aCOAQBwrJdfftmmOgCkhZ49e9pUBwBb5cyZU6VKlUqyVrp0aeXMmdPOHSGryFDB2uLFi5UzZ06NHDlS8+bN09NPP633339fc+bMseyzadMmvf/++2rZsqUWLFigGjVqaMCAATp06JDjGgcAwEECAwNtqgNAWuBcBMDR4uPjdf369SRr165dU3x8vJ07QlaR3dENPGjevHnKnz+/5fuAgADduHFDixYtUv/+/eXi4qJZs2apdevWGjJkiCSpXr16+vPPPzVnzhwtWLDAQZ0DAAAAAABHOXDggCIjI5OsRUZG6sCBA6pTp46du0JWkKFGrD0YqiXw8fHRrVu3FBUVpfDwcP31119q2bKl1T6tWrXS3r17ucoHAAAAAABZkL+/v/LkyZNkzdPTU/7+/nbuCFlFhgrWkvLrr7+qSJEiyp07t86cOSNJKlu2rNU+5cuXV2xsrMLDwx3RIgAADhMSEmJTHQDSAuciAI7m4uKS7Ii1iIgIubhk+PgDTipDTQV92IEDB7R582aNGDFCknTz5k1J99PmByV8n1A3wmw2KyoqyvDtkXVFR0dbvo6KimLuPgC76tSpU4r1wMBArV692k7dAMiqOBcBcLTvv/8+xfrmzZv1zDPP2KUXZA5ms1kmk+mR+2XYYO3SpUsaOnSo6tatq+7du6f7/cXGxiosLCzd7weZz4NTkP/44w+5ubk5sBsASIz/3wBkBJyLAKSnefPmPbJepEgRO3WDzCI1n+8zZLAWERGh119/XXnz5lVQUJBlyKaXl5ek+wsPFipUyGr/B+tGuLq6qkKFCjZ0jazqwRFr3t7ecnd3d2A3AJCYj4+Po1sAAM5FANJVv379UgzX+vXrx3kIj+XUqVOp2i/DBWvR0dHq27evIiMjtXr1aqvFB8uVKydJOnPmjOXrhO9dXV1VsmRJw/drMpnk4eFhvHFkWQ/O1ffw8CBYA2BXM2bMsFwpO7k6/78BSG9ffPGFevbsmWKdcxGA9NS8efMUg7XmzZsrW7ZsduwIzi4100ClDHbxgnv37mnIkCE6c+aMFi5cmGiYZsmSJVWmTBlt3brVavvmzZsVEBDAFDwAQJaTUqiWmjoApIXevXvbVAcAWz2cEzxuHTAqQwVr48aN086dO/XGG2/o1q1bOnTokOVfwjpWAwcOVGhoqGbNmqV9+/ZpzJgxOnz4sPr37+/g7gEAsL8ZM2bYVAeAtLBw4UKb6gBgqxYtWiQ7Ii1btmxq0aKFnTtCVpGhpoLu2bNHkjRp0qREte+++04lSpRQmzZtdOfOHS1YsEDz589X2bJlNXv2bNWsWdPe7QIA4HDly5e3qQ4AaeHB9Y+N1AHAVtmyZVNcXFyStbi4OKaBIt1kqGBtx44dqdqvQ4cO6tChQzp3AwBAxvfyyy8/sv7ll1/aqRsAWVVgYOAj6yEhIXbqBkBWNH/+/EfW+/TpY6dukJVkqKmgAADg8dy6dcumOgAAQGbwqPCecB/phWANAAAnljt3bpvqAAAAmUFqRs4C6YFgDQAAJ/aoaZ5MAwVgD4wUAeBoj5rmyTRQpBeCNQAAnNisWbNsqgNAWhg7dqxNdQCw1ZUrV2yqA0YRrAEA4MS+/fZbm+oAkBZ+/fVXm+oAYKvevXvbVAeMIlgDAMCJNWvWzKY6AKSFWrVq2VQHAFstXLjQpjpgFMEaAABObNCgQTbVASAtMBUUgKMVKlTIpjpgFMEaAABObNSoUTbVASAtvPHGGzbVAcBWXBUUjkKwBgCAEzt69KhNdQBICxcvXrSpDgCAsyJYAwDAiVWtWtWmOgCkheLFi9tUBwDAWRGsAQDgxBixBiAjYMQaACCrIlgDAAAAAAAADCBYAwAAAAAAAAwgWAMAwImFhITYVAeAtMC5CICjcR6CoxCsAWmoQ4cOjm4BQBbDpeUBZASciwA4GuchOArBGmCjL774wur7+fPnO6gTAAAAAABgTwRrgI22bNli9T1DjAEAAAAAyBpMZrPZ7OgmHO3IkSOSJF9fXwd3kvmYzWbdvXvX0W2km65duyomJibRdjc3N61YscIBHdlHjhw5ZDKZHN0GgP8vpakNhP0A7IVzEQBH4zyEtJTarCi7PZpB1mQ2mzVixAiFhYU5uhW7i4mJydTrrfn4+Gjy5MmEa0AG8KgQf8WKFerataudugGQVc2aNeuR9UGDBtmpGwBZ0aJFix5Z79Gjh526QVbCVFAAAJzYqlWrbKoDQFr49ttvbaoDgK3Wr19vUx0wihFrSDcmk0mTJ0/OtFNBX375Zd27dy/Zevbs2fXll1/asSP7YSookHF07tw5xfCsc+fOduwGQFbVrFmzFMOzZs2a2bEbAFnRiy++mGJ49uKLL9qxG2QlBGtIVyaTSe7u7o5uI11UrFgxxWmuFStWzLSPHUDGkZoRa0wFBZDeUjNijamgANJTakasMRUU6YGpoIBBXl5eNtUBAAAAAIBzI1gDDHrnnXdsqgMAAAAAAOfGVFDAIDc3Nz333HP65ptvEtWaN28uNzc3B3QFIKsJCQnh0vIAHI5zEeAczGZzpl0DOzg4WB06dEixHh0dbceO7IP1rx2PYA2wwcCBA5MM1gYMGOCAbgBkRcHBwY+sp/QmEwDSwrp16x5Zb9++vZ26AZAUs9msESNGpLhOdGaWWd8P+fj4aPLkyYRrDsRUUMBGU6ZMSfF7AEhPS5cutakOAGlh8eLFNtUBAHBWjFgDbOTj46MCBQro6tWrKlCggHx8fBzdEoAspHv37imGZ927d7djNwCyqtdeey3F8Oy1116zWy8AkmYymTR58uRMOxU0QXR0tLp162b5/lGj+50dU0Edz2Q2m82ObsLRjhw5Ikny9fV1cCcAADw+1jUCkBFwLgKQEURHR1umfQYHB8vd3d3BHcFZpTYrYiooAABOLKUPsqmpA0Ba4FwEAMiqCNYAAAAAAAAAAwjWAAAAAAAAAAMI1gAAAAAAAAADCNYAAAAAAAAAAwjWAAAAAAAAAAOyO7oBAABgXEhISIpX2wsJCbFjNwCyKs5FcGZms1l37951dBtII9HR0Ul+jcwhR44cMplMjm7DislsNpsd3YSjHTlyRJLk6+vr4E4AAHg8KX2QTcAHWgDpjXMRnFl0dLQ6dOjg6DYApEJwcLDc3d3tcl+pzYqYCgoAAAAAAAAYwFRQAAAAAAAkveqVX64ZbJoZHl/CxLyMNmUQxsSazVpy85qj20gWwRoAAE6MdY0A55GZ13EKDg5OcSpdcHBwplzrKCOu9QOAQA32RbAGAIATe9S6RoGBgYRrQAZgNps1YsQIhYWFOboVh8is61f5+Pho8uTJfIh3cg8uO56RR8UAsH69ZhSssQYAAAAAAAAYwIg1AAAAIJ2ZTCZNnjw5004FTRAdHa1u3bpZvg8ODnZgN+mPqaCZw4PPYRfPfKyxlgmwxlrmEms2a2XEdUkZ8zklWAMAAADswGQyyd3d3dFt2E1wcHCWerzIHBI+vANAajEVFAAAAAAAADCAEWsAAAAAgCwrR44cmX7aclby4JT0ZcuWMXI2k8mRI4ejW0iEYA0AkOmZzeZMu65RcHBwilfbCw4OVnR0tB07sg/WNQIApJWsNk07K3F3d+e5RbojWAMAZGpms1kjRoxQWFiYo1txiJRCN2fm4+OjyZMnE64BAADAoVhjDQAAAAAAADCAEWsAgEzNZDJp8uTJmXYqaIIH1xORlOnXimEqKAAAADICgjUAQKaX1dZOCQ4OzlKPFwAAAHAUpoICAAAAAAAABhCsAQAAAAAAAAYwFRQAAAAOYTabM/36h1lNdHR0kl/D+bG2ZeaQFc67We08xGvT8QjWAAAA4BB3795Vhw4dHN0G0smDF1SB82P9TudnNps1YsQIhYWFOboVu8kK5yEfHx9NnjyZcM2BmAoKAAAAAAAAGMCINQAAADhcvlalZcrOX9szA7PZLEmMnsgEzPfMur75nKPbQBoxmUyaPHlypp8KmtRI6ODgYAd0Yh9MBXU8gjUAyKKywhobWUlWW08kK8kqb5hN2U0yZWcyRWaQ+X9bs5J4RzeANGYymTL1lN7AwMAkt3fo0EEhISF27gZZBcEaAGRRrG2UeWWF9USyEtY1AgDg0ZIL1R6sE64hPfBnQQAAAAAAAMAARqwBADSsbiG5ZWPyjrNjXaPMIybOrE/2XXF0GwAAAHgEpwzWTp8+rQkTJujgwYPKlSuX2rVrpyFDhsjNzc3RrQGAU3LLZiJYyxR4DgEAQNYUEhKS4nRQpoEivTjdVNCbN2/q1VdfVWxsrIKCgjR06FCtWbNGkyZNcnRrAAAAAADAAVKzxhqQHpxuxNqqVat0+/ZtzZ49W3nz5pUkxcXFady4cerbt6+KFCni2AYBAAAAAACQJTjdiLUffvhBAQEBllBNklq2bKn4+Hjt2bPHcY0BAAAAAAAgS3G6EWtnzpxR+/btrbZ5enqqUKFCOnPmjIO6AgDndismPlOvsWY2mxUb7+gukJZcXTL3RRpi4syObsHu4qPjZMqeuV+oZrNZyoLPbaaWzZSpz0Xme/y+wnmwxhocxemCtYiICHl6eiba7uXlpZs3bxo+rtlsVlRUlC2tAYBTuXPnjuXrWQf+c2AnAFJy+/ZtxcdnzsDpwfPQjW/CHdgJgEfJzOciZB6rV69Wp06dktzO5308LrPZnKo/njhdsJZeYmNjFRYW5ug2AMBu7t696+gWAKTCH3/8oRw5cji6jXTBeQhwHpn5XITMj8/6MMrNze2R+zhdsObp6anIyMhE22/evCkvLy/Dx3V1dVWFChVsaQ0AnIrZbNbixYsVExPj6FbSndlszhKPMytxc3PL1NOvEri5ucnd3T3TPtasdB6SOBdlRpyLgIzn4VFrq1evdmA3cGanTp1K1X5OF6yVK1cu0VpqkZGRunLlisqVK2f4uCaTSR4eHra2BwBOJVeuXI5uAUAWx3kIAJDWWE8NaSG1f0xwuquCPv300/rpp58UERFh2bZ161a5uLjoqaeecmBnAAAAAAAAyEqcLljr3LmzcuXKpTfffFO7d+/WunXrNGXKFHXu3FlFihRxdHsAAAAAAADIIpwuWPPy8tKSJUuULVs2vfnmm5o6dapeeukljRw50tGtAQAAAAAAIAtxujXWJKl8+fJavHixo9sAAAAAAABAFuZ0I9YAAAAAAACAjIBgDQAAAAAAADCAYA0AAAAAAAAwgGANAAAAAAAAMIBgDQAAAAAAADCAYA0AAAAAAAAwgGANAAAAAAAAMIBgDQAAAAAAADCAYA0AAAAAAAAwILujG8gIYmNjZTabdeTIEUe3AgAAAAAAAAeLiYmRyWR65H4Ea1KqflAAAAAAAADIGkwmU6ryIpPZbDbboR8AAAAAAAAgU2GNNQAAAAAAAMAAgjUAAAAAAADAAII1AAAAAAAAwACCNQAAAAAAAMAAgjUAAAAAAADAAII1AAAAAAAAwACCNQAAAAAAAMAAgjUAAAAAAADAAII1AAAAAAAAwACCNQAAAAAAAMAAgjUAAAAAAADAAII1AAAAAAAAwACCNTiloKAgeXt7W/75+vqqZcuWWrBggeLj4y37JdS//PLLRMfYs2ePpX7hwgXL9saNG2v8+PF2eRwPCgoKUs2aNe1+v0BW9PA5pF69eurevbsOHDggSVq/fr28vb117dq1dO+lW7du6tu3b5ofd+TIkWrTpo3l+3379snb21tHjhxJtG9KtbTg7e2tzz//3PL9+vXrFRISkmi/9PpZAM4k4fzUsGFDq/c0CTp37ixvb2+NHDkyze87LCxMQUFBunPnjqHbP/xaf/g89KCUarZ6+BweERGhoKAgnTp1ymq/CxcuyNvbW1u3bk2XPoCsYuPGjXrppZdUq1Yt+fn5qWXLlnrvvfd09epVyz6O+owl/d/7nEf9SzgnPHgeA1Iju6MbAIxyd3fXkiVLJEnR0dHat2+fpk6dKrPZrD59+lj28/Dw0ObNm/Xyyy9b3T40NFQeHh6Kioqya98AMoYHzyGXLl3S3Llz9dprr2n9+vV27WPMmDFycclaf+f66quv5OHhocDAQEe3AmRIrq6uun79un755RfVrVvXsv3ixYs6dOiQPDw80uV+w8LCNHv2bHXt2lU5c+ZMl/twhIiICM2ePVsVK1ZUhQoVHN0OkKksWLBAU6dO1WuvvaZBgwbJbDbr5MmTCgkJ0b///qsCBQo4ukVVqVJFq1evtnx/7NgxjR8/XhMnTlS5cuUs2wsXLqzVq1erWLFijmgTToxgDU7LxcVFNWrUsHxfr149/fnnn/rmm2+sgrUmTZpo06ZNunz5sooUKSJJiomJ0bfffqumTZtq48aN9m4dQAbw8DmkWrVqaty4sVatWqWqVavarQ8+5AF4mKurqwICArRp0yarYG3Tpk2qWLFilgvjAWRcy5Yt0wsvvGA1irZRo0bq3bt3kqNuHSF37txW7/nu3r0rSapYsaJ8fX2t9n1wPyC1+F8ZmUquXLl07949q20+Pj4qU6aMNm/ebNm2a9cumc1mPfPMMzbdX3LTGHbu3Clvb2+dOXNGkvT111/r5ZdfVp06dVS7dm1169ZNhw8fTvHYyU1Fa9euXaLpHwcPHlT37t1Vo0YN1apVS2+//bbV0GsAj1asWDHlz5/famr4pUuX1Lt3b9WoUUPPPfecvv76a0tt2bJlql69um7dumV1nNOnT8vb21u7du2SJP3666/q2rWratWqpZo1ayowMFBfffWVZf+kpj+ePn1aAwYMUJ06dVS9enW1bdtWoaGhlvoXX3yh9u3bq1atWgoICFDfvn119uzZtPxxSLp/HgoMDJSvr68aNmyo6dOnKy4uzlL/999/NWrUKDVp0kTVqlXTc889p2nTpikmJibZY3br1k379+/X999/b5l6ERQUZLXP1q1b1bx5c9WsWVPdu3fX+fPn0/yxARldmzZttG3bNsXGxlq2hYaGJvm+4/Tp0+rXr59q1aqlGjVqqE+fPoleN97e3lqwYIGCgoJUv3591a1bV6NGjbKM3F+/fr1GjRolSQoICJC3t7caN24sydhr3YiIiAiNHTtWDRo0UNWqVfXiiy9q9+7dVvt8//336tGjhwICAuTn56cOHTrohx9+SPaYFy5cUJMmTSRJgwcPTnIZkLt372r8+PGqXbu2GjRooMmTJyd6PwkgaRERESpcuHCStUf9ESA1n2FiYmI0bdo0Pfvss6patapatmyZaDmJhM9ku3btUps2beTr66sXX3xRhw4deuzH8/BU0IT3aaGhoXruuedUvXp1vfHGG7p586YuXryoXr16qWbNmmrdurX27duX6HiPei+FzIFgDU7t3r17unfvnm7duqXvvvtO33zzjZo3b55ov9atW1t9KA0NDVWzZs2UI0cOm+6/devWOnnypP7880+r7aGhoapSpYplaPGFCxf0/PPPa+bMmfrkk0/0xBNPqGvXrmnyQfjgwYPq1q2b8uTJo+nTp+t///ufjhw5ov79+9t8bCAruXXrlm7cuGH15nDYsGFq0KCB5syZIx8fH40cOVKnT5+WJLVt21Zms9nq3CJJa9euVZEiRdSgQQPdunVLffv2Ve7cuTVt2jTNnTtXHTt2VERERLJ9/PXXX+rUqZPOnTun9957T/PmzdOLL76ov//+27LPpUuX9Morr2ju3LmaMGGC4uPj1blzZ924ceORjzM+Pt5y7kz4l9RflBctWqTRo0erQYMG+vTTT/X6669r6dKlmj59umWf69evK2/evBo1apQWLlyo3r1766uvvtKYMWOSvf8xY8aocuXK8vPz0+rVq7V69Wp16NDBUg8LC9Pnn3+uYcOGaeLEiTp//rzeeeedRz4uILN59tlnFRMToz179kiSTp06pT/++EOtWrWy2i88PFydO3fWzZs3NWnSJH3yySe6du2aXnvttUTB14oVK/TXX39p0qRJevPNNxUSEqK5c+dKkp555hn169dPkrRw4UKtXr1as2fPlmTstf6gh8859+7dk9lsttonJiZGPXr00Pfff68hQ4Zo3rx5Kl++vPr27as//vjDst+FCxf07LPPasqUKQoKCpKfn5/69OmT5Ada6f7UroTH8dZbb1nOOw+e62fMmCEXFxfNmDFDnTt31hdffKHg4OBUPTYgq6tSpYpWrVql4OBgXblyJdW3S+1nmMGDB2v16tXq0aOHPvvsMzVs2FDvvPOO5Q+YCa5cuaJx48apV69emjFjhtzc3NSrV680GWxw/PhxLV26VMOHD9e4ceN04MABvf/++xo0aJCeeeYZBQUFKX/+/Bo4cKBu375tuV1q3kshc2AqKJxWVFSUqlSpYrWtVatWVtNAE7Rp00ZBQUE6f/68ChQooO+//15z5sxRdHS0TT0EBAQof/782rRpk5588klJ0p07d7Rjxw4NGDDAst+DX8fHx+upp57S4cOH9dVXX+mtt96yqYepU6eqatWqmj17tkwmkyTpySeftPzVplGjRjYdH8jMEkYkXLp0SZMnT1ZcXJyaN29ueWPYtWtXde3aVZJUs2ZN7dq1S9u2bVP//v3l5eWl5s2ba926dercubPleAkL+GbLlk1nz55VZGSk3nrrLXl7e0u6f95ISVBQkFxdXfXll18qd+7ckqT69etb7fPuu+9avo6Li9NTTz2lgIAAbdu2TZ06dUrx+B07dnzkz+XWrVuaNWuWevfubTlHPfXUU3J1ddWkSZPUq1cv5cuXT97e3hoxYoTldn5+fsqZM6dGjhypDz74IMk1mipUqKDcuXPLw8MjyekWkZGR+vrrr5U/f35J98/1o0aN0qVLl1S0aNFH9g5kFjlz5lTjxo21adMmPfPMMwoNDVXNmjVVsmRJq/1mz54tLy8vLVq0yPIHQz8/PzVp0kTBwcGWc5gkFSpUSFOnTpUkPf300zp+/Li2bdumYcOGKX/+/CpVqpSk+x+UE16Dkgy91hOcPHky0fu1BBUrVrR8HRISohMnTmjDhg2WKfINGzbUuXPnNHfuXM2cOVOS9Morr1huEx8fr7p16+rUqVNas2aN1bTZBG5ubvLx8ZEklS5dOsnzTrVq1TR69GhJ9891+/bt07Zt2xKtzwsgsTFjxmjAgAGW11CJEiX07LPP6rXXXlOJEiWSvV1qPsP8/PPP2rFjhz7//HM1aNBA0v3X6JUrVxQUFGT1OefGjRuaMWOG5X1WnTp11KhRIy1evFhvv/22TY/x1q1b+vTTTy3nxT/++ENffPGFxo4dazlPFC5cWIGBgdq7d6+aNm2a6vdSyBwI1uC03N3dtXz5ckn3/8p57NgxzZo1S6NHj9bEiROt9i1TpoyqVKmi0NBQFS9eXLly5VJAQIB27txpUw/Zs2dXixYttHnzZg0dOlTS/Wmgd+7cUevWrS37nT59WtOmTdPBgwet/mry119/2XT/d+7c0W+//abhw4dbDSkuU6aMnnjiCR05coRgDUjGw+G8l5eXPvjgAzVs2NByAYOEN3HS/QuhFCtWTJcuXbJs69ixo1555RWdPHlSFStW1K5du3T16lW1b99eklSqVCnlzp1bY8eOVbdu3VSvXj2rD6tJ+fnnn9W8eXNLqJaUQ4cOaebMmTp+/LjVKLXUnFMmT56s8uXLW207duyY1ciTgwcPKioqSi1atLCaDlW/fn1FR0fr5MmTqlOnjsxms5YsWaI1a9bowoULljVLpPujaBL+4PA4KlWqZPUzSviATbCGrKhNmzZ6++23FR0drc2bN6tbt26J9tmzZ49atWqlbNmyWV6vnp6eqly5so4ePWq178Mhffny5bVp06ZH9mHLa71UqVKaNm1aou1z5syxmo65Z88ePfnkkypTpkyi886D6+FeunRJ06dP108//aQrV65YRr4lF96lxoPneun+z+Xnn382fDwgK3nyyScVGhqqvXv3avfu3frll1+0bNkyrV+/XitWrLAE2w9K7WeYPXv2KG/evKpXr16i88LYsWMVFxenbNmySZLy5Mlj9cfLPHnyqH79+vr9999tfowPvzcpU6aMpY+HtyW8T0zteylkDgRrcFouLi5Wi03WqlVLcXFxmjRpknr06JHoTV6bNm20bt06FStWTC1btrSchG3VunVrrVy5UocPH1a1atW0adMm+fv7Wz4A3rp1Sz179lT+/Pk1cuRIFStWTDly5NDo0aOt3pgaERERobi4OE2cODFRmChJ//zzj03HBzKzhHDeZDIpX758euKJJxKtBZInTx6r711dXa2mVtWuXVtly5bV2rVrNWrUKK1bt061a9e2jPpIGEUya9Ysy5tHf39/jR492jKC7WEPT0d92N9//62ePXuqatWqGjdunAoXLixXV1f17ds3VeeU8uXLJ1qo9+GrI1+/fl2S9MILLyR5jIRzy5IlSzR58mT17t1bdevWlaenp44cOaLx48cbPr95enpafe/q6ipJNp8vAWfUoEEDubq6aubMmbpw4YJatmyZaJ/r169ryZIllqscPyjh9ZMgqddXatZJs+W1niNHjkTnHEnKmzevVbB2/fp1HT9+PMmALOE9W3x8vPr166fIyEgNGjRIpUuXVs6cOTVr1iyb3vM86lwPIGVubm5q1KiR5Q/6P/74o/r27as5c+ZYpmI/KLWfYa5fv64bN24kG5xfuXLF8pkrqT9cFihQwLKEhy2Se2/y4LnDzc1N0v+9X0nteylkDgRryFQS1jQ7depUomCtVatWmjJlis6cOaMVK1ak2X3WqlVLTzzxhDZt2qSyZcvqhx9+sJqmdejQIV26dEmfffaZKlWqZNkeGRmZ4uiLhOkcDy5aLMlqbaY8efLIZDKpb9++atq0aaJjMLwYSN7D4bxRHTp00MKFC9WjRw/t2rVLH374oVW9WrVqWrhwoaKjo7Vv3z5NnjxZb775prZv357k8fLmzat///032fv78ccfFRUVpdmzZ1ve6N27d083b960+bEk8PLyknR/illS56mEqR1bt25V48aNraZYpMUbWAD3ubq66rnnntPixYsVEBCgggULJtrHy8tLjRo1UpcuXRLVcuXKlSZ92OO17uXlJW9v70Tn0AedO3dOx48f15w5c6ze99i6tAeAtNWwYUNVqlQp2fNEaj/DeHl5KX/+/Jo/f36Sx3kwTHv4gm+SdPXqVRUqVMjIQ7BZat9LIXMgWEOmcvLkSUlJB0pFixbVq6++qmvXrsnPzy/N7tNkMqlVq1YKDQ1VxYoVFR8fb3UBhYQ3ew/+1fi3337TxYsXrdYWeViRIkUkSWfOnLF8ffr0aau/biSsUXTmzJk0CQgAPL4XXnhB06dP17Bhw+Tu7q4WLVokuZ+7u7saNWqk8+fP68MPP9Tdu3eTvIBKwlppw4YNS3I6aHR0tEwmk7Jn/7//wrds2ZKmV7CrWbOmcubMqUuXLqlZs2bJ7hcdHZ1oRMzDV+pKiqurKyPQgFTq0KGDrl69muz6iAEBATp58qQqV65s82j8hNfzw6O1jL7WH0f9+vW1a9cuFS5c2PK+52EJ540He7l48aIOHjxomYaVFEa+Aunnv//+SxT6R0dH659//rEs5/Cw1H6GqV+/vhYuXChXV1erAQpJiYyM1N69ey3TQSMjI/XTTz9ZrTNpT6l9L4XMgWANTis+Pt5yCeXY2FgdO3ZM8+bNU4UKFeTv75/kbRIuI5/W2rRpo88//1wzZ87UU089ZfXXkxo1asjDw0Pjxo1Tnz59dPnyZQUFBSX7pjFB9erV9cQTT+ijjz7S22+/rVu3bmn+/PnKmzev1X7Dhw/Xq6++qiFDhqh169by9PTUpUuX9NNPP+nFF19MciFfAGknf/78atKkibZu3apOnTrJ3d3dUvv++++1du1aNW3aVMWKFdN///2n5cuXy8/PL9mrEg8YMEDff/+9unTpot69e6tQoUI6ffq07ty5o9dff1316tWTdP981rlzZ508eVKLFi1KNE3BFp6enho0aJA+/vhjXbp0SXXq1FG2bNkUHh6u7777TkFBQcqZM6fq16+vpUuXavny5SpTpow2btyoc+fOPfL45cqV09dff60dO3aoUKFCKX6QBrK6atWqWa7cmZRBgwbppZdeUq9evdSxY0cVLFhQ//33n/bv3y9/f3+1adMm1feVsP7iihUr1LRpU7m7u8vb29vwa/1xPP/881q1apW6d++unj17qkyZMoqMjNTx48cVGxurt99+W+XKlVPRokU1depUxcfHKyoqSrNmzUpx+rx0/6INnp6e2rRpk0qUKCE3N7dkp+MDeDyBgYF69tln1aBBAxUuXFiXL1/W8uXLdf36db366qvJ3i41n2GeeuopPfvss+rdu7d69+4tb29v3blzR6dOndK5c+esRrjmzZtX7733ngYNGqQ8efJowYIFMpvNKfaQnlL7XgqZA8EanFZ0dLTl6nfZs2dX0aJF1bZtWw0YMCDRX1XTW+XKlVW2bFmdPXtWw4YNs6oVLFhQM2fO1JQpU9S/f3+VKVNG48aN08KFC1M8pqurq2bPnq2xY8dq8ODBKlWqlN59911NmjTJaj8/Pz+tXLlSQUFBGjVqlGJjY1W0aFHVq1dPpUuXTvPHCiCxZs2aaevWrXrppZestpcqVUouLi6aMWOGrl69qrx586pBgwYpXg24TJkyWrVqlaZOnapx48YpLi5OZcqUsVzx2NvbWxMnTtTs2bPVt29f+fj4aObMmRoyZEiaPqaePXuqSJEiWrRokZYvX67s2bOrVKlSeuaZZyzn2DfffFPXr1/XrFmzJEnNmzfX6NGj9cYbb6R47Ndff13nz5/XiBEjFBERoQEDBmjgwIFp2j+QVZQuXVrBwcGaMWOGxo0bp6ioKBUqVEi1a9d+7PCocuXKGjhwoIKDg7Vw4UI98cQT2rFjh+HX+uNwc3PT0qVLFRQUpE8//VRXrlxR3rx5VblyZcs0Vzc3NwUFBWn8+PEaPHiwnnjiCfXr108///xzogs1PMjFxUUTJ07UtGnT9NprrykmJkbfffddmvUOZGUDBgzQzp07NWnSJF27ds1y1fDFixdb/hiYlNR+hpk1a5bmz5+vL7/8UhcvXlSePHlUsWJFvfjii1bHK1SokIYNG6YpU6bo/Pnzqlixoj7//PMkp9DbS2reSyFzMJkTLqUDAAAMGT58uMLCwtJ8ahQAAABSNnLkSB09elShoaGObgVZFCPWAAAw6I8//lBYWJg2b96sMWPGOLodAAAAAHZGsAakIKXFwE0mk82LBANwbv369dO1a9f0/PPPq3379o5uBwAAAICdMRUUSEFKa5MUL15cO3bssGM3AAAAAAAgI2HEGpCCtWvXJltzc3OzYycAAAAAACCjYcQaAAAAAAAAYICLoxsAAAAAAAAAnBHBGgAAAAAAAGAAwRoAAAAAAABgAMEaAABABubt7a2goKB0OfaFCxfk7e2t9evXp8vx08K+ffvk7e2tffv2WbZ169ZNbdq0cWBXAAAA9xGsAQAAp7V+/Xp5e3vL19dXly9fTlQngEl7u3btkre3txo0aKD4+PhE9cuXLysoKEhhYWGJaiEhIVq8eLEdunx8Gbk3AACQcRGsAQAApxcTE6P58+c7uo10cfjwYfXr18/RbVhs3LhRxYsX15UrV/Tzzz8nqv/777+aPXt2ksFaaGioli5d+lj3V7t2bR0+fFi1a9c23HNqGOkNAACAYA0AADg9Hx8frVmzJslRa84oPj5ed+/elSTlyJFD2bNnd3BH90VFRWnHjh3q0aOHKleurJCQkHS7r7t37yo+Pl4uLi7KkSOHXFx42woAADIe3qEAAACn17dvX8XHx2vBggUp7pfSmmIPr2UWFBQkb29vnT17VsOGDVOtWrVUr149zZgxQ2azWf/884/69esnPz8/PfXUU/riiy8SHTMmJkazZs1Ss2bNVLVqVTVq1EhTpkxRTExMovseP368Nm7cqNatW8vX11c//vhjkn1J96dbvvvuu2rQoIGqVq2qxo0ba8yYMZbj3rhxQ5MnT1ZgYKBq1qwpPz8/9e7dWydOnEjdDzQZ3377raKjo9WiRQu1atVK33zzjSUAlO6vh/bSSy9JkkaNGiVvb2/Lz7tbt276/vvvdfHiRcv2xo0bW27n7e2tTZs2afr06WrYsKGqV6+uW7duJbnGWoKjR4+qc+fOqlatmho3bqwvv/zSqp4wVfjChQtW2x8+Zkq9Sal/Hvfs2aOXX35Z/v7+qlmzppo3b65p06bZ8BMHAAAZXcb48ycAAIANSpQooXbt2mnNmjV6/fXXVaRIkTQ79tChQ1W+fHm9/fbb2rVrl+bNm6e8efNq1apVqlevnoYNG6aQkBBNnjxZvr6+limL8fHx6tevn3799Vd17NhR5cuX159//qklS5bor7/+0ty5c63u5+eff9aWLVvUtWtX5cuXT8WLF0+yn8uXL+ull15SZGSkOnbsqHLlyuny5cvatm2boqOj5ebmpvDwcG3fvl0tWrRQiRIl9N9//2n16tV65ZVXtGnTJsM/n5CQENWtW1eFChVS69atNXXqVO3YsUMtW7aUJJUvX16DBg3SrFmz1KlTJ9WqVUuS5OfnpyJFiigyMlKXLl3SqFGjJEm5cuWyOv7cuXPl6uqqXr16KSYmRq6ursn2cvPmTfXp00ctW7ZU69attWXLFo0dO1aurq6WcC+13njjjWR7S+3zePLkSfXt21fe3t4aNGiQ3NzcdO7cOf3222+P1QsAAHAuBGsAACBT6NevnzZs2KAFCxZo9OjRaXbcatWqafz48ZKkTp06qXHjxpo0aZLeeust9enTR5LUpk0bNWzYUOvWrbMEayEhIfrpp5+0bNky+fv7W45XsWJFjRkzRr/99pv8/Pws28+ePauQkBBVqFAhxX6mTZum//77T2vWrJGvr69l++DBg2U2myXdH+W2bds2q+mT7dq1U8uWLbV27Vq9+eabj/1zuHr1qvbu3auxY8dKkooVK6YaNWooJCTEEqwVLFhQTz/9tGbNmqUaNWqoXbt2ltuXLFlSS5cuVUREhNX2B929e1fr1q2Tu7v7I/v5999/NXLkSPXo0UPS/eemY8eOmjZtmtq1a5diKPewp556KtneUvs87tmzR7GxsVqwYIHy58+f6vsGAADOjamgAAAgUyhZsqTatm2rNWvW6N9//02z4z44+ilbtmyqWrWqzGaz1XZPT0+VLVtW4eHhlm1bt25V+fLlVa5cOV27ds3yr169epKUaGpj7dq1HxmqxcfHa/v27Xr22WetQrUEJpNJkuTm5mYJ1eLi4nT9+nV5eHiobNmyOn78+GP+BO7btGmTTCaTnnvuOcu2Nm3a6IcfftDNmzcNHfNhzz//fKpCNUnKnj27OnXqZPnezc1NnTp10tWrV3Xs2LE06UdK/fPo6ekpSfruu++SvFoqAADInBixBgAAMo3+/ftr48aNmj9/fpqNWitWrJjV93ny5FGOHDkSjUrKkyePbty4Yfn+3LlzOn36tAICApI87tWrV62+L1GixCN7uXbtmm7duqWKFSumuF98fLyWLl2qlStX6sKFC4qLi7PU8ubN+8j7ScrGjRtVrVo13bhxw/I4fXx8FBsbq61bt1qFXEal5meQoHDhwvLw8LDaVqZMGUnSxYsXVaNGDZv7kVL/PLZq1UrBwcEaPXq0pk6dqoCAADVr1kwtWrTgwgsAAGRiBGsAACDTeHDUWsI0zQcljOh62IPB08OSCkWyZcuW5L4JUzGl++HWk08+aVmz62FFixa1+j61I7VS49NPP9XMmTPVvn17DR48WF5eXnJxcdFHH31k1WNq/fXXXzpy5IgkWY1YSxASEpImwVpa/gyk5J/vxxlRltrn0d3dXStWrNC+ffv0/fff68cff9TmzZu1evVqffHFF8n+zgAAAOdGsAYAADKVfv36aePGjUleIdTLy0uSFBERYbX977//TvM+SpUqpRMnTiggICDZgOdx5c+fX7lz59bJkydT3G/btm2qW7euPvroI6vtERERypcv32Pfb0hIiFxdXTVlypREQeOvv/6qZcuW6e+//1axYsVSfKxp9XOQ7q+xFhUVZTVq7a+//pIky4UfEqZnRkZGWt324sWLqe7tcZ5HFxcXBQQEKCAgQKNGjdKnn36q6dOna9++fapfv36qHxsAAHAejEsHAACZSqlSpdS2bVutXr1aV65csarlzp1b+fLl04EDB6y2r1y5Ms37aNmypS5fvqw1a9YkqkVHRysqKuqxj+ni4qKmTZtq586dlhFkD0oYjZYtW7ZEI9O2bNmiy5cvP/Z9SveDtVq1aqlVq1Zq0aKF1b/evXtLkkJDQyVJOXPmlJQ4vEyoPRxyGXXv3j2tXr3a8n1MTIxWr16t/Pnzq0qVKpLu/y5I0i+//GLZLy4uLsnnJLneUvs8PjgNOIGPj4+lNwAAkDkxYg0AAGQ6b7zxhjZs2KCzZ88mWo+sQ4cOmj9/vt577z1VrVpVBw4c0NmzZ9O8h3bt2mnLli0aM2aM9u3bJz8/P8XFxenMmTPaunWrFi5cmOQFCB7lrbfe0p49e9StWzd17NhR5cuX15UrV7R161atXLlSnp6eeuaZZzRnzhyNGjVKNWvW1J9//qmQkBCVLFnyse/v999/17lz59S1a9ck60WKFFHlypUVEhKiPn36qFSpUvL09NSqVauUK1cueXh4qFq1aipZsqSqVKmizZs3a+LEifL19ZWHh4caN2782D1J99dYW7BggS5evKgyZcpo8+bNCgsL0//+9z/LFUErVqyoGjVqaNq0abp586a8vLy0efNm3bt3L9Hxkusttc/jnDlzdODAATVq1EjFixfX1atXtXLlShUtWlS1atUy9BgBAEDGR7AGAAAyndKlS6tt27b66quvEtXefPNNXbt2Tdu2bdOWLVv09NNPa+HChckuTm+Ui4uL5syZo8WLF2vDhg369ttvlTNnTpUoUULdunVT2bJlDR23SJEiWrNmjWbOnKmQkBDdunVLRYoU0dNPP21Zo+yNN97QnTt3FBISos2bN6ty5cr67LPPNHXq1Me+v5CQEElKMQBr3LixgoKCdOLECVWqVEmTJk3StGnTNHbsWN27d08TJ05UyZIl1aVLF4WFhWn9+vVavHixihcvbjhY8/Ly0qRJkzRhwgStWbNGBQsW1AcffKCOHTta7ffJJ5/ogw8+0Pz58+Xp6amXXnpJdevWVY8ePaz2S6631D6PjRs31sWLF7Vu3Tpdv35d+fLlU506dTRw4EDlyZPH0GMEAAAZn8lsZAVbAAAAAAAAIItjjTUAAAAAAADAAII1AAAAAAAAwACCNQAAAAAAAMAAgjUAAAAAAADAAII1AAAAAAAAwACCNQAAAAAAAMAAgjUAAAAAAADAAII1AAAAAAAAwACCNQAAAAAAAMAAgjUAAAAAAADAAII1AAAAAAAAwACCNQAAAAAAAMAAgjUAAAAAAADAgP8H/q/5DW8SqiYAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
],
"source": [
"plt.figure(figsize=(15,5))\n",
"sns.set_theme(style=\"whitegrid\")\n",
"sns.boxplot(data=df[numerical_feats]) # outliers are ignore to be plotted\n",
"plt.xlabel(\"Numerical Attributes\", fontsize= 12)\n",
"plt.ylabel(\"Values\", fontsize= 12)\n",
"plt.title(\"Numerical Attributes Boxplot\", fontsize= 15)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "bec2e9d0",
"metadata": {
"id": "bec2e9d0"
},
"source": [
"### It is very evident from above box plot that all the numerical features has outliers and as the scales are different for each feature, it is hard to visualize them here. Lets normalize them later in this notebook during data transformation."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "aa92abb4",
"metadata": {
"id": "aa92abb4"
},
"outputs": [],
"source": [
"# defining my own functions to plot required charts as well as to identify the outliers\n",
"\n",
"def get_quantile_limits_for_outliers(df, feature,factor):\n",
" Q1 = df[f\"{feature}\"].quantile(0.25)\n",
" Q3 = df[f\"{feature}\"].quantile(0.75)\n",
" IQR=Q3-Q1\n",
" print(f\"{feature} - Quantile information\\n\")\n",
" print(\"First Quartile: \",Q1)\n",
" print(\"Third Quartile: \",Q3)\n",
" print(\"Interquartile: \",IQR)\n",
" lower_limit=Q1-factor*IQR\n",
" upper_limit=Q3+factor*IQR\n",
" if((lower_limit < 0) &( df[f\"{feature}\"].quantile(0)>=0)):\n",
" print(\"Adjusted the Limits as the lower limit is less than Zero!\")\n",
" upper_limit = upper_limit - lower_limit \n",
" lower_limit = 0\n",
" \n",
" print(\"Lower Limit: \",lower_limit)\n",
" print(\"Upper Limi: \",upper_limit)\n",
" outliers_records = df[(df.SleepTime < lower_limit) | (df.SleepTime > upper_limit)].shape[0]\n",
" total_records = df.shape[0]\n",
" per_outliers = (100*(outliers_records/total_records))\n",
" print(f\"% outliers in {feature} --> {per_outliers} \")\n",
" \n",
"# Defining few user defined functions to plot required charts.\n",
"import statistics\n",
"\n",
"def plot_kde(feature, df_numerical):\n",
" figure, axis = plt.subplots(1, 1, figsize=(15, 5))\n",
" sns.kdeplot(df_numerical.loc[(df_numerical['HeartDisease']=='Yes'), feature], color='g', shade=True, label='Yes')\n",
" sns.kdeplot(df_numerical.loc[(df_numerical['HeartDisease']=='No'), feature], shade=True, label='No')\n",
" plt.title(f'{feature} with Heart Disease')\n",
" plt.legend(title='HeartDisease?', fontsize=15, title_fontsize=15)\n",
" \n",
" plt.show()\n",
"\n",
"def plot_hist(feature):\n",
" fig, ax = plt.subplots(2, 1, figsize=(15, 8))\n",
" sns.histplot(data = df[feature], kde = True, ax = ax[0],color='black')\n",
" ax[0].axvline(x = df[feature].mean(), color = 'blue', linestyle = '--', linewidth = 2, label = 'Mean: {}'.format(round(df[feature].mean(), 3)))\n",
" ax[0].axvline(x = df[feature].median(), color = 'red', linewidth = 2, label = 'Median: {}'.format(round(df[feature].median(), 3)))\n",
" ax[0].axvline(x = statistics.mode(df[feature]), color = 'green', linewidth = 2, label = 'Mode: {}'.format(statistics.mode(df[feature])))\n",
" ax[0].legend()\n",
" \n",
" sns.boxplot(x = df[feature], ax = ax[1],color='yellow')\n",
" \n",
" plt.show()\n",
" \n",
"def plot_box_num(feature):\n",
" fig = plt.subplots(figsize=(14, 4))\n",
" sns.boxplot(x = df[feature],color='orange')\n",
" plt.show()\n",
" \n",
"# Defining few functions to plot distributions for categorical feature\n",
"import pandas as pd\n",
"import plotly.graph_objects as go\n",
"from plotly.subplots import make_subplots\n",
"\n",
"def plot_cat_dist_with_target(df, feature):\n",
" df['Target'] = df.HeartDisease.map({'Yes':1, 'No':0})\n",
" x = df.pivot_table(index=f'{feature}', columns='HeartDisease', values='Target', aggfunc=['count'])\n",
" x.columns = ['_'.join(col) for col in x.columns.values]\n",
" x = x.reset_index()\n",
" x['total'] = x[['count_No', 'count_Yes']].sum(axis=1)\n",
" x[\"% HeartDisease\"] = (100*x['count_Yes']/x['total']).round(2)\n",
" x[\"% DataDist\"] = (100*x['total']/x['total'].sum()).round(2)\n",
" df = x.sort_values(f\"{feature}\", ascending=True).reset_index(drop=True)\n",
" \n",
" fig = make_subplots(specs=[[{\"secondary_y\": True}]])\n",
"\n",
" fig.add_trace(\n",
" go.Scatter(x=df[f'{feature}'], y=df[\"% HeartDisease\"], name=\"% Suffered with Heart Disease\", mode=\"lines\"),\n",
" secondary_y=True\n",
" )\n",
"\n",
" fig.add_trace(\n",
" go.Bar(x=df[f'{feature}'], y= df[\"% DataDist\"], name=f\"% Frequency of {feature}\"),\n",
" secondary_y=False\n",
" )\n",
"\n",
" fig.update_xaxes(title_text=f\"{feature}\")\n",
"\n",
" # Set y-axes titles\n",
" fig.update_yaxes(title_text=f\"% Frequency of {feature}\", secondary_y=False)\n",
" fig.update_yaxes(title_text=\"% Suffered with Heart Disease\", secondary_y=True)\n",
"# fig['layout'].update(height=300, width=20000, title='Subplots with Shared X-Axes')\n",
" fig.update_layout(height=450, width=950, title_text=f\"{feature} - Distribution with HeartDisease Trace\")\n",
" fig.show()\n",
" df.head()\n",
"\n",
"def plot_kde(feature, df_categorical):\n",
" plt.subplots(1, 1, figsize=(15, 5))\n",
" sns.histplot(data=df_categorical, x=feature, hue=\"HeartDisease\", multiple=\"dodge\", shrink=.8, hue_order = ['Yes', 'No'])\n",
" plt.title(f'{feature} with Heart Disease')\n",
" plt.show()\n",
" \n",
"def plot_cat_feat(feat, df):\n",
" ax = plt.figure(figsize=(18,6))\n",
" ax = plt.subplot(1,2,1)\n",
" ax = sns.countplot(x=f'{feat}', data=df)\n",
" ax.bar_label(ax.containers[0])\n",
" plt.title(f\"{feat}\", fontsize=20,color='Black',font='Times New Roman')\n",
" ax =plt.subplot(1,2,2)\n",
" ax=df[f'{feat}'].value_counts().plot.pie(autopct='%1.2f%%');\n",
" ax.set_title(label = f\"{feat}\", fontsize = 20,color='Black',font='Times New Roman');\n",
" \n",
" \n",
"# for i in range(1, len(binary_cols)):\n",
"def plot_pie_for_binary_categorical(df, feature):\n",
" fig = plt.figure(figsize=(18,6), dpi=90)\n",
" \n",
" # Plot distribution of adults with heart disease\n",
" ax1 = plt.subplot(1,2,1)\n",
" df[df['HeartDisease'] == 'Yes'].groupby(df[binary_cols[i]]).HeartDisease.count().plot(kind='pie', autopct='%.1f%%', labeldistance=None,\n",
" wedgeprops = { 'linewidth' : 1.5, 'edgecolor' : 'white', 'width':1.0 })\n",
" plt.gca().axes.get_yaxis().set_visible(False)\n",
" plt.title(\"With heart disease\")\n",
" \n",
" # Plot distribution of adults without heart disease\n",
" ax2 = plt.subplot(1,2,2)\n",
" df[df['HeartDisease'] == 'No'].groupby(df[binary_cols[i]]).HeartDisease.count().plot(kind='pie', autopct='%.1f%%', labeldistance=None,\n",
" wedgeprops = { 'linewidth' : 1.5, 'edgecolor' : 'white', 'width':1.0 })\n",
" plt.gca().axes.get_yaxis().set_visible(False)\n",
" plt.title(\"Without heart disease\")\n",
" plt.suptitle(f\"{binary_cols[i]} - Patient with/without Heart Disease distribution by \" + binary_cols[i] + \" status\", fontweight='bold')\n",
" \n",
" handles, labels = ax1.get_legend_handles_labels()\n",
"\n",
" \n",
" leg = fig.legend(handles, labels, loc = 'upper right', fancybox=False)\n",
"\n",
" \n",
" plt.subplots_adjust(right=0.9)\n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "7002d2e6",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "7002d2e6",
"outputId": "5ffa3649-4fa6-486e-f8a4-9c49c6facf7a"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"BMI_value - Quantile information\n",
"\n",
"First Quartile: 24.03\n",
"Third Quartile: 31.42\n",
"Interquartile: 7.390000000000001\n",
"Lower Limit: 12.945\n",
"Upper Limi: 42.505\n",
"% outliers in BMI_value --> 99.68761237667881 \n"
]
}
],
"source": [
"get_quantile_limits_for_outliers(df, 'BMI_value', 1.5)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "d65179d7",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 963
},
"id": "d65179d7",
"outputId": "58019fc0-fb37-433d-8c58-d96a91cdf568"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA+EAAAECCAYAAACR9tbjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAxOAAAMTgF/d4wjAAA8TUlEQVR4nO3deXxU1f3/8fdkh4QESEhIQCRWiIDKDlISUCyLEURRUYIsFauJEJBFCyKURYy14FJArIpVELBWEIoFRbSSsAgKxGqJYK2sCYksBhKWbPP7g9/c70wySWayzCTD6/l48CBz7z3nfM65c3PvJ3czmc1mswAAAAAAQK3zcncAAAAAAABcLUjCAQAAAABwEZJwAAAAAABchCQcAAAAAAAXIQkHAAAAAMBFSMIBAAAAAHARknAAAAAAAFyEJBwAgDpq1KhRiomJ0fTp090dShnTp09XTEyMRo0aVWttHD9+XDExMYqJidHu3bslSYsXL1ZMTIz69evn0nYBAKgpPu4OAACAmjBq1Cjt2bPH+Ozj46OwsDDdcsstevrppxUSEiLpShK3ZMkSSVLjxo31xRdfqEGDBpKkkydP6je/+Y0KCwslSSkpKRo2bJiOHz+u22+/3WaaJ7IeQ29vbwUEBCgiIkLdu3fXqFGj1KZNG2PZ3r17q1GjRrr22msdrr9fv346ceKEJkyYoOTk5EqXDwoK0ujRoyVJzZs3d7I3ldu9e7dR/2effaaWLVu6pF0AwNWNJBwA4FEiIiI0cOBA5eXlaePGjVq/fr0KCwv14osvlln2l19+0bp16zRy5EhJ0jvvvGMk4FeziIgIDRgwQNnZ2dq9e7f+9re/ad26dXrhhRcUHx8vSRoyZIiGDBlSazEUFBSocePGmjlzZq21UR53tQsAuDpwOToAwKNce+21mjlzplJSUnTrrbdKkg4ePFhmOX9/fzVs2FB//etfVVxcrPPnz+tvf/ubGjduXK32v/nmG8XExKhdu3bKysoypk+bNk0xMTFKTEyUJK1atUqDBw9W165d1b59e/Xq1UtPPPGETp48WW7du3fvNi6TPn78eLnTzGaz/vGPf+j+++9X9+7ddcstt+iRRx7Rf/7zH4f6cO211+qZZ57R4sWLtWXLFrVv316FhYWaOXOmzpw5I8n+5eivv/66Bg4cqJtvvlldunTR4MGDjasOYmJidOLECUnSkiVLbC4pt1x2P2nSJM2YMUPdunXT5MmTK70sfNWqVbr11lvVtWtXJSUlKTs725hnKbdu3Tq709atW2ec7Zak22+/XTExMVq8eHG57f7rX//SyJEj1bNnT3Xv3l3Dhw/Xpk2b7K6fv/3tbxo6dKhuvvlm3X333frmm28cGnsAgOcjCQcAeJQjR45owYIFmjFjhrZt2yZJuvvuu8ss5+fnp3vvvVfHjh3Tli1b9N577yk/P984K15VHTt2VPv27VVSUqL169dLkvLy8rR161ZJ0ogRIyRJx44dU1RUlO68807dd999CgwM1ObNm/Xkk09Wq31JeuWVV/Tkk0/q6NGj6t+/v3r06KHt27frwQcfdDgRt2jcuLEmTpwoSbpw4YK++OILu8vt3r1bixYtUk5OjoYMGaKBAweqUaNG2rdvnyRp9OjRCgwMlHRljEaPHl3msv5PPvlE6enpio+PV/v27SuMKysrSytWrFDv3r3l5+enzz//XOPHj5fZbHaoX9dff70GDhxofB42bJhGjx6tjh072l3+/fffV2Jior7++mt17txZvXr10r///W9NnjxZb775Zpnln3/+ebVv316hoaHKyMjQtGnTHIoLAOD5SMIBAB4lOztbK1as0Lp161RQUKCmTZva3MtsbezYsfL29tYbb7yhFStWKDg4WMOHD692DJZE25KEb968WRcvXtQ111yjPn36SJImT56soUOHqmnTpgoICFDbtm0lSV999ZUuXbpU5bYLCgr09ttvS5LatWunwMBARUREKDw8XAUFBXr33XedrvOaa64xfs7JybG7zOXLlyVJoaGh6tevnx555BGtXLlSr7/+uiRp5syZxlUGcXFxmjlzpiZMmGBTR0REhD788EPNmzdP48ePrzAmLy8vrVq1SgsWLDBuNfj222/17bffOtSnm2++2eYPLuPHj9fMmTON9VPaG2+8IUkaPHiwXnvtNf35z3821rO9JHzOnDlKSUnR73//e0nS0aNHdfbsWYdiAwB4Nu4JBwB4lB49emjlypW6dOmSXnrpJb399tuaOHGitm3bpiZNmtgs27JlSw0aNEj//Oc/JUmPPfaYGjZsWO0YBg8erD/+8Y86fPiw9u7da1wS/eCDD8pkMqmoqEijRo2ye4my2WzW6dOn1aJFC4faKi4utvl89uxZXbx4UZK0a9cu7dq1y2Z+Zmam0/05cuSI8XN4eLjdZWJjYzVu3Dh9+OGHevzxxyVJDRs21IMPPmgkopXp0qWLAgICHFq2SZMmCgsLkySbP7KcOHFCN998c5nli4qKHKq3PJZxi4mJMaZZ/nBiPeYWljPq1rc35Ofnl/kOAgCuPpwJBwB4pICAAHXu3FnSlbO0lvuRSxs3bpykK5en19Trtho2bGhcAr948WLt27fPuPxdkv773/8aCfjixYt14MABLVq0yChf3iXV1n8gyM3NlVT2fvcmTZoYT3ufMWOGDh48aPzbu3evFi5c6FRffvnlFy1evNho33KffWlFRUV68skntWvXLu3YsUNvvvmmLl++rLfeeks//PCDpCtPXJekkpISu3X4+/s7HNfZs2d16tQpSTLql6SoqCgjVqn8cbKORyp/zEvXe+jQIWOapV3rMbfw8blynsNkMjnQGwDA1YQz4QAAj2K5J/zy5cv69NNPJUlNmzbV9ddfb3f5Dh06aNWqVfL391ezZs107ty5GonjwQcf1Lvvvmucib7jjjuMs6BNmzaVj4+PioqKtHz5cv3rX/8q915ra9ddd52CgoKUl5enefPmqVOnTnr//fdtlrH8MeH111/XwoUL9fXXX6tp06Y6ceKE9u7dq9mzZ1f6irUjR47o2WefVU5Ojr788kvl5ubK19dXCxYsUNOmTe2W2b9/v6ZOnarOnTsrNDRU2dnZKi4ulpeXlxo1aiRJatGihY4ePar169fr/Pnzat++fZVf91ZSUqKRI0eqW7du+vzzzyVdWZc33XSTJOmmm27S7t279fbbb+vUqVP6+OOPy9RhfbXBnDlzdN111+mBBx6wezb+4Ycf1pw5c7Rx40bl5+fLz89PW7ZsMeYBAOAozoQDADyK5Z7wtWvXytvbWwMGDNBf//rXCi9z7tatm5G81ZQ2bdqoe/fuxueEhATj5/DwcKWkpKhly5Y6cOCADh8+rEmTJlVaZ2BgoF544QW1bt1ahw4d0rfffms8bd3alClT9Mc//lHt27fXnj179I9//EPHjh3THXfcoU6dOlXaTnZ2tlatWqW0tDSFhobqgQce0Pr1643Xk9nTvHlztWvXTunp6frggw+0e/du3XjjjXrppZeMd21PnjxZMTEx+vnnn7Vy5UqH/vBQnsjISI0ZM0Y7duzQ5cuXddttt2nZsmXy8rpyaPOHP/xBnTt3Vm5urrZt26akpCS7dTzxxBMKCwvTjh07tGLFCh07dsxueyNGjNDSpUvVpUsX7du3Tzt27NCNN96ohQsX6tFHH61yPwAAVx+T2dHHiAIAAAAAgGrhcnQAAJz073//Wxs3brQ7b8iQIXYfDAYAACCRhAMA4LT//ve/WrFihd157dq1IwkHAADl4nJ0AAAAAABchAezAQAAAADgIh59OXpRUZFyc3Pl7+9vPC0VAAAAAIDaUlJSosuXLyskJEQ+PmVTbo9OwnNzc3X48GF3hwEAAAAAuMq0bt1aoaGhZaZ7dBLu7+8v6UrnGzRo4OZoUJuKi4t16NAhtW3bVt7e3u4OB6jz2GYAx7G9AI5jewGkixcv6vDhw0Y+WppHJ+GWS9AbNGighg0bujka1Kbi4mJJUsOGDfmFDziAbQZwHNsL4Di2F+D/lHdLNDdKAwAAAADgIiThAAAAAAC4CEk4AAAAAAAuQhIOAAAAAICLkIQDAAAAAOAiHv10dKCumD9/vrKystwdhiQpNzdXkhQSEuLmSCoWGRmpWbNmuTsMAAAAoEaRhAMukJWVpWPHT8jLN8jdoaikME+SlHfJzYFUwBIjAAAA4GlIwgEX8fINUuCv4t0dhvJ/3CRJdSKW8lhiBAAAADwN94QDAAAAAOAiJOEAAAAAALgISTgAAAAAAC5CEg4AAAAAgIuQhAMAAAAA4CIk4QAAAAAAuAhJOAAAAAAALkISDgAAAACAi5CEAwAAAADgIiThAAAAAAC4CEk4AAAAAAAuQhIOAAAAAICLkIQDAAAAAOAiJOEAAAAAALgISTgAAAAAAC5CEg4AAAAAgIuQhNdxa9as0Zo1a9wdBgA4jd9fAAAAZZGE13FpaWlKS0tzdxgA4DR+fwEAAJRFEg4AAAAAgIuQhAMAAAAA4CIk4QAAAAAAuAhJOAAAAAAALkISDgAAAACAi5CEAwAAAADgIiThAAAAAAC4CEk4AAAAAAAuQhIOAAAAAICLkIQDAAAAAOAiJOEAAAAAALgISTgAAAAAAC5CEg4AAAAAgIv4uDsASOnp6Zo7d66Kiork7e2t4OBgnT171pjv4+OjzMxMRUVFuTFKAHDOsWPHJElDhgxxcyRwJx8fHxUVFbk7jAqZTCaZzWaHpzuia9eu2rt3b4XLBAUFKS8vr9z5HTp00A8//KDg4GCdPn1aZrPZZjz9/PxUUFAgLy8vRUREKCsryyhrvZy3t7fmzJmjt956SxcuXNCZM2cUGBio3NxcjRkzRjt37tTUqVMlSZMnT9aFCxeMOsLCwuTt7a3i4mKdOnVKxcXFMpvNCg4O1rBhw/TOO+8oIiJCc+fOVU5OjubNm6fi4mKVlJRowIAB2rJliyTJy8tLkZGR6t+/v9555x2NGTNGH330kU6dOmXEPHbsWPXq1Uvz589Xdna2QkND1aBBAw0dOlRLly6VJI0fP16bNm3SjTfeqHXr1iksLEwPPfSQXn31VTVp0kTFxcU6ffq07rnnHm3atEmJiYn64IMPlJOTo8cff1wbNmyQ2WzWuHHjtHLlSk2dOlWffPKJ1q1bZ8QRFhamSZMm6S9/+YsRR2Fhoc6cOWMzXhkZGXr55ZcVFhamoKAgzZgxQ1FRUcrMzFRKSoqKiop06dIlnT59WpMmTVK7du2UkpIik8mk6dOnG8d1mZmZWrRokeLj47VkyRJjvTVp0kQNGzaUn5+fhg4dqtdee02JiYnatGmTpk6dWqb8qFGjjJgjIiL02GOPafny5TKZTHr44YeN/to7nly7dq3efvttjR07Vvfee69NvZbvxvPPP6+CggL5+fnp4YcfNuq29MWy/MiRI7Vs2TI1aNDAGBNHWfelvHgzMzM1b948/fzzz5o1a5bCw8ONcS2vn6X7Ylk/Pj4+mjFjhiQZ8+3Fa13eXjyl59kbO7PZ7FBbztTtytwgPT1dCxYs0MyZMxUeHu7UeFQmMzPTZozKWweVLVOfmMxV3btU06hRo7R3717985//VHR0tCTpxx9/VHx8vA4ePFgjbVy4cEEZGRlq166dGjZsWCN11oZx48YpJyenwmX69u2radOmuSii+qe4uFjp6enq1KmTvL293R1OGY8//rhOZOcq8Ffx7g5F+T9ukqQ6EUt58n/cpBYRIXr11VfdHYrHcsU2Q/IN1B3h4eF2jzW8vLxUUlKivn37SpK2bdvmcJ2WstKV45SMjIxKj2csZazLWs+Li4srE4O/v78uX75c5md780srr6xlPPr27Wu3z46M15dffmnTruVYbeHChXb7cMsttxjTrY/rLMs70g/L//bKl47Z+rN1f+0dTw4dOtRYLxs2bLCp1953w7ru0v1u1qyZfv755zL9dETpvtgrbz2+4eHhateunc1ne+Uq6ov1tPLitS5fXjz21knp9hxpy5m6XZkbWPIV6zF3dDwqY71OK1sHFS1Tl1SWh7r1cvRGjRrplVdecWcIbpeenl7pDkuS0tLSlJmZ6YKIAKD6SMCBuqW8Yw1LIpyWluZUAm5dVrqSVDhyPGMpUzoBt0yzF4N1YmovSS0vca2orCXW8vpc2XilpqaWaTc1NVXp6elKTU21G4d1W5bjuszMTKWlpTncD8v/9sqXjtn6s+Vne8eTa9eutVkva9eutak3NTXV+Nle3WlpaUpPTzeWsSTg5bVXHnt9KV0+MzPTZhxzcnLKfC5dzrpee9/z1NRUY53Zi7d0+dLxlJ5X0dhV1lZl7VYUS22yzldycnKcGo/KWJeRroxRReugvGXqG7dejv7QQw/prbfe0oEDB9S+fXubeXl5eXruuee0bds2eXt764477tDUqVPl5+fnpmhrx+LFix1arqSkRJMnT1ZoaGgtR1R/Xbp0SQEBAe4Ow66srCyZzXXvDH1dZS6+rKysLD3++OPuDsWj1eVtBoBruenCyHqrvPFy9LjObDZr9erVkmT3qoDKeHl5Vam8pZz1WcQVK1bYLLNixQr99NNPNvVWVL/ZbNbixYvtxmHppyNnLVevXl2mjtLxWvpcGety1vXaW29ms1kmk8lue6XjshdP6XmWeuyNXWVtlTce9uqurHxNKv29tvTJkfGoLL7Vq1eXWS/21kFly9Q3bj0THhYWptGjR+vFF18sM+/ZZ59Vdna2Nm/erLVr12rfvn3G/UCexJG/GltY7tECAACoSSTh1Wc2m5WTk+PQWJrNZm3fvl3bt2+v0jMTioqKqlTeUs5a6cS5pKTEpt7K+mPpt704LP10hL2+lI7X0bqsyznSF8t0e+NjXd5ePKXnVdZeRW1V1m5FsdSm8vIVR8ajMtu3b7cZJ3vfGUeWqW/c/mC2cePGqX///vrqq6/UtGlTSVfuVfzoo4/0wQcfKDg4WJKUnJysWbNmafLkye4Mt8aVd89RaSaTSX369KnXf/GpTfXlnnA4xuTtr0juCa9Vtb3NcDk6UL9U5yF0uMJkMhn3Q1c2liaTSbGxsZKkHTt2OJ2I+/j4qHfv3k6Xty5nYe/sc2xsrFFvZd8NS7/PnDlTJg7rflbGus3y4o2NjXXotgnrco70xTLd3vhYl7cXj715FbVXUVuOtFteLLWpvHzF0fGoSGxsrFJTU41xsvedcWSZ+sbtrygLDg7WI488okWLFhnTzp49q8LCQrVo0cKY1qJFC4d+qdU3ycnJDi1nMpmUkJBQy9EAAICrkeUSWTimvPFy9rguISHB6UvRpStnq6tS3lLO2ujRo8t8Ll2vl1f5KYPJZFJycrLdOJw5frXXl9LxOlqXdTnreu2tN+tp9sbHury9eErPq2jsKmursnYriqU2lf5eW/rkyHhUJiEhocx6sbcOKlumvnF7Ei5deVL6iRMn9MUXX0i68koGX19fnThxwljmxIkTatasmcftJDp16qTw8PBKl4uLi6v3j+IHcPXYuHGju0MAYKW8Yw3LwXRcXJzx5GZHWScXffv2deh4xlLGXlLn5eVlNwZ/f3+7P1c0rbKylljL63Nl49WnT58y7fbp00edOnVSnz597MZh3ZbluC4qKkpxcXEO98Pyv73ypWO2/mz52d7x5L333muzXu69916bevv06WP8bK/uuLg4derUyVimWbNmZfrpCHt9KV0+KirKZhzDw8PLfC5dzrpee9/zPn36GOvMXryly5eOp/S8isausrYqa7eiWGqTdb4SHh7u1HhUxrqMdGWMKloH5S1T39SJJDwgIEDjx4/X66+/LunK+yzvvPNOLVq0SOfOndOpU6e0dOlSDR061M2R1o7k5GT5+Fy5M8Db21tNmjSxme/j41Pv/9oDALg6WfZvdVl5f+Cvzh/+u3btWukyQUFBFc7v0KGD/Pz8FBYWZsRiPZ6Wh9Va3sFtzXo5b29vJScnKzo6WhEREfL19VXjxo1lMpk0evRotW3b1jjLZv0qHR8fHzVv3lwtWrRQ8+bN5ePjY8QRHBys0aNHy2QyqXnz5kpISFBycrJ8fX2NhG7AgAFGXV5eXmrRooVRZvTo0QoLC7OJ2XIGtmXLlvL19VXz5s0VHR2tpKQk+fr6ytfXV0lJSWrbtq2GDRsm6crzhZKSkuTn56eIiAhjrIYNG6aAgAAlJSWpZcuW8vPzU1JSkqKjo9W6dWslJycb/bbUZREWFqbk5GSbOEJDQ8uMV1JSkrF869atbc68tm7dWi1btjTiSUpKMqZHR0eXOXvYtm1bJSUl2ay3Jk2aqEWLFsYYWPpjab90eeuYW7ZsqeTkZKM96/7aYzkbbn1W3FKv5bsRHR1txGNdt3W/27ZtqwkTJigiIsJmTBxl3Zfy4k1ISFCLFi3k5+en5ORkm3Etr1zpvljWjyVG6/kVxVVePOWtE+uxc7QtZ+p2peTkZAUEBBhj7sx4VKb0GFV1mfqkSu8Jz87OVlZWljp16lTlhkeNGqX4+HiNGDFC0pWb9+Pj43XkyBEdPHhQ58+fN56O7uXlpUGDBunJJ5+s8K+EpdWX94RXxPJ0aO6NrVh9uSe8Lrybm/eEQ3LNNsPvL3iKur6PAeoStheg8jzUqT9PnzlzRtOmTdPOnTsVEBCg9PR0bdq0SXv37tWsWbOcCmzlypW2gfj4aMuWLcbnRo0aKSUlxak6AQAAAACoy5y6HH3BggVq1qyZtm3bJl9fX0lSz5496/0j4gEAAAAAcAWnzoR/+eWX2rp1qxo0aGDcExQaGqrTp0/XSnAAAAAAAHgSp86Ee3t7l3maZV5enho1alSjQQEAAAAA4ImcSsK7d++uP//5zzbTli9frp49e9ZoUAAAAAAAeCKnLkd/6qmnNHbsWH300UfKz8/XgAEDVFRUpPfee6+24gMAAAAAwGM4lYRHRERow4YN2rZtmw4fPqxmzZqpf//+CgwMrK34AAAAAADwGE4l4ZLk5+en/v37S7ry/jPe/wcAAAAAgGOcuif8pZde0jfffCNJ2rlzp2655Rb17NlTO3bsqJXgAAAAAADwJE4l4Rs2bFB0dLQkadmyZZoyZYqefvppvfzyy7URGwAAAAAAHsWpJPz8+fMKDg7W5cuXdeDAAY0cOVLDhw/X4cOHayk8AAAAAAA8h1P3hAcFBSk7O1sHDx5U+/bt5evrq8uXL6ukpKS24gMAAAAAwGM4lYQPGzZMw4cPV0FBgZ588klJ0rfffqvWrVvXRmwAAAAAAHgUp5LwSZMmqXv37vL19VX37t0lXXlauiUhR82Li4tzdwgAUCX8/gIAACjL6VeU/frXv7b5fPPNN9dYMChrxIgR7g4BAKqE318AAABlOZ2E79ixQ9u3b9eZM2dkNpuN6S+88EKNBgYAAAAAgKdx6unoq1atUmJioo4cOaJNmzYpLy9Pn3zyiYqLi2srPgAAAAAAPIZTZ8LfffddLVmyRH379lX37t316quvavPmzdq9e3dtxQcAAAAAgMdw6kx4dna2+vbtK0nGpegDBgzQp59+WvORAQAAAADgYZxKwoOCgpSXlydJCg0N1ZEjR5SXl6eLFy/WSnAAAAAAAHgSpy5H79y5sz799FPdc8896tevnxITE+Xn52e8rgwAAAAAAJTPqST8T3/6k3EZ+uTJk9W4cWPl5eXp4YcfrpXgAAAAAADwJE4l4X5+fjY/P/bYYzUeEAAAAAAAnsqpe8Il6aOPPtJvf/tbDRkyRJL09ddfa+vWrTUeGAAAAAAAnsapJHzlypVatGiRevbsqczMTElSSEiI3nzzzVoJDgAAAAAAT+JUEv7uu+/qjTfeUGJiory8rhS97rrr9NNPP9VKcAAAAAAAeBKnkvCzZ8/q+uuvlySZTKZaCQgAAAAAAE/lVBLeunVr7d6922banj17dN1119VoUAAAAAAAeCKnno4+fvx4TZgwQQkJCSosLNSrr76qd999Vy+88EJtxQcAAAAAgMdw6kx43759tXjxYh06dEiRkZH68ssvNW/ePMXGxtZWfAAAAAAAeAynzoRL0i233KJbbrmlNmIBPFpJYZ7yf9zk7jBUUpgnSXUilvJciTHE3WEAAAAANc6pJHzv3r1q3ry5WrRooTNnziglJUU+Pj566qmn1KRJk9qKEaj3IiMj3R2CITf3yv8hIXU5yQ2pU2MGAAAA1BSnkvA5c+Zo8eLFkqSFCxcqOztbfn5+evbZZ7Vo0aJaCRDwBLNmzXJ3CAAAAADqAKeS8KysLLVu3VqStG3bNn344Ydq2LChBgwYUBuxAQAAAADgUZxKwr29vVVYWKgjR46oUaNGCg8Pl9ls1sWLF2srPgAAAAAAPIZTSXjHjh01f/58/fzzz7r11lslScePH+d+cAAAAAAAHODUK8rmzp2rCxcuqHHjxkpKSpIkffvttxo8eHCtBAcAAAAAgCdx6kx4ZGSkFi5caDMtPj5e8fHxNRoUAAAAAACeqNIk/KuvvlL37t0lSbt27Sp3uV69etVcVAAAAAAAeKBKk/BHH31U+/fvlyT99re/tbuMyWRSRkZGzUYGAAAAAICHqTQJtyTgkvT999/XajAAAAAAAHgypx7MBgAAAAAAqs7hB7NlZWXplVde0Y4dO/TLL7+ocePGio2NVXJysqKiomozRgAAAAAAPIJDSfjZs2f1wAMPqEGDBrrnnnsUGRmprKwsbdmyRQ888IA2bNigpk2b1nasAAAAAADUaw4l4W+//bbatm2rpUuXyt/f35g+fvx4TZw4UW+//bamTJlSa0ECAAAAAOAJHLonPC0tTRMnTrRJwCXJ399f48eP1/bt22slOAAAAAAAPIlDSfiJEyd044032p3XoUMHHT9+vEaDAgAAAADAEzmUhBcVFcnLy/6i3t7eKi4urtGgAAAAAADwRA7dE242m41/5c0DAAAAAAAVcygJv3Dhgtq3b1/bsQD4/+bPn6+srCx3h6Hc3FxJUkhIiJsjcVxkZKRmzZrl7jAAAAAAuxxKwlesWFHbcQCwkpWVpczjx9S0gbdb48i/eOVWE/+ifLfG4agzF7k1BgAAAHWbQ0l4jx49JEknT55U8+bNy8w/efJkzUYFQE0beGt81zC3xrB07ylJcnscjrLECwAAANRVDj2YzSI+Pt7u9LvuuqtGggEAAAAAwJM5lYTbewBbSUlJjQUDAAAAAIAnc+hy9KeeekqSVFhYaPxscfToUV133XU1HxkAAAAAAB7GoSTc29vb7s8mk0k9e/bU8OHDaz4yAAAAAAA8jENJeEpKisxms6Kjo/XII4/Iy8upq9gBAAAAAICcuCfcbDZryZIlKi7mFUAAAAAAAFSFw0m4l5eXIiMjdeHChdqMBwAAAAAAj+XUdeWTJk3SM888oyNHjqioqEglJSXGPwAAAAAAUDGH7gm3mDJliiRp69atZeZlZGTUTEQAAAAAAHgop5LwFStW1FYcAAAAAAB4PKeS8B49etRWHAAAAAAAeDynknBJKioq0k8//aTTp0/LbDYb03v16lWjgQEAAAAA4GmcSsK///57Pf7448rMzJTJZJLZbJbJZJLEPeEAAAAAAFTGqaejp6SkKDY2Vrt371ZQUJD27Nmju+++Wy+//HIthQcAAAAAgOdwKgn//vvvNX36dIWEhMhsNis4OFi///3v9dJLL9VWfAAAAAAAeAynknBJ8vf3lyQ1bNhQeXl5CgkJUXZ2do0Hhqpbs2aN1qxZ4+4wAKDa+H0GAAA8jVNJeHR0tL799ltJUvv27bV48WItWbJEkZGRtRIcqiYtLU1paWnuDgMAqo3fZwAAwNM49WC2KVOmGE9Ef+KJJ/TEE08oLy9Pzz33XK0EBwAAAACAJ6nye8JvuOEGffzxxzUeEAAAAAAAnsrpe8Lz8vK0ceNGvfHGG5KkU6dO6eeff67xwAAAAAAA8DROJeEZGRkaMGCAlixZoldffVWSdODAAc2fP79WggMAAAAAwJM4lYQ/99xzGj9+vD755BP5+Fy5kr1Lly5KT0+vjdgAAAAAAPAoTiXhhw4d0ogRIyRJJpNJkhQUFKT8/PyajwwAAAAAAA/jVBIeHBysU6dO2UzLzMxUWFhYjQYFAAAAAIAncioJv+OOOzR9+nQdPnxYknTy5EnNnz9fQ4YMqY3YAAAAAADwKE4l4RMmTFB4eLgGDRqkc+fO6bbbbpO3t7ceffTR2ooPAAAAAACP4dR7wv38/PT8889r+vTpOnr0qMLCwhQVFVVbsQEAAAAA4FEcSsKfeuqpSpd54YUXqh0MAAAAAACezKHL0b29vW3+bd68ucw0AAAAAABQMYfOhKekpNh83rp1a5lpAAAAAACgYk49mM3C8o5wAAAAAADgOKcezFYdiYmJCg8P17x584xp3333ncaMGaN169bp2muvdVUodVZmZqYWLVqkUaNG6S9/+YtycnI0a9YsSdKCBQuUmJioTZs2aerUqZKkRYsWKT4+Xq+++qqaNWum2bNn86A8AB4lNzdX586dc8mrML28vFRSUlKrbQQEBOjSpUtOlfHx8ZHZbJbJZJKXl5cKCgrK1BUQECBJZer29vZWcXGx8dlkMslsNkuSWrVqpTNnzigvL09du3bViRMndPLkSWNZLy8vLVu2TFFRUUpPT9e8efNkNpvVuHFj5ebmKiQkROfOnTP2U5b9e2RkpI4ePSpJGjt2rLZu3ars7GyFhIQoNzdXQUFBOnv2rNFObGysdu3apeLiYg0bNkzfffedWrdurS1btig4OFihoaEaOnSoli5dKkkaP368Nm3apPj4eL322mt68MEHtWrVKpWUlMjLy0uzZ8+WJM2fP19NmjRRw4YN9fDDD2vJkiXKycnRpEmTdPvtt0uS0tPTtWDBAs2cOVOnT5/WK6+8ojFjxmjnzp2aOnWq0fcFCxaoc+fOmjt3riIiIjR37lyb/W16errmz5+v4OBgY0w6depkzM/MzNTzzz+vwsJCmc1m5eXlKTc3VwMGDNDhw4c1atQorVy50ti/p6SkqKioyFj/M2bMkCTjGGH58uUqKioy5pWOxdKn8PBwLVq0yKj3+eefl9ls1rhx47R8+XKZTCZNnz7dKG9Zz5I0e/Zsmz5UxHL8YhmzyqaXLpuSklImFmfqcDTGitqprKy9GKzH2pGxqk5fqlq2OuumOnGcPn1aTz31VLXXm7Os45NUI98doDaYzJa9sRN69OihPXv2OFUmJydHQ4YM0csvv6xevXqpsLBQ9957r+677z6NHj3a2RAccuHCBWVkZKhdu3Zq2LBhrbRRkxYuXKht27YpPDxcOTk5kqTw8HBJV8bP399fly9fVt++fSVJ27ZtM6ZJUt++fTVt2jQ9/vjjkqRXX33VDb1wj+LiYqWnp6tTp04e8YyCxx9/XJdOZ2p81zC3xrF07ylJcnscjlq695QCQqOuqu9+VdWXbcYVyTfKZ9mvjBs3ztgvlWa9nyqtpv6wYb2vs/xs+b90G/bisd6v+vv764MPPpAko1/h4eHKzc21qa+ivlvmWZReJjw8XMuXLzc+W/bv5bHEZ71/L92eZbp1XyqKJTw8XO3atdO2bdvK1Gtdh3V5636U7kNFLP0rHUt50+2VtdcXR+twJsby2nGkbEVj7chYVacvVS1bnXVT1TiKi4v1zDPP6Lvvvqv2enOWdXySauS7A1RFZXmoQ5ejv/LKKzb/Ll26VGZaZcLDw/X0009r5syZys/P11/+8hcFBwerU6dOGjlypLp376477rhDW7ZsMcqkpqZqyJAh6ty5s3r37q0//vGPTnS9fsnMzFRaWpok2wOHnJwc47PlACQtLU2pqak206Qrv2gyMzNdFTIA1Kq1a9e6O4Sr3rZt2/TZZ5+Vm4BLtvup0mrqygLrfZ3lZ8v/pduwF4/158uXL+uzzz5Tenq6MT0nJ6dMfWlpaeX2PTU11djfWtdj3V56erok2/17eSzl09LS7Cbr27Zts3uMUFEsOTk5xrFCamqqTQzWdaSlpSkzM7NMP6z7UBHr/lnqqmh66bKWGO0t50gdjqisncrK2ouh9FhXNlbV6UtVy1Zn3VQnjqysLP3nP/9xuv7qso7P+jvvyhgARzl0OfrXX39t87ljx4420xy9R3zo0KH6+OOPNXXqVO3du1evvfaafve732nBggW67bbb9N133+l3v/udfvWrX+lXv/qVnn76aU2bNk1333238vPz9d///teJrtUvq1evdviMQUUXL6xevVrnzp1Tfn6+cUb8anHp0iXjksz6LisrS36m2r0s1hPlF5bobFbWVffdr6q6vs0cO3bM3SFA0rJly9wdQo1btmyZQkJCKlzGcjm+PWazWatXr9a0adO0ePFiu8ssXrxYy5cv1+rVqyvcb5eutyrzyovFukx5xxeWvmRkZJSZZ+lDRayPX7y8vIxYypteuqy9WCzLOVKHIyprpyr9Kz3WlY1VdfpS1bLVWTfViWP16tXGrS/VWW/OKn0sbfn+uzIGwFEOnQlfuXJlhf9WrFjhcIPz5s3T7t27lZiYqH379qlXr176zW9+I29vb3Xs2FG/+c1vtHnzZkmSr6+vjh49qjNnzigwMFAdO3asWi/rge3btxv3f1XGbDaXuzPevn17TYYFALjKWZ+F9hSXL1+u8Oy+JBUVFVXYd8v+trx6LNO3b99eq0m42WyuNJbK6t2+fbvdspWNkWR7/FJUVGTEUt700mWtY7Pui6N1OKKydioray+Giq62cKae6sRQ1XI1XV9pO3fuNBLh6qw3Z1nHZ32s7MoYAEe57MFsFs2aNVOTJk3Upk0bff755/rss8/UrVs3Y35xcbHuuusuSdKSJUu0bNkyDRw4UK1atdKECRN02223uTpkl4iNjdWOHTscSsQtVx7Y26nGxsbqf//7n4KDg6+q+2Lry/2tjrLcEw7nBPp6KTQ08qr67ldVfdhmhg4dWusPSkPlrO/H9hT+/v4KCQmpMHHy8fGRt7d3uX2PjY2VpDL3aFtY7k2PjY1VamqqQ4m49YPzHJ1nMpkqjaWyemNjY5WRkVGmrKUPFbE+fvHx8VHv3r0rnF66rPXYWPfF0TocUVk7Velf6bGubKyq05eqlq3OuqlOHL/+9a+1Y8cOlZSUVGu9Ocs6PutjZVfGADiqSq8oqylRUVG688479fXXXxv/9u/fr7lz50qSOnTooCVLlujLL7/U2LFjNXHiRF24cMGdIdeahIQEhw82K7r8PyEhoaZCAgC3qq2HdsI5SUlJ7g6hxiUlJSk5ObnCZUpKSsrtu8lkMva35dVjmZ6QkODwbXsVLefIvr90LNZlvLzsH/JZ+mKvH5WNkaVty/FLSUmJEUt50+3FXTqWyup2VmXtVFbWXgylx6aysapOX6patjrrpjpxJCQkGH/wqM56c1bpY2nL99+VMQCOcmsSftdddyk1NVWff/65ioqKVFBQoG+++UY//vijCgoKtH79euXm5srb21vBwcEymUx19oxNdUVFRSkuLk6S7V9Tw8PDjc/+/v6SpLi4OPXp08dmmnTlaZ+8ggGAp7j33nvdHcJVr2/fvrr99tsrPMtnvZ8qrbzEz1nW+zrLz5b/S7dhLx7rz/7+/rr99tvVqVMnY3p4eHiZ+uLi4srte58+fYz9rXU91u1ZXlllvX8vj6V8XFyc8VRna3379rV7jFBRLOHh4caxQp8+fWxisK4jLi5OUVFRZfph3YeKWPfPUldF00uXtcRobzlH6nBEZe1UVtZeDKXHurKxqk5fqlq2OuumOnFERkaqQ4cOTtdfXdbxWX/nXRkD4Ci3JuHNmzfX66+/rnfeeUe9e/dWXFycFi1aZLwD9aOPPlL//v3VuXNnLVy4UC+//LLNjtjTJCQkqG3btkpOTlbLli3l5+en5ORkJScnKyAgQElJSWrbtq0SEhKMZZOSkuTn56cWLVrwVz4AHic4ONhlbdVUwliRqjwIz3JZtI+Pj/z8/OzWFRAQYLfu0n+4tj4z2qpVKwUFBUmSunbtqubNm9ss6+XlZXPWz9fXVz4+PgoLC5Ovr6/CwsJs9lO+vr7y9fVVq1atjDpGjx6tli1bGsv7+vqqSZMmNu3ExsYacQ4bNkxt27bVgAEDJF1Z/9HR0UpKSjLqt+wLk5KSFBAQoNGjR8vX11fe3t7y9fU14vHz81NERISio6OVnJysiIgImUwmm7Pblv1rcnKykpKSZDKZNHr0aGNfa71Mr169ZDKZ1Lx58zL7W0t71mNiLSEhQdHR0WrZsqVatGhhPBRuwIABxn7fev/eunVrtWzZUi1btlTr1q1t9vvJycnGfMu80rFY+mQpYykfHR2t1q1bG3VER0fblLdej46cBbfun/WYVTa99DL2YnGmDkdjrKidysrai8F6rKtTT22Wrc66qU4ct912W42sN2eV/s67IwbAEVV6T3h9Ud/eE15TeE94/b9agveEVw3vCXdcfdlmrsbfZ6h76sv2AtQFbC9ADb0nHAAAAAAAVB9JOAAAAAAALkISDgAAAACAi5CEAwAAAADgIiThAAAAAAC4CEk4AAAAAAAuQhIOAAAAAICLkIQDAAAAAOAiJOEAAAAAALgISTgAAAAAAC5CEg4AAAAAgIuQhAMAAAAA4CI+7g4ANS8uLs7dIQBAjeD3GQAA8DQk4R5oxIgR7g4BAGoEv88AAICn4XJ0AAAAAABchCQcAAAAAAAXIQkHAAAAAMBFSMIBAAAAAHARknAAAAAAAFyEJBwAAAAAABchCQcAAAAAwEVIwgEAAAAAcBGScAAAAAAAXIQkHAAAAAAAFyEJBwAAAADARUjCAQAAAABwEZJwAAAAAABchCQcAAAAAAAXIQkHAAAAAMBFSMIBAAAAAHARH3cHAMC+MxeLtXTvKbfHIMntcTjqzMViRbk7CAAAAKACJOFAHRQZGenuECRJgbm5kqSAkBA3R+KYKNWdsQMAAADsIQkH6qBZs2a5OwQAAAAAtYB7wgEAAAAAcBGScAAAAAAAXIQkHAAAAAAAFyEJBwAAAADARUjCAQAAAABwEZJwAAAAAABcxKNfUVZSUiJJunjxopsjQW0rLi6WJF24cEHe3t5ujgao+9hmAMexvQCOY3sB/i//tOSjpZnMZrPZlQG50unTp3X48GF3hwEAAAAAuMq0bt1aoaGhZaZ7dBJeVFSk3Nxc+fv7y8uLK+8BAAAAALWrpKREly9fVkhIiHx8yl587tFJOAAAAAAAdQmnhwEAAAAAcBGScAAAAAAAXIQkHAAAAAAAFyEJBwAAAADARUjCAQAAAABwEZJwAAAAAABchCQcAAAAAAAXIQkHAAAAAMBFSMIBAAAAAHARknDUOwUFBZo5c6b69eunzp07684779TGjRuN+YcOHdLw4cPVsWNHxcfHa9euXW6MFqgbzpw5o549e2r48OHGNLYVwL5PPvlEgwcPVqdOnXTbbbdpy5YtkthmgNKOHz+uRx99VD169FCvXr301FNPKS8vT5KUlZWlhx9+WJ06dVK/fv30z3/+083RAnUHSTjqnaKiIoWHh+udd97Rvn37NHfuXM2ZM0f79+9XYWGhEhMT1a9fP3311VeaMGGCJkyYoNOnT7s7bMCt/vSnP+n66683PrOtAPbt2rVLzz33nObOnat9+/bpgw8+ULt27dhmADtmz56tkJAQpaam6uOPP9bJkyf1yiuvSJKmTJmiVq1a6csvv1RKSoqeeeYZHTp0yM0RA3UDSTjqnYYNG2rSpEm65pprZDKZ1K1bN3Xp0kX79+/Xnj17dOnSJT366KPy8/NTfHy82rRpo48//tjdYQNus2fPHh0+fFjDhg2zmca2ApT15z//WePHj1fXrl3l5eWl0NBQXXPNNWwzgB3Hjx/X4MGDFRAQoJCQEA0cOFCHDh3S4cOH9e9//1uTJ09WQECAevbsqX79+unDDz90d8hAnUASjnrvwoUL+u6779SmTRv98MMPatu2rby8/u+r3a5dO/7yiqtWQUGB5s+frz/84Q8ymUzGdLYVoKzi4mJ9++23+uWXXzRw4EDFxsZqxowZOn/+PNsMYMeYMWO0ceNG5efn68yZM/r444/Vp08f/fDDD4qKilJISIixbLt27fTDDz+4MVqg7iAJR71WUlKi6dOn66abblJsbKzy8/MVHBxss0xwcLDy8/PdFCHgXq+//rp69eqlG264wWY62wpQ1qlTp1RYWKhNmzbpnXfe0aZNm3Tq1Ck999xzbDOAHT169ND//vc/devWTb169ZKfn59GjRql/Px8NWrUyGZZthfg/5CEo94ym836wx/+oJycHL300ksymUwKDAzU+fPnbZY7f/68AgMD3RQl4D5HjhzRhx9+qIkTJ5aZx7YClNWgQQNJ0siRI9W8eXMFBwcrMTFR//rXv9hmgFKKi4v1yCOP6NZbb1V6err27t2r8PBwPfnkkwoMDDQe0GbB9gL8H5Jw1Etms1lz585VRkaG3nzzTeOXeps2bXTo0CGVlJQYy2ZkZKht27buChVwm7179+rUqVMaOHCgevfurQULFujAgQPq3bu3WrZsybYClBIcHKzIyEibWzcs2L8AtnJzc3Xy5Ek99NBD8vf3V1BQkEaMGKHU1FS1adNGmZmZOnfunLF8RkaG2rRp48aIgbqDJBz10rx58/TNN99o+fLlCgoKMqb36NFD/v7+evPNN1VQUKDNmzfr0KFDGjRokBujBdwjPj5eW7du1fr167V+/XpNnDhRbdu21fr169W3b1+2FcCO++67T6tWrdLPP/+svLw8vfHGG+rXrx/7F6CUpk2b6pprrtHq1atVUFCgCxcu6P3331dMTIxat26tG2+8US+//LIuXbqkr776Sp9//rnuueced4cN1Akms9lsdncQgDNOnDihfv36yc/PTz4+Psb0xx57TImJiTp48KCeeeYZHTx4UC1atNDs2bPVq1cvN0YM1A3r1q3Te++9p/fff1+S2FYAO4qKivT888/rH//4h7y9vXXrrbdq5syZCgoKYpsBSvn++++VkpKijIwMmUwmdezYUc8884xatWqlrKwsPf3009q3b59CQ0M1ZcoUDR482N0hA3UCSTgAAAAAAC7C5egAAAAAALgISTgAAAAAAC5CEg4AAAAAgIuQhAMAAAAA4CIk4QAAAAAAuAhJOAAAAAAALkISDgAAAACAi5CEAwCAGrNu3Tr16dPH3WEAAFBnkYQDAFAHjRo1SjfeeKM6d+6szp07Ky4uTvPmzdOlS5ckSdOnT1dMTIwWLVpkU66kpES33367YmJitHPnTknS8ePHFRMToyNHjri8HwAAwBZJOAAAddS4ceO0f/9+7d+/X2vWrNGuXbu0dOlSY/7111+vtWvXqrCw0JiWlpamBg0auCNcAADgAJJwAADqgZYtWyouLk4HDx40prVr105RUVH69NNPjWlr1qzRAw88UKU2fvrpJ7Vr104nTpywmZ6YmKhnn31WkrR582YNGzZM3bt3V8+ePZWYmKhjx46VW+eoUaP00ksv2Uzr16+f/v73vxuff/zxRz322GP69a9/rbi4OM2ZM0cXLlyoUh8AAKjrSMIBAKgHjh49qtTUVHXr1s1m+ogRI7RmzRpJ0okTJ7Rnzx7dfffdVWojOjpaXbp00bp164xp2dnZSk1N1X333SdJCgwM1HPPPacvv/xSmzdvliRNmzatSu1J0pkzZzRy5Ej16tVLX3zxhTZs2KDDhw/rueeeq3KdAADUZSThAADUUW+99Za6deumzp07q3///goNDVVCQoLNMnfeeacOHjyo//3vf3r//fd1xx13qFGjRlVu8/7779e6detUUlIi6cqD1tq3b68bbrhBktSnTx/dcMMN8vb2VtOmTTVx4kSlp6crLy+vSu1t2LBB1157rcaOHSs/Pz81bdpUycnJWr9+vYqLi6vcDwAA6iqScAAA6qiHH35YX3/9tfbv369du3YpNDRUjzzyiM0yAQEBuuuuu/Tuu+/qgw8+0IMPPlitNgcNGqTz589rx44dMpvNWrt2re6//35j/p49ezRmzBjFxsaqS5cueuihhyRdOaNdFYcPH9Z//vMfdevWzfj36KOPymQy6dSpU9XqCwAAdZGPuwMAAACVa9q0qe655x4lJibq7NmzNvNGjBihwYMHq3379rrpppuq1U5AQIAGDx6sv//97/Lx8dHp06d15513SpIKCgr02GOPafz48Vq6dKmCgoJ04MAB3XPPPTKbzXbrCwwM1MWLF43PRUVFOn36tPG5WbNm6tKli1asWFGtuAEAqC84Ew4AQD2Qm5urDRs2KDIyUk2aNLGZ96tf/UorV67Uiy++WCNt3X///fr888/15ptvatCgQQoKCpIkFRYW6vLlywoJCVFQUJCys7P18ssvV1jXjTfeqM8//1zZ2dm6dOmSFi1apKKiImP+sGHDlJGRoVWrVunixYsym83KysrS1q1ba6QvAADUNSThAADUUcuXLzfeEz5w4EBdunRJb7zxht1lu3XrpmuvvbZG2u3QoYPatGmj7du321yKHhgYqGeffVbLli1T586d9bvf/U6DBg2qsK6xY8eqQ4cOio+P16BBg9SqVStFREQY86OiovTee+9p586d6t+/v7p166Zx48bZPAUeAABPYjKXd/0YAAAAAACoUZwJBwAAAADARXgwGwAAV5HZs2dr48aNdue9+OKLuu2221wcEQAAVxcuRwcAAAAAwEW4HB0AAAAAABchCQcAAAAAwEVIwgEAAAAAcBGScAAAAAAAXIQkHAAAAAAAFyEJBwAAAADARf4fRdB+VaW16jAAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
],
"source": [
"feature = 'BMI_value'\n",
"plot_hist(feature)\n",
"plt.figure(figsize=(15,3),dpi=80)\n",
"sns.boxplot(x= df[feature], y=df['HeartDisease'], data=df, orient=\"h\")\n",
"plt.title(f\"{feature} Distribution\", fontweight='bold')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "dd79ac72",
"metadata": {
"id": "dd79ac72"
},
"source": [
"## BMI:\n",
"* As expected, BMI has very large outliers and most of the data is distributed between 10 to 40. \n",
"* BMI follows normal distribution but skewed towards right as it has outliers and it is positively skewed as the Mean (28.32) > Median (27.34)\n",
"* While the boxplots show there are no significant differences between adults with and without heart disease in BMI. so, BMI is not making sense as even though the BMI is very extreme, few people are not diagonosed with Heart Disease. Lets create BMI class and verify it in later in this notebook.\n"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "e7535187",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 962
},
"id": "e7535187",
"outputId": "4a999027-d7fe-46f0-b705-e695b5504455"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA+EAAAECCAYAAACR9tbjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAxOAAAMTgF/d4wjAAAtmElEQVR4nO3de1RU5eLG8YcZQARERUVRy7uUcRRUvCBmkYrhrSwtMzIryxBTssxj2sVKXZpZB7V+52h51I5ZppUcb3nMa4aJl6OlYiaaSpqKF0TkMvP7w8WcCFDGmD3D+P2sxVrM3sO8z4zv2vXMfveMh9VqtQoAAAAAADicydkBAAAAAAC4WVDCAQAAAAAwCCUcAAAAAACDUMIBAAAAADAIJRwAAAAAAINQwgEAAAAAMAglHAAAAAAAg1DCAQAu79ixYwoJCVFISIhSUlIcOlZ0dLRCQkKUlJRUbo+ZkpJiy3/s2LFye1xH5li6dKntvo5UOMbSpUsdNkZSUpJCQkIUHR1t2+aIf+eyjAsAgKezAwAAbm5xcXHatm2b7baXl5eCgoIUGRmphIQE1alTx9A8/fr10/nz59WqVSuHjpOUlKSZM2dKkg4cOGDbnpKSoscee0ySNH/+fLVv396QHPXq1dO6dev+9OMdO3ZM99xzj+22l5eXqlSpogYNGqhr164aNGiQKleubNtf+FybNm1apsf//evzn//8R/Xr17/u37Rq1UqPPfaYqlatas9TKbOxY8dq2bJlateunRYsWGDYuACAiokSDgBwCbVr11ZMTIyysrK0atUqffbZZ0pNTdXy5csNzZGQkGDoeO6sU6dOql+/vg4fPqxt27Zp586dWrJkiRYuXKiaNWtKkl5++WWHZsjNzdWdd96pO++806HjlMRZ4wIAXBvL0QEALqFBgwZ6+eWXNXnyZFsR/vnnn3Xo0KEi9zt48KAeffRRtWzZUjExMVq/fr0kaeXKlQoJCVHr1q2VnZ1tu39cXJxCQkL05ptvSpI+//xz9e7dW+Hh4QoPD1dMTIxeffVV2/1LWqZ86NAhjR49WtHR0QoNDVXnzp01a9YsSdL58+c1ePBgRUVFKTQ0VC1btlSfPn302Weflevrs3PnTg0dOlRRUVFq3bq1HnzwQa1YscK2/0ZyjB071nY2/vjx46Uu+V+zZo169OihVq1a6ZFHHtHhw4fLlLlXr16aOHGiFixYoI8++khms1mHDx/WW2+9ZbvPH5ej//bbbxo5cqQiIyMVGhqqjh07atCgQdq+fbuWLl1qOwsuSffcc4/t3+r3lyzMmTNHDz74oEJDQ7Vx48ZrLgu/cOGCRo8erfDwcN1999364IMPZLFYJJW8JP+P2+Li4rRs2TJJ0rZt24os9y9p3EuXLulvf/ubYmNjFRYWprvuukuJiYlKT08v8u8SEhKigQMH6p133lFkZKTatGmj0aNH69KlS2V67QEArosz4QAAl5KVlaXdu3fbbgcGBurKlSu221OmTFGPHj2UmZmpn376SS+88II2bNigbt26KTg4WBkZGfr3v/+t/v3769SpU9q+fbskqX///vrll180btw4eXl5KTY2Vt7e3vrll1/0/fffl5onLS1NAwYM0OXLl1W3bl317dtXZ8+e1U8//SRJysnJ0dmzZ9WxY0dVqVJFJ0+e1Lp16zR+/Hjdcsst6tChw3Wf8+9L6cmTJ4vt37x5s4YOHSoPDw9169ZNfn5+Wr16tRITE5WZmalBgwbdUI5OnTrp559/1u7du+Xn56cHHnhAklSnTh0dP37cdr/XX39dd955pzIzM5WamqrXX39d8+bNu+7z+r3IyEh17dpVq1ev1tdff63c3Fx5e3sXu9/06dO1atUqNW/eXDExMTp37pz27t2rX375RU2bNlVMTIxWr14t6eqlA/7+/sUuHXj77bd11113qU+fPtddCr5w4UJ17txZUVFRWrNmjWbMmCE/Pz/FxcWV6XnFxMTozJkzOnTokG01hyT5+/sXu6/VatVTTz2lHTt2qFq1aoqNjdXevXu1YsUKbdy4UcuWLdOtt95qu/+OHTuUlZWlyMhIrVixQsnJyWrSpIni4+PLlA0A4Joo4QAAl1B4FvH3nnnmGdWqVavIh4jFx8crPj5ee/bs0YMPPqiLFy/q8OHDCg0N1SOPPKLp06dr8eLF6t+/v1atWiWLxaJWrVopJCTEdla9cuXKio6OVuPGjdWwYUOZTKUvDJs/f74uX76sGjVq6KuvvlKVKlUkSXl5eZKuLqOfPn26Nm/erN9++01169ZVYGCgTp8+rc2bN5ephM+fP/+a++fOnSuLxaJGjRopKChIktSkSRPt3r1bc+fO1aBBg24oR+/evZWenq7du3erWrVqRZaGp6am2n5/77331LZtW82dO1dTp04t8iaJPQqv387Ly1NmZqZq165d7D6Fb7jccccdio2NVYMGDRQUFKT8/Hx5enpq0KBBthI+fPhw22P+fo4MGTJEL730ku32d999V2qmLl266IMPPpAkvfjii/rqq6+0aNGiMpfwRx99VHv37tWhQ4dsqzlKk5qaqh07dkiS3nnnHXXq1Ek5OTnq0qWLzp07p0WLFhXJHRAQoE8++UR+fn66ePGi1q9fr//+979lygUAcF2UcACASyg8i+jp6amgoCB17NhRt912W7H7FZ71rFatmm1b4RLdAQMGaNasWdqzZ4/2799vW67dv39/SVeL65gxYzR//nyNHDlSkmxnxSdNmiRPz+L/WSw8I3zbbbfZCnjh30nS2rVrNWLECNsS5t87c+ZMmZ57aR/MVujEiROSpMOHDxdbCp6RkVFuOUrzx9f898v97XH06FFJV1+76tWrl3ifUaNG6fz58/r3v/9tW+Z9yy236I033lDHjh3LNE5Z7ydJzZo1K/Z74etdkoKCgjI/9h/9/nEL33Dy8fFRgwYNdO7cuWLjNmnSRH5+fpL+99qzHB0AKj6uCQcAuITCs4gvvfSShgwZUmIBl2Qryh4eHsX2VatWTX379pUkvfvuu9q1a5d8fX0VGxsr6WqBGjx4sDZs2KCUlBR9/PHH8vf315dffqnNmzeXOF69evUkXS3KWVlZtu2FZ8K/+OILWSwWhYeH6/vvv9e+ffvUuHFjSVeXH5eH4OBgSVevVz9w4IDt58cff9SaNWv+VA6z2SxJJZb3QoVvOJT0mpfVli1bbJ++3rVr1xKXoktXl8J/+OGH2rlzp1avXq24uDj98ssvevvtt4vklUp/XpUqVSpzroMHDxb7vfD19vX1te07d+6cpKJvmBQqy2soSXXr1rX9npaWJunqmf/CNyd+v1/63+su/bnXHgDgWjgTDgBwK3FxcVq8eLG++eYbSVLPnj1tZxMzMjLUr18/tWnTRkFBQbp48aLOnz8vSaVeOxwXF6fk5GSdPn1affr0UWRkpC5cuCAvLy9Nnz7dtjw8LS1NkyZN0pEjR/TLL7+U63MaMmSIUlJStG7dOg0aNEhNmzbV6dOntXv3bkVFRWnKlCk3nKPwTYZff/1Vf/3rX+Xv768XX3yxXHInJydr165dtk9Hl6RGjRpdc8n2a6+9pgMHDqhJkyby9/fX1q1bJf3vTHBh3sL7Nm7cWA899JB8fHxuKOOGDRv0zDPPyNvb2/aGxsMPPyzp6pJ4s9msgoICvfDCC6pXr56WLFlS7DEKM+3Zs0evvPKKqlevrsTExGL3a926tcLDw7Vz504lJiaqa9eu+uGHH5SZmSlfX1/buAAA98aZcACAW2nWrJkiIyNttwcMGGD7vUqVKoqIiND+/fu1bNkyffPNN2ratKleffVVhYeHl/h4ISEh+vzzz9WrVy9JV88479ixw3aWecSIEbrnnntktVq1ceNGRUVFlfpYN6pLly5asGCBunTpoqNHj2rp0qXau3evWrZsaTvLf6M57r33XvXo0UP+/v5aunSp5s+fbzvL/2dt2bJFn3/+uQ4ePKjw8HC9+OKLWrZsmWrVqlXq37Rp00Ymk0kbNmzQZ599posXLyomJkYTJ06UdPUs9ahRo1SzZk1t2bJF8+fP/1Nvejz66KPy9/fX5s2bVadOHT333HO268FvueUWvfbaawoODtauXbt07NgxDRkypNhjPPzww+rUqZPMZrMWL16sTz75pMSxTCaT5syZo2HDhikwMFDJycnKzMxUjx49tGTJEjVo0OCGnwcAoOLwsJbXWjkAAFzEp59+qgkTJigkJERfffWVs+MAAADYsBwdAOA2fvrpJ61fv962ZHjo0KFOTgQAAFAUJRwA4Db++9//atq0aapWrZqeffZZ9e7d29mRAAAAimA5OgAAAAAABuGD2QAAAAAAMIhbL0fPz8/X+fPnValSJZlMvN8AAAAAAHAsi8WiK1euqGrVqvL0LF653bqEnz9/Xunp6c6OAQAAAAC4yTRs2FA1atQott2tS3ilSpUkXX3ylStXdnKa0hUUFCgtLU3NmzeX2Wx2dhxUAMwZ2Is5A3sxZ2Av5gzsxZyBPSrSfLl8+bLS09NtffSP3LqEFy5Br1y5snx9fZ2cpnQFBQWSJF9fX5efUHANzBnYizkDezFnYC/mDOzFnIE9KuJ8Ke2SaC6UBgAAAADAIJRwAAAAAAAMQgkHAAAAAMAglHAAAAAAAAxCCQcAAAAAwCBu/enoFUV8fLzOnTtX4nfIOUpwcLAmTJhg2HgAAAAAAEq4Szh16pTy8/OVk2/MP4clL8uQcQAAAAAARVHCXYWHSX5NYg0Z6tKhFYaMAwAAAAAoimvCAQAAAAAwCCUcAAAAAACDUMIBAAAAADAIJRwAAAAAAINQwgEAAAAAMAglHAAAAAAAg1DCAQAAAAAwCCUcAAAAAACDUMIBAAAAADAIJRwAAAAAAINQwgEAAAAAMAglHAAAAAAAg1DCAQAAAAAwCCUcAAAAAACDUMIBAAAAADAIJRwAAAAAAINQwl2AxWKRrFZnx3CYRYsWadGiRc6OAQAAAABORwl3ARaLRZL7lvBNmzZp06ZNzo4BAAAAAE5HCQcAAAAAwCCUcAAAAAAADEIJBwAAAADAIJRwAAAAAAAMQgkHAAAAAMAglHAAAAAAAAxCCQcAAAAAwCCUcAAAAAAADEIJBwAAAADAIJRwAAAAAAAMQgkHAAAAAMAglHAAAAAAAAxCCQcAAAAAwCCezg4AOELv3r1tvy9fvtztxrvvvvsMHc/dX0+jx3PGmMyZij2eM8ZkzjCevZgzjGcv5gzj2cPo+eJITjsTHhcXpxYtWujw4cO2bYcOHVJISIizIgEAAAAA4FBOXY5epUoVvffee86MADf0+3flSrrNeIznzPGcMSbjVezxnDEm4zGeq4/JeBV7PGeMyXiM50qcuhz90Ucf1Ycffqgff/xRLVq0KLIvKytLkyZN0oYNG2Q2m3Xvvfdq9OjR8vb2dlJa92EtuKKMjAzFx8cbMl5GRob8/PwMGQsAAAAAXJlTz4TXrFlTjz32mN55551i+958802dPHlSK1eu1Oeff64dO3Zo1qxZTkgJAAAAAED5cPoHsz355JPq1q2bvv/+ewUGBkqSCgoKlJycrCVLliggIECSNGLECE2YMEGJiYnOjOsWPMyVFFy7qmbPnm3IeEadcQcAAAAAV+f0rygLCAjQU089penTp9u2ZWZmKi8vT/Xq1bNtq1evnn777TdZrVZnxAQAAAAA4E9zegmXrn5S+vHjx7V+/XpJUvXq1eXl5aXjx4/b7nP8+HHVqlVLHh4eTkqJiuKPX1ng6K8wYDzGc/UxGa9ij+eMMRmP8Vx9TMar2OM5Y0zGYzxX4hIl3MfHR8OHD9ff//53SZLZbFbPnj01ffp0XbhwQadPn9asWbPUt29fJycFAAAAAODGeVhvYH33yZMnlZGRobCwsBseOC4uTrGxsRo4cKAkKT8/X7GxsTpy5IgOHDigixcv2j4d3WQyqUePHnrxxRdVqVKlMo+RnZ2tffv26fbbb5evr+8NZ3W0wo/Yr3L7w4aMd+nQCtVzwjXhRo13MygoKNCuXbsUFhYms9ns7DioAJgzsBdzBvZizsBezBnYoyLNl+v1ULs+mO3s2bN64YUX9O2338rHx0e7du3SihUrlJqaqgkTJtgVbMGCBUWDeHpqzZo1tttVqlTR5MmT7XpMAAAAAABcmV3L0d966y3VqlVLGzZskJeXlySpffv22rx5s0PCAQAAAADgTuw6E/7dd99p7dq1qly5su0D0mrUqKEzZ844JBwAAAAAAO7ErjPhZrNZJlPRP8nKylKVKlXKNRQAAAAAAO7IrhIeERGhv/3tb0W2zZ07V+3bty/XUAAAAAAAuCO7lqOPGTNGjz/+uJKTk3Xp0iV1795d+fn5+uSTTxyVDwAAAAAAt2FXCa9du7a+/PJLbdiwQenp6apVq5a6desmPz8/R+UDAAAAAMBt2FXCJcnb21vdunWTdPX7z1z9O9oAAAAAAHAVdl0TPmPGDO3evVuS9O2336pDhw5q3769tmzZ4pBwAAAAAAC4E7tK+JdffqlGjRpJkt5//309//zzGjdunN59911HZAMAAAAAwK3YVcIvXryogIAAXblyRT/++KMGDRqkAQMGKD093UHxAAAAAABwH3ZdE+7v76+TJ0/qwIEDatGihby8vHTlyhVZLBZH5QMAAAAAwG3YVcL79eunAQMGKDc3Vy+++KIkac+ePWrYsKEjsgEAAAAA4FbsKuEjR45URESEvLy8FBERIenqp6UXFnLcGJPJJIvF6uwYDtO5c2dnRwAAAAAAl2D3V5RFRkYWud2yZctyC3OzMplMsljdd0n/wIEDnR0BAAAAAFyC3SV8y5Yt2rx5s86ePSur9X9nb6dOnVquwQAAAAAAcDd2fTr6xx9/rGHDhunIkSNasWKFsrKytHr1ahUUFDgqHwAAAAAAbsOuM+ELFy7UzJkz1aVLF0VERGj27NlauXKlUlJSHJUPAAAAAAC3YdeZ8JMnT6pLly6SZFuK3r17d3399dflnwwAAAAAADdjVwn39/dXVlaWJKlGjRo6cuSIsrKydPnyZYeEAwAAAADAndi1HD08PFxff/217r//fkVHR2vYsGHy9va2fV0ZAAAAAAAonV0lfNq0abZl6ImJiapWrZqysrL0xBNPOCQcAAAAAADuxK4S7u3tXeT3Z555ptwDAQAAAADgruy6JlySkpOTNWTIEPXu3VuStH37dq1du7bcgwEAAAAA4G7sKuELFizQ9OnT1b59e504cUKSVLVqVc2ZM8ch4QAAAAAAcCd2lfCFCxfqH//4h4YNGyaT6eqfNm7cWIcPH3ZIOAAAAAAA3IldJTwzM1NNmzaVJHl4eDgkEAAAAAAA7squEt6wYUOlpKQU2bZt2zY1bty4XEMBAAAAAOCO7Pp09OHDhyshIUGPPPKI8vLyNHv2bC1cuFBTp051VD4AAAAAANyGXWfCu3TpoqSkJKWlpSk4OFjfffedJk6cqKioKEflAwAAAADAbdh1JlySOnTooA4dOjgiy83NatGlQysMGcqSlyWpqiFjAQAAAAD+x64Snpqaqjp16qhevXo6e/asJk+eLE9PT40ZM0bVq1d3VEa3FxQUpHPnzqlGDaOKcVUFBwcbNBYAAAAAoJBdJfy1115TUlKSJOntt9/WyZMn5e3trTfffFPTp093SMCbwezZs7Vr1y6FhYXJbDY7Ow4AAAAAwEHsKuEZGRlq2LChJGnDhg1atmyZfH191b17d0dkAwAAAADArdhVws1ms/Ly8nTkyBFVqVJFQUFBslqtunz5sqPyAQAAAADgNuwq4a1atdIbb7yh3377TXfddZck6dixY1wPDgAAAABAGdj1FWWvv/66srOzVa1aNT377LOSpD179qhXr14OCQcAAAAAgDux60x4cHCw3n777SLbYmNjFRsbW66hAAAAAABwR9ct4d9//70iIiIkSVu3bi31fh07diy/VAAAAAAAuKHrlvCnn35aO3fulCQNGTKkxPt4eHho37595ZsMAAAAAAA3c90SXljAJWn//v0ODQMAAAAAgDuz64PZAAAAAADAjSvzB7NlZGTovffe05YtW3Tu3DlVq1ZNUVFRGjFihOrWrevIjAAAAAAAuIUylfDMzEw99NBDqly5su6//34FBwcrIyNDa9as0UMPPaQvv/xSgYGBjs4KAAAAAECFVqYSPm/ePDVv3lyzZs1SpUqVbNuHDx+u5557TvPmzdPzzz/vsJAAAAAAALiDMl0TvmnTJj333HNFCrgkVapUScOHD9fmzZsdEg4AAAAAAHdSphJ+/PhxhYaGlrjvjjvu0LFjx8o1FAAAAAAA7qhMJTw/P18mU8l3NZvNKigoKNdQAAAAAAC4ozJdE261Wm0/pe0DAAAAAADXVqYSnp2drRYtWjg6y00rPj5e586dU40aNZwdBRVITk6OfHx8nB0DFQhzBvaqXLmywsLCnB0DAAC3UqYSPn/+fEfnuKmdOnVK+fn58tMVZ0dBBZNzydkJUNEwZ1BWZy8XKLBmLWfHAADA7ZSphLdr106S9Ouvv6pOnTrF9v/666/lm+omZPaQhrep6ewYAABIkmalnnZ2BAAA3FKZPpitUGxsbInb+/TpUy5hAAAAAABwZ3aV8JI+gM1isZRbGAAAAAAA3FmZlqOPGTNGkpSXl2f7vdDRo0fVuHHj8k8GAAAAAICbKVMJN5vNJf7u4eGh9u3ba8CAAeWfDAAAAAAAN1OmEj558mRZrVY1atRITz31lEwmu1axAwAAAAAA2XFNuNVq1cyZM1VQUODIPAAAAAAAuK0yl3CTyaTg4GBlZ2c7Mg8AAAAAAG7LrnXlI0eO1Pjx43XkyBHl5+fLYrHYfgAAAAAAwLWV6ZrwQs8//7wkae3atcX27du3r3wSAQAAAADgpuwq4fPnz3dUDgAAAAAA3J5dJbxdu3aOygEAAAAAgNuzq4RLUn5+vg4fPqwzZ87IarXatnfs2LFcgwEAAAAA4G7sKuH79+9XfHy8Tpw4IQ8PD1mtVnl4eEjimnAAAAAAAK7Hrk9Hnzx5sqKiopSSkiJ/f39t27ZN9913n959910HxQMAAAAAwH3YVcL379+vsWPHqmrVqrJarQoICNBLL72kGTNmOCofAAAAAABuw64SLkmVKlWSJPn6+iorK0tVq1bVyZMnyz3YzcRischivf79AAAAAOBmtHjxYq1fv97ZMcqFXdeEN2rUSHv27FFYWJhatGihpKQk+fv7Kzg42FH5bgoWi8XZEQAAAADAZW3evFk5OTnOjlEu7Crhzz//vO0T0UeNGqVRo0YpKytLkyZNckg4AAAAAADcyQ1/T/htt92mVatWlXsgAAAAAADcld3XhGdlZWn58uX6xz/+IUk6ffq0fvvtt3IPBgAAAACAu7GrhO/bt0/du3fXzJkzNXv2bEnSjz/+qDfeeMMh4QAAAAAAcCd2lfBJkyZp+PDhWr16tTw9r65kb926tXbt2uWIbAAAAAAAuBW7SnhaWpoGDhwoSfLw8JAk+fv769KlS+WfDAAAAAAAN2NXCQ8ICNDp06eLbDtx4oRq1qxZrqEAAAAAAHBHdpXwe++9V2PHjlV6erok6ddff9Ubb7yh3r17OyIbAAAAAABuxa4SnpCQoKCgIPXo0UMXLlzQ3XffLbPZrKefftpR+QAAAAAAcBt2fU+4t7e3pkyZorFjx+ro0aOqWbOm6tat66hsAAAAAAC4lTKV8DFjxlz3PlOnTv3TYQAAAAAAcGdlWo5uNpuL/KxcubLYNgAAAAAAcG1lOhM+efLkIrfXrl1bbBsAAAAAALg2uz6YrVDhd4QDAAAAAICyu6ESfiOGDRumV155pci2vXv3qk2bNjpy5IhRMQAAAAAAcBrDSvjEiRO1evVqbd26VZKUl5encePGaeTIkWrQoIFRMQAAAAAAcJoyXRP+3nvvFbmdk5NTbNvIkSOv+RhBQUEaN26cXn75ZS1fvlwfffSRAgICFBYWpkGDBiktLU01a9ZUYmKiunfvLknauHGjpk2bpmPHjsnX11d9+vTRSy+9ZM/zAwAAAADAZZSphG/fvr3I7VatWhXZVtZrxPv27atVq1Zp9OjRSk1N1QcffKChQ4fqrbfe0t133629e/dq6NChatKkiZo0aaJx48bphRde0H333adLly7pp59+suOpAQCAG3Upz6IrZ89qxIgRzo6CCiQnJ0c+Pj7OjoEKhDmDssrIyJC3t7ezY5SLMpXwBQsWlNuAEydOVPfu3ZWQkKAdO3aoY8eO6tq1q6Sr5b5r165auXKlEhIS5OXlpaNHj+rs2bMKDAxUq1atyi0HAAAAAABGK1MJL0+1atVS9erV1axZM61bt07/+c9/1LZtW9v+goIC9enTR5I0c+ZMvf/++4qJidGtt96qhIQE3X333UZHBgDgpuPnZZKfX6CSkpJkNpudHQcVQEFBgXbt2qWwsDDmDMqEOQN7xMfHKycnx9kxyoXhJfz36tatq549e2rKlCkl7r/jjjs0c+ZMFRQUaMWKFXruueeUkpIiX19fg5MCAAAAAPDnGfbp6CXp06ePNm7cqHXr1ik/P1+5ubnavXu3Dh06pNzcXH3xxRc6f/68zGazAgIC5OHhwbtkAAAAAIAKy6lnwuvUqaO///3vmjZtmv76179KkkJCQmy/Jycna9KkScrLy1P9+vX17rvvqlKlSs6MDAAAAADADXNKCV+3bp3t99DQUP3zn/8s8X5z5swxKhIAAAAAAA7n1OXoAAAAAADcTCjhAAAAAAAYhBIOAAAAAIBBKOEAAAAAABiEEg4AAAAAgEEo4QAAAAAAGIQSDgAAAACAQSjhAAAAAAAYhBIOAAAAAIBBKOEAAAAAABiEEg4AAAAAgEEo4QAAAAAAGMTT2QEgmUwmWS0WZ8cAAAAAAJcUFRWljIwMZ8coF5RwF2AymWS1UsIBAAAAoCQPPfSQdu3a5ewY5YLl6AAAAAAAGIQSDgAAAACAQSjhAAAAAAAYhBIOAAAAAIBBKOEAAAAAABiEEg4AAAAAgEEo4QAAAAAAGIQSDgAAAACAQSjhAAAAAAAYhBIOAAAAAIBBKOEAAAAAABiEEg4AAAAAgEEo4QAAAAAAGIQSDgAAAACAQSjhAAAAAAAYhBIOAAAAAIBBPJ0dAFcVWKVZqaedHQMAAEnS2csFCvRzdgoAANwPJdwFBAUF6dy5c/KpUcPZUVCB5OTkyMfHx9kxUIEwZ2CPupIqV67s7BgAALgdSrgLmD17tnbt2qWwsDCZzWZnx0EFUFBQwJyBXZgzsFfhnAEAAOWLa8IBAAAAADAIJRwAAAAAAINQwgEAAAAAMAglHAAAAAAAg1DCAQAAAAAwCCUcAAAAAACDuPVXlFksFknS5cuXnZzk2goKCiRJ2dnZfHUQyoQ5A3sxZ2Av5gzsxZyBvZgzsEdFmi+F/bOwj/6Rh9VqtRoZyEhnzpxRenq6s2MAAAAAAG4yDRs2VI0aNYptd+sSnp+fr/Pnz6tSpUoymVh5DwAAAABwLIvFoitXrqhq1ary9Cy++NytSzgAAAAAAK6E08MAAAAAABiEEg4AAAAAgEEo4QAAAAAAGIQSDgAAAACAQSjhAAAAAAAYhBIOAAAAAIBBKOEAAAAAABiEEg4AAAAAgEEo4QAAAAAAGIQS7mQXLlzQyJEjFR4erqioKM2bN8/ZkeDCxo4dq9DQUIWHh9t+Tpw44exYcCELFy5Uv379FBoaqsTExCL70tLSNGDAALVq1UqxsbHaunWrk1LClVxrzkRHR6tly5a2403Pnj2dlBKuJDc3Vy+//LKio6Nt82L58uW2/Rxr8EfXmzMca1CSCRMmqHPnzmrdurWio6P1wQcf2PZV9OOMp7MD3OwmTpyo3Nxcbdq0ScePH9fjjz+uRo0aqUuXLs6OBhf1+OOP64UXXnB2DLiooKAgxcfH69tvv1VmZqZte15enoYNG6YBAwZo4cKFWrt2rRISErRmzRrVqFHDiYnhbKXNmUIzZ87UnXfe6YRkcFX5+fkKCgrSP//5T9WvX1+pqal65plnVL9+fYWGhnKsQTHXmjPh4eGSONaguMGDB+vll1+Wj4+PMjIy9OSTT+rWW29Vt27dKvxxhjPhTpSdna1Vq1YpMTFR/v7+CgkJ0YABA/T55587OxqACqp79+7q2rWrqlevXmT7tm3blJOTo6efflre3t6KjY1Vs2bNtGrVKiclhasobc4ApfH19dXIkSN1yy23yMPDQ23btlXr1q21c+dOjjUo0bXmDFCapk2bysfHx3bbZDLp6NGjbnGcoYQ7UXp6uqxWq5o3b27bdtttt+ngwYNOTAVX9+mnn6pdu3bq06ePlixZ4uw4qCAOHjyo5s2by2T632H/9ttvV1pamhNToSIYO3asOnTooLi4OKWmpjo7DlxQdna29u7dq2bNmnGsQZn8fs4U4liDkkyfPl1hYWG66667lJ2drT59+rjFcYYS7kTZ2dny9/cvsi0gIECXLl1yUiK4uri4OK1atUrffvutxo0bp2nTpmn16tXOjoUK4NKlSwoICCiyjeMNrmfq1Klat26d1q9fr3vvvVdDhw7V8ePHnR0LLsRisWjs2LH6y1/+oqioKI41uK4/zhmJYw1KN3r0aO3cuVOfffaZevfubTueVPTjDCXciXx9fYtNlosXL8rPz89JieDq7rjjDgUGBsrT01MdOnTQoEGDKtTSGziPn5+fLl68WGQbxxtcT9u2beXj4yMfHx898sgjatGihTZu3OjsWHARVqtVr776qk6dOqUZM2bIw8ODYw2uqaQ5I3GswbV5eHioZcuW8vb2VlJSklscZyjhTtSwYUNJKrL8fN++fUWW5gDXYjKZZLVanR0DFUCzZs2UlpYmi8Vi27Zv374il8MA1+Ph4cExB5KulqnXX39d+/bt05w5c2z/88uxBqUpbc6UhGMNSlJQUKCjR4+6xXGGEu5Evr6+iomJ0YwZM5SVlaW0tDQtWbJEDzzwgLOjwUWtWLFCWVlZslgs2r59uxYuXKhu3bo5OxZcSH5+vq5cuaL8/HxZLBZduXJFeXl5ateunSpVqqQ5c+YoNzdXK1euVFpamnr06OHsyHCy0ubMiRMntH37duXm5io3N1effvqp9u7da1s+ipvbxIkTtXv3bs2dO7fIpXUca1Ca0uYMxxqU5Pz58/riiy9s/9+bmpqqRYsWKTIy0i2OMx5W3mZyqgsXLmj8+PHatGmT/Pz89NRTT+nxxx93diy4qEGDBunAgQMqKChQ3bp1FRcXp4cfftjZseBCkpKSNHPmzCLb7r//fk2ZMkUHDhzQ+PHjdeDAAdWrV0+vvPKKOnbs6KSkcBWlzZmnnnpKo0eP1tGjR+Xl5aUmTZpo1KhRat++vZOSwlUcP35c0dHR8vb2lqfn/77t9plnntGwYcM41qCYa82Zrl27cqxBMRcuXFBCQoL27dun/Px81a5dW/369dPQoUPl4eFR4Y8zlHAAAAAAAAzCcnQAAAAAAAxCCQcAAAAAwCCUcAAAAAAADEIJBwAAAADAIJRwAAAAAAAMQgkHAAAAAMAglHAAAJwgLi5OM2bMcMhjf/DBB3riiSfK5bGOHTumkJAQHTlypFwezx7R0dH67LPPrnkfR76OAAA4AiUcAAAHiYuLU2hoqMLDw9W6dWv16tXruqWyPAwbNkwffvihQx576dKluvPOO4ttT0lJUUhIiPLz8x0yrjPfDAAAoDx5OjsAAADu7Mknn1RiYqIKCgqUnJysMWPG6NZbb3V2LAAA4CScCQcAwABms1l9+/ZVtWrV9MMPP0iSLl26pNGjR6tNmzbq0qWL/vWvf0mSLBaLoqOjtWzZsiKPMXfuXN13332SpP379+vRRx9V27ZtFRERoX79+unnn3+WJCUlJWngwIG2v8vJydGMGTMUExOj8PBw3XPPPbbHTktL0+DBg9WhQwe1adNG/fv319atW8vlOW/YsEH9+/dXRESEunfvrvnz59v2XblyRc8995w6d+6s8PBwxcTE6OOPPy71sXr16iVJ6tu3r8LDw/XKK6/Y9pX2OgIA4Io4Ew4AgAHy8/OVnJys8+fP6y9/+Yu++eYbLVu2TDNnztS0adP09ddfa9SoUerUqZMaNGigAQMGaPHixbr//vslSVarVZ9++qkef/xxSdJrr72mqKgozZs3T5J08OBBBQQElDj2+PHjlZ6ertmzZ6tx48Y6deqUTp8+bdv/9NNPq02bNjKZTPq///s/JSQkaM2aNapRo8YNP9/vvvtOo0ePVlJSktq3b6+ffvpJQ4cOVbVq1dSnTx9ZrVZ16dJFb775pvz9/bVx40YlJCTo1ltvVefOnYs9XnJysu655x59+eWXatCgQZF913odAQBwNZwJBwDAgT788EO1bdtWnTp10vz58zV58mRFRERIkrp3766OHTvKZDIpJiZGVatWtZ0lf/DBB7V3714dPHhQ0tVSe+rUKfXu3VuS5OXlpYyMDJ04cUKenp66/fbbVbNmzWLjnz17VsuXL9err76qJk2ayMPDQ7Vr19Ydd9whSWrevLk6deokHx8feXt7a8SIEfLw8NDu3btLfU6nTp1S27Zti/wMGzasyH3mzZungQMH2p5f8+bN9fDDD2vp0qWSJB8fHz3wwAMKCAiQyWTSXXfdpc6dO2vLli12v8bXeh0BAHA1nAkHAMCBnnjiCSUmJpa4LygoqMhtX19fXbp0SZJUs2ZNde/eXYsXL9b48eO1ePFi9e7dW/7+/pKkKVOm6P3339fgwYNVUFCgmJgYjRo1Sn5+fkUe89ixY5KkRo0alZjhxIkTmjZtmnbu3KkLFy7IZDIpKytLZ86cKfU5BQUFaePGjUW2paSk6LHHHrPdPnLkiLZu3apFixbZthUUFKhu3bqSpNzcXM2YMUPr1q3T6dOn5eHhoZycHNvzs8e1XkcAAFwNJRwAABc1cOBAxcfHa8iQIVq7dq0+/fRT27569erpzTfflHS18MbHx8vX17dY4a9fv74kKT09XaGhocXGmDBhgvz9/bVkyRLVrFlTVqvVdqb+z6hZs6Z69uyphISEEvd/9NFHWrdund5//301bNhQJpNJzz77rKxWa4n3N5lYvAcAcA/8Fw0AABcVERGh2rVra8SIEbrtttvUokUL276lS5fq119/ldVqlb+/v8xms8xmc7HHCAwMVK9evTRx4kTbB7edOnXKtlz74sWL8vX1VUBAgLKzszV9+nRlZ2f/6eyDBw/WwoULtXXrVuXn5ys/P19paWn6/vvvbeN6e3srMDBQFotFK1euvOZS9MDAQJlMJh0+fPhPZwMAwJko4QAAuLCBAwfqhx9+0MMPP1xke0pKih588EGFh4erb9++CgsL09ChQ0t8jDfeeEMREREaOnSowsPDNXDgQNu15uPHj9eBAwfUrl079ezZU7Vr11adOnX+dO6uXbtq6tSpeu+99xQZGanIyEiNHz9emZmZkq4u0w8ODtbdd9+tzp07a+vWreratWupj+fj46PExESNHz9ebdu21WuvvfanMwIA4Awe1tLWfQEAAKfbsGGDRo8erU2bNqly5crOjgMAAP4kzoQDAOCiLl++rDlz5uihhx6igAMA4CYo4QAAuKB//etf6tChgyTp2WefdXIaAABQXliODgAAAACAQTgTDgAAAACAQSjhAAAAAAAYhBIOAAAAAIBBKOEAAAAAABiEEg4AAAAAgEEo4QAAAAAAGIQSDgAAAACAQf4fIKfXg2++M0MAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
],
"source": [
"feature = 'PhysicalHealth'\n",
"plot_hist(feature)\n",
"plt.figure(figsize=(15,3),dpi=80)\n",
"sns.boxplot(x= df[feature], y=df['HeartDisease'], data=df, orient=\"h\")\n",
"plt.title(f\"{feature} Distribution\", fontweight='bold')\n",
"plt.show()\n",
"\n",
"# plot_kde(feature, df)"
]
},
{
"cell_type": "markdown",
"id": "52c16e1e",
"metadata": {
"id": "52c16e1e"
},
"source": [
"## PhysicalHealth:\n",
"* PhysicalHealth also has very large outliers and most of the data (75%) is distributed between 0 to 2 days and it is really to visualize the complete data, so lets handle outliers and normalize this later in this notebook.\n",
"* While the boxplots show there are ``significant`` differences between adults with and without heart disease in PhysicalHealth. \n",
"* People who are physically not healthy/well for long days has high probability of getting HeartDisease.\n",
"* The distinct distribution in physical health between these evaluated groups, further correlation analysis will be conducted later to evaluate the relationship of heart disease and PhysicalHealth."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "7df4b906",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 962
},
"id": "7df4b906",
"outputId": "78cf7a7d-2242-447c-c43b-39a48a4fd3f7"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA+EAAAECCAYAAACR9tbjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAxOAAAMTgF/d4wjAAAuw0lEQVR4nO3deVxU9f7H8fcAAiLuiqLlkikuXQU3tCCXXHLN9GaaQpZLXtdsMdJWzaVuZl3MuldNU/qp17RMc7/83MuSxD0pU/gppJkrIOAw8/vDB3MdWWSUOQPj6/l48ICzMN/PGb4cffP9nnNMVqvVKgAAAAAA4HQeri4AAAAAAIC7BSEcAAAAAACDEMIBAAAAADAIIRwAAAAAAIMQwgEAAAAAMAghHAAAAAAAgxDCAQAAAAAwCCEcAIAiFhUVpaCgIEVERJSYOiIiIhQUFKSoqCin1bNq1SoFBQUpKCjIaW1IUseOHRUUFKTo6GhJ0p49e2ztnjp1yrB2AQDICyEcAFAs5YTCoKAgDR8+3G7bunXrbNucFayKOpTmBLSbXy8nKHfs2LFI2ilsHUUVFKOjo20/h4YNG6pZs2bq2LGjxowZo+3bt9vte//99ysyMlKRkZGFfv3b+YNG3759FRkZqWbNmhX6exyRc7yrVq0ytF0AgHvwcnUBAADcyvbt25WQkKAGDRpIkubPn+/iipCXiIgInT9/Xvv379fmzZu1efNmPf3005o0aZIkqWnTpmratKnT2s/KypK3t7fGjBnjtDYK4qp2AQAlCyPhAIBirUKFCpKkzz77TJL0/fff6/Dhw7b1N9u2bZsiIiLUpk0btWrVSoMHD9Z3331n237jlOhvvvlGXbt2VbNmzfTUU0/pxIkTkq6PFv/www+SpK+++spuCvXGjRvVp08ftWrVSk2aNFHr1q01YsQI/frrr0V2zNeuXVNMTIwee+wxNW/eXGFhYRo/frwSExNt+9xOHUFBQTp9+rQkac6cOXmOwGdlZemdd95RaGioQkNDNXXqVGVnZxeq7smTJ2vWrFnasGGD/vrXv0qSPv/8c9uIeF7T0WNjY9WvXz81b95cTZs21SOPPKJRo0ZJuh7qv/rqK0nSDz/8YDfzIWcEvmPHjpo/f77Cw8MVFhYmqeDR/h9//FGPPfaYmjVrpr/+9a/at2+fbVtesx9uXHfq1Cm72l999VW7Ufq82k1ISNDYsWPVrl07BQcHq2fPnvr000+VmZlp93MJCgrShx9+qGHDhqlp06bq0KGDvvzyy0K97wCAkoUQDgAo1lq0aKGgoCCtXbtWZ86c0YIFCyRJgwYNyrXvihUrNGLECB08eFDh4eFq37699u/fr2eeeUaxsbG59p85c6aaN28uX19fxcXF6e2335Z0fVpxtWrVJEn16tWzm0KdnJysChUqqEuXLnriiSdUrVo1bdu2TaNGjZLZbL7l8Rw4cEDTpk2zfRw4cCDXPpMmTdLUqVN14cIF9ezZUw0bNtSGDRv0xBNPKCUl5bbriIyMVJkyZSRJzZo1U2RkpPr27Wu3z7p163Tw4EG1atVKFy9eVExMjNauXXvL47qRl5eXXn31VZlMJttr5iUzM1Pjx4/XoUOHFBYWpj59+qhu3bras2ePJKlr166qV6+eJKlatWq2n4O/v7/tNZKTkzVv3jyFh4fr4YcfvmVtM2fOVJMmTXTvvffq4MGDevbZZ3X27NlCHZe/v7/dVPqHHnpIkZGR6tq1a577//zzz3riiSe0adMmValSRd27d1dKSopmz56tsWPH5tr/008/VenSpdWwYUMlJyfrzTff1P/93/8VqjYAQMnBdHQAQLE3dOhQTZw4UW+++aa2b9+uBx98UI0bN86137x58yRdv/Y4Z6T83nvv1fHjx7Vw4cJco77/+Mc/1LJlSy1YsEDvvfee9u/fL+n6tOI9e/bozJkzatq0qSZPnmz7nsjISNWqVUtHjhxRamqqGjVqpISEBCUmJioxMdEWGvNz/PhxHT9+PN/tZ86c0TfffCPp+vRtHx8f1a1bVz/99JMuXbqklStXasyYMbdVx+TJk/Wf//xHaWlpCg8PzzMI1q5dW0uXLpWHh4d69uypX375RQcOHNBjjz1W4HHdzN/fXxUrVtT58+fzDbnZ2dnKzs6Wp6en2rdvr4YNG6pOnTry9vaWJA0ePFiHDh3S8ePHVbt2bbufQw6r1arFixcX+mZvU6ZMUdeuXZWamqrw8HClp6dr9erVue47kJcKFSpo8uTJWrx4sSSpZ8+euf6IcaMlS5YoIyNDNWrU0PLly+Xl5aXw8HA9//zz2rZtm90lFpLUr18/TZs2TefPn1fbtm1lNpt15MgR3XvvvYU6NgBAyUAIBwAUez169NDs2bP1v//7v5Kuh/KMjIxc+yUnJ0uSDh48qIMHD9ptyxlBvlHODbRyAnt6evota3n++ee1adOmPLf9+eeftwzhjz/+uGbOnGlbjoqKsk25lmSbLi5JmzdvzvX9Ocd4p3Xk54EHHpCHx/WJcjnvS1pamsOvc+XKFV24cEGSFBAQkOc+fn5+mj59uj755BO9+uqrkiRPT0+FhYXpgw8+sBvxzk+VKlUcutt6/fr1JV3/I0H16tX122+/2d7TvBRmdkN+cl63Xr168vK6/l+uG0N3SkqK3XJOf6xYsaJt3e289wCA4o3p6ACAYs/Ly0tPP/20pOvXz+Zc+3uzwMBASdev4z127Jjt4+DBg7bRyxuVKlVKkmzTpm/k6ekpSbJYLLZ1V65csQXfV199VYcPH9ayZcts261W6+0cXp7HIF2/bvvG4/j+++81ceLEO6ojr+O6Uc57IuX9vhSG2WzWzJkzbXV069Yt3327deumjRs3Ki4uTitWrFDt2rW1bds2rV69ulD1+vj4OFTbL7/8IklKTU3V77//Lum/77mfn58k6eLFi5KuXx+fc5+AG92qphw1atSQJP3222+26+pz2r+x3Rw5Qf1233cAQMnASDgAoEQYMGCAgoKCdM899+S7z9ChQ/Xmm28qJiZGJ0+eVM2aNXXmzBnFxcUpMjIyz+nX+alZs6ak6zd6mzJliu69915FRESobNmyunLlilauXKlff/1Vu3btuuNju1FgYKB69Oihb7/9Vi+//LIeeeQRlS5dWklJSfrpp5+0YMECtWjR4rbrqFmzppKSkvT111/rypUraty4cYFTqh0xbdo0XbhwQfHx8bZrmSMjI9WuXbt8v6dNmzZq0aKFAgMDZTabbaPH5cuXt9UrXZ/d8MYbb6hixYqaMGHCbdf4xhtvaNu2bTpw4IDS09Pl5+dnm2r/l7/8RVu3btXOnTs1Y8YMHTp0yDaaf6Oc93DRokX6+eef1bZtWz3yyCO59hs8eLC++eYbnT59Wk8++aQaNGhg++NJeHi43Sg4AODuwUg4AKBEKF26tB588EHVqlUr330GDBigTz/9VK1atdKRI0f01VdfKSEhodA37brR8OHDFRISooyMDH3xxRdas2aNvLy89NFHH+n+++/XiRMndODAAb344ot3emi5zJw5U5MnT1adOnW0detWffvttzp37pz69++vunXr3lEdEyZMUFBQkP744w8tWbJEW7duLbK6lyxZos2bN8tisahLly6aP39+ntdx36h9+/ZKTEzUmjVrtG7dOlWvXl1jx45Vjx49JF3/mT700EPy9PTU8uXL7Ub8b0fOzIGkpCQ1adJE8+fPt92Eb8iQIerRo4d8fHy0adMmNW3aVCEhIbleY9KkSapTp45OnDihJUuWaO/evXm21ahRI61YsUKdOnXS2bNn9e233yogIEDjxo0rsue0AwBKHpO1KObOAQAAAACAW2IkHAAAAAAAgxDCAQAAAAAwCCEcAAAAAACDEMIBAAAAADCIWz+izGw269KlS/Lx8ZGHB39vAAAAAAA4l8ViUWZmpsqXLy8vr9yR261D+KVLl3Ty5ElXlwEAAAAAuMvUqVNHlStXzrXerUO4j4+PpOsHX7p0aRdXk7/s7GwlJCSoQYMG8vT0dHU5KAHoM3AUfQaOos/AUfQZOIo+A0eUpP5y9epVnTx50pZHb+bWITxnCnrp0qXl5+fn4mryl52dLUny8/Mr9h0KxQN9Bo6iz8BR9Bk4ij4DR9Fn4IiS2F/yuySaC6UBAAAAADAIIRwAAAAAAIMQwgEAAAAAMAghHAAAAAAAgxDCAQAAAAAwiFvfHb2kGDVqlC5evJjnM+Rw+wIDA/X666+7ugwAAAAAsCGEFwNnz56V2WxWhpkfR1GxXEt1dQkAAAAAkAupr7gweahMve6ursJtpB1f5+oSAAAAACAXrgkHAAAAAMAghHAAAAAAAAxCCAcAAAAAwCCEcAAAAAAADEIIBwAAAADAIIRwAAAAAAAMQggHAAAAAMAghHAAAAAAAAxCCAcAAAAAwCCEcAAAAAAADEIIBwAAAADAIIRwAAAAAAAMQggHAAAAAMAghHAAAAAAAAxCCAcAAAAAwCCEcAAAAAAADEIILwYsFotktbq6DKDYWLp0qZYuXerqMgAAAIAiRwgvBiwWiyRCOJBjx44d2rFjh6vLAAAAAIocIRwAAAAAAIMQwgEAAAAAMAghHAAAAAAAgxDCAQAAAAAwCCEcAAAAAACDEMIBAAAAADAIIRwAAAAAAIMQwgEAAAAAMAghHAAAAAAAgxDCAQAAAAAwCCEcAAAAAACDEMIBAAAAADAIIRwAAAAAAIN4uboAAHC1Xr162b5es2aNW7bZp08fQ9sz+vjcvT1XtEmfKdnt9evXT1lZWfL29tbKlSud3p5En6E9x9FnaM8RRvcXZ3LZSHhERIQaN26sEydO2NYdP35cQUFBrioJAADALWRlZdl9BgAUHy6djl62bFl99NFHriwBwF3uxr/i5rXsDm3SXsluzxVt0l7Jbq9fv34FLjuDu7+ntFfy26Q92itOXDodffDgwfrss8905MgRNW7c2G5bamqqpk+frm3btsnT01PdunXTiy++KG9vbxdVi5LEmp2plJQUjRo1ytWlOE1GRoZ8fX1dXYZTpKSkqEyZMq4uAwBKpJtHvxkNB4DixaUj4VWqVFFkZKQ++OCDXNveeecdnTlzRuvXr9fKlSv1008/6eOPP3ZBlQAAAAAAFA2X35ht6NCh6ty5s3788UdVqlRJkpSdna21a9fqyy+/VLly5SRJY8eO1euvv64JEya4slyUECZPHwVWK6+5c+e6uhSnyM7OVnx8vIKDg+Xp6enqcoqcO89gAAAAwN3N5Y8oK1eunIYNG6ZZs2bZ1l24cEHXrl1TzZo1betq1qypP/74Q1ar1RVlAgAAlAg3X7rHpXwAULy4PIRL1++Ufvr0aW3dulWSVLFiRZUqVUqnT5+27XP69GlVrVpVJpPJRVUCcEc3P+LCiEdeGN0m7ZXs9lzRJu2V7PZufiSZEY8oc/f3lPZKfpu0R3vFSbEI4b6+vho9erT+9a9/SZI8PT3Vo0cPzZo1S5cvX9a5c+f08ccf67HHHnNxpQAAAMVfzug3o+AAUPyYrLcxv/vMmTNKSUlRcHDwbTccERGh7t27a+DAgZIks9ms7t27KzExUceOHdOVK1dsd0f38PDQo48+qpdfflk+Pj6FbiM9PV1Hjx5Vo0aN5Ofnd9u1OlvOLfbLNhrg4krcR9rxdarJNeElVs414e7683MFd+8zKHr0GTiKPgNH0WfgiJLUX26VQx26Mdv58+f10ksvaffu3fL19VV8fLzWrVunuLg4vf766w4VtmTJEvtCvLy0adMm23LZsmU1Y8YMh14TAAAAAIDizKHp6NOmTVPVqlW1bds2lSpVSpIUGhqqnTt3OqU4AAAAAADciUMj4d9//722bNmi0qVL226QVrlyZf35559OKQ4AAAAAAHfi0Ei4p6enPDzsvyU1NVVly5Yt0qIAAAAAAHBHDoXwVq1a6R//+IfdugULFig0NLRIiwIAAAAAwB05NB194sSJGjJkiNauXau0tDR16dJFZrNZy5Ytc1Z9AAAAAAC4DYdCeLVq1bR69Wpt27ZNJ0+eVNWqVdW5c2eVKVPGWfUBAAAAAOA2HArhkuTt7a3OnTtLuv78s+L+jDYAAAAAAIoLh64Jnz17tvbv3y9J2r17t9q0aaPQ0FDt2rXLKcUBAAAAAOBOHArhq1evVt26dSVJn3zyiV544QVNmjRJH374oTNqAwAAAADArTgUwq9cuaJy5copMzNTR44c0aBBg9S/f3+dPHnSSeUBAAAAAOA+HLom3N/fX2fOnNGxY8fUuHFjlSpVSpmZmbJYLM6qDwAAAAAAt+FQCO/bt6/69++vrKwsvfzyy5KkgwcPqk6dOs6oDQAAAAAAt+JQCB8/frxatWqlUqVKqVWrVpKu3y09J5Dj9nh4eMhisbq6DKDYCA8Pd3UJAAAAgFM4/IiyBx980G65adOmRVbM3crDw0MWK1P6gRwDBw50dQkAAACAUzgcwnft2qWdO3fq/Pnzslr/O3r73nvvFWlhAAAAAAC4G4fujv7FF19o5MiRSkxM1Lp165SamqqNGzcqOzvbWfUBAAAAAOA2HBoJj4mJ0Zw5c9SuXTu1atVKc+fO1fr167Vnzx5n1QcAAAAAgNtwaCT8zJkzateunSTZpqJ36dJFmzdvLvrKAAAAAABwMw6FcH9/f6WmpkqSKleurMTERKWmpurq1atOKQ4AAAAAAHfi0HT0kJAQbd68WY8//rg6duyokSNHytvb2/a4MgAAAAAAkD+HQvjf//532zT0CRMmqEKFCkpNTdWzzz7rlOIAAAAAAHAnDoVwb29vu6+fe+65Ii8IAAAAAAB35dA14ZK0du1aPfPMM+rVq5ckae/evdqyZUuRFwYAAAAAgLtxKIQvWbJEs2bNUmhoqJKTkyVJ5cuX1/z5851SHAAAAAAA7sShEB4TE6N58+Zp5MiR8vC4/q333XefTpw44ZTiAAAAAABwJw6F8AsXLuj++++XJJlMJqcUBAAAAACAu3IohNepU0d79uyxW/fDDz/ovvvuK9KiAAAAAABwRw7dHX306NEaM2aMnnrqKV27dk1z585VTEyM3nvvPWfVBwAAAACA23BoJLxdu3aKjo5WQkKCAgMD9f3332vKlCkKCwtzVn0AAAAAALgNh0bCJalNmzZq06aNM2q5u1ktSju+ztVVuA3LtVRJ5V1dBgAAAADYcSiEx8XFqXr16qpZs6bOnz+vGTNmyMvLSxMnTlTFihWdVaPbCwgI0MWLF1W5MqGx6JRXYGCgq4sAAAAAADsOhfC33npL0dHRkqT3339fZ86ckbe3t9555x3NmjXLKQXeDebOnav4+HgFBwfL09PT1eUAAAAAAJzEoRCekpKiOnXqSJK2bdumr776Sn5+furSpYszagMAAAAAwK04FMI9PT117do1JSYmqmzZsgoICJDVatXVq1edVR8AAAAAAG7DoRDerFkzTZ06VX/88Yfat28vSTp16hTXgwMAAAAAUAgOPaLs7bffVnp6uipUqKC//e1vkqSDBw+qZ8+eTikOAAAAAAB34tBIeGBgoN5//327dd27d1f37t2LtCgAAAAAANzRLUP4jz/+qFatWkmSvvvuu3z3a9u2bdFVBQAAAACAG7plCB8xYoT27dsnSXrmmWfy3MdkMuno0aNFWxkAAAAAAG7mliE8J4BL0s8//+zUYgAAAAAAcGcO3ZgNAAAAAADcvkLfmC0lJUUfffSRdu3apYsXL6pChQoKCwvT2LFjVaNGDWfWCAAAAACAWyhUCL9w4YKefPJJlS5dWo8//rgCAwOVkpKiTZs26cknn9Tq1atVqVIlZ9cKAAAAAECJVqgQvmjRIjVo0EAff/yxfHx8bOtHjx6tcePGadGiRXrhhRecViQAAAAAAO6gUNeE79ixQ+PGjbML4JLk4+Oj0aNHa+fOnU4pDgAAAAAAd1KoEH769Gk98MADeW5r0qSJTp06VaRFAQAAAADgjgoVws1mszw88t7V09NT2dnZRVoUAAAAAADuqFDXhFutVttHftsAAAAAAEDBChXC09PT1bhxY2fXctcaNWqULl68qMqVK7u6FNyBwMBAvf76664uAwAAAEAxVqgQvnjxYmfXcVc7e/aszGazyijT1aXgNp2/yiUZAAAAAG6tUCG8devWkqTff/9d1atXz7X9999/L9qq7kKeJml0iyquLgO36eO4c64uAQAAAEAJUKgbs+Xo3r17nut79+5dJMUAAAAAAODOHArhed2AzWKxFFkxAAAAAAC4s0JNR584caIk6dq1a7avcyQlJem+++4r+soAAAAAAHAzhQrhnp6eeX5tMpkUGhqq/v37F31lAAAAAAC4mUKF8BkzZshqtapu3boaNmyYPDwcmsUOAAAAAADkwDXhVqtVc+bMUXY2j2ICAAAAAOB2FDqEe3h4KDAwUOnp6c6sBwAAAAAAt+XQvPLx48frtddeU2JiosxmsywWi+0DAAAAAAAUrFDXhOd44YUXJElbtmzJte3o0aNFUxEAAAAAAG7KoRC+ePFiZ9UBAAAAAIDbcyiEt27d2ll1AAAAAADg9hwK4ZJkNpt14sQJ/fnnn7Jarbb1bdu2LdLCAAAAAABwNw6F8J9//lmjRo1ScnKyTCaTrFarTCaTJK4JBwAAAADgVhy6O/qMGTMUFhamPXv2yN/fXz/88IP69OmjDz/80EnlAQAAAADgPhwK4T///LOioqJUvnx5Wa1WlStXTq+88opmz57trPoAAAAAAHAbDoVwSfLx8ZEk+fn5KTU1VeXLl9eZM2eKvLC7icVikcV66/0A4HYtX75cW7dudXUZAAAAdz2HrgmvW7euDh48qODgYDVu3FjR0dHy9/dXYGCgs+q7K1gsFleXAMDN7dy5UxkZGa4uAwAA4K7nUAh/4YUXbHdEf/755/X8888rNTVV06dPd0pxAAAAAAC4k9t+TnjDhg21YcOGIi8IAAAAAAB35fA14ampqVqzZo3mzZsnSTp37pz++OOPIi8MAAAAAAB341AIP3r0qLp06aI5c+Zo7ty5kqQjR45o6tSpTikOAAAAAAB34lAInz59ukaPHq2NGzfKy+v6TPbmzZsrPj7eGbUBAAAAAOBWHArhCQkJGjhwoCTJZDJJkvz9/ZWWllb0lQEAAAAA4GYcCuHlypXTuXPn7NYlJyerSpUqRVoUAAAAAADuyKEQ3q1bN0VFRenkyZOSpN9//11Tp05Vr169nFEbAAAAAABuxaEQPmbMGAUEBOjRRx/V5cuX1aFDB3l6emrEiBHOqg8AAAAAALfh0HPCvb29NXPmTEVFRSkpKUlVqlRRjRo1nFUbAAAAAABupVAhfOLEibfc57333rvjYgAAAAAAcGeFmo7u6elp97F+/fpc6wAAAAAAQMEKNRI+Y8YMu+UtW7bkWgcAAAAAAArm0I3ZcuQ8IxwAAAAAABSeQzdmuxMjR45UQECApkyZYlt36NAhPf3001q1apVq165tVCkAACcbPXq0kpKSVKtWLX388cdOb+/GR2WuWbPG6e29++672rlzp8LCwvTKK684vT3J+GPs06ePoe0NHjxYly5dUvny5RUTE+P09ozuowMHDlRqaqr8/f21dOlSp7cXHx+vadOmafLkyQoODnZ6e5Lxfcbo34moqCgdPnxYTZo00cyZM53e3sKFC7Vq1Sr17dtXzzzzjNPbe+uttxQXF6cWLVrorbfecnp7kvF9ZuXKlVq0aJGGDBmifv36Ob09o/uM0b8T7v7vkjPd1kj47ZgyZYo2btyo7777TpJ07do1TZo0SePHjyeAA4CbSUpKsvvsbnbu3Gn3GXfu0qVLdp+dzeg+mpqaavfZ2aKjo5WRkaHo6GhD2rsbHD582O6zs61atcrus7PFxcXZfXZHixcvtvvsbEb3GZQchQrhH330kd1HRkZGrnW3EhAQoEmTJmny5MlKS0vTP//5T5UrV07BwcEaNGiQWrVqpW7dumnTpk2279m+fbt69eqlkJAQPfTQQ3r33Xdv/0gBAIYYPXp0gctF7ca/xOe1XNRu/rfIiH+bjD5Go9sbPHhwgctFzeg+OnDgwAKXi1p8fLzOnj0rSTp79qzi4+Od2p7k/n00KiqqwOWitnDhwgKXi9rNI99GjIQb/TNcuXKlLBaLJMlisWjlypVObc/oPuPuv4NGt+dshZqOvnfvXrvlZs2a2a0r7DXijz32mDZs2KAXX3xRcXFx+vTTTzV8+HBNmzZNHTp00KFDhzR8+HDVq1dP9erV06RJk/TSSy+pT58+SktL06+//urAoQHGSbtm0YWUFI0aNcqwNjMyMuTr62tYeyjZUlJS5O3tbUhbN48sutto+M2j3zt37jRsSrq7unn029mj4Ub30ZtHv509Gn7z6Hd0dLQWLFjg1Dbd3c0jmc4e2bx59HvVqlVOnZJ+8+i3O46G3zz6vXjxYqdOSTe6z6BkKVQIX7JkSZE1OGXKFHXp0kVjxozRTz/9pLZt26pTp06Srof7Tp06af369RozZoxKlSqlpKQknT9/XpUqVVKzZs2KrA4AAAB3lDMKnt8ycDfKGQXPbxkwkmE3ZstRtWpVVaxYUfXr11dsbKz+85//qGXLlrbt2dnZ6t27tyRpzpw5+uSTT9S1a1fVqlVLY8aMUYcOHYwuGbilMqU8VLlyoObOnWtIe9nZ2YqPj1dwcLA8PT0NaRMl26hRo5SRkeHqMgAYICAgwC54BwQEuLAaoHjw8PCwC94eHobdGgvIxaW9r0aNGurRo4f27t1r+9i3b5/efvttSVKTJk00Z84cff/99xoyZIjGjRun9PR0V5YMALiFWrVqFbhc0oWFhRW4DMeVL1++wOWiZnQf9ff3L3C5qI0dO7bAZTiuSZMmBS4Xtb59+xa4XNRatGhR4LI7iIyMLHC5qBndZ1CyuDSE9+7dW9u3b1dsbKzMZrOysrK0f/9+HT9+XFlZWfr666916dIleXp6qly5cjKZTIz6AUAxd/Pjnpz9+KebH1Pi7MeW3Hz9txHXgxt9jEa3d/MjyZz9iDKj++jNjyRz9iPKgoODbaPfAQEBhjyizN376M2Pl3L246Zuvv7b2Y8oc8WN2Yz+Gfbr1882+u3h4eH0R5QZ3Wfc/XfQ6PaczaUhvHr16vrXv/6lzz//XA899JDCw8M1a9YsZWVlSZLWrl2rzp07KyQkRO+//74+/PBD+fj4uLJkAEAh5IwsutsoeI6c0W9GwYtOzui3s0fBcxjdR3NGv509Cp5j7Nix8vX1ZRS8COWMZBo1opkz+u3sUfAcOaPf7jgKniNn9NvZo+A5jO4zKDlMVqvV6uoinCU9PV1Hjx5Vo0aN5Ofn5+py8pVzi/23wqu5uBLcro/jzsm3cg2uCUexlXNN+Lx58+gzKBTOM3AUfQaOos/AESWpv9wqh3JHAgAAAAAADEIIBwAAAADAIIRwAAAAAAAMQggHAAAAAMAghHAAAAAAAAxCCAcAAAAAwCCEcAAAAAAADEIIBwAAAADAIIRwAAAAAAAMQggHAAAAAMAghHAAAAAAAAxCCAcAAAAAwCBeri4AkoeHh6wWi6vLAODGwsLClJKS4uoyAAAA7nqE8GLAw8NDVishHIDzPPnkk4qPj3d1GQAAAHc9pqMDAAAAAGAQQjgAAAAAAAYhhAMAAAAAYBBCOAAAAAAABiGEAwAAAABgEEI4AAAAAAAGIYQDAAAAAGAQQjgAAAAAAAYhhAMAAAAAYBBCOAAAAAAABiGEAwAAAABgEEI4AAAAAAAGIYQDAAAAAGAQQjgAAAAAAAYhhAMAAAAAYBBCOAAAAAAABvFydQG4LtsqfRx3ztVl4Dadv5qtGq4uAgAAAECxRwgvBgICAnTx4kX5Vq7s6lJwm2pICgwMdHUZAAAAAIo5QngxMHfuXMXHxys4OFienp6uLgcAAAAA4CRcEw4AAAAAgEEI4QAAAAAAGIQQDgAAAACAQQjhAAAAAAAYhBAOAAAAAIBBCOEAAAAAABjErR9RZrFYJElXr151cSUFy87OliSlp6fziDIUCn0GjqLPwFH0GTiKPgNH0WfgiJLUX3LyZ04evZnJarVajSzISH/++adOnjzp6jIAAAAAAHeZOnXqqHLlyrnWu3UIN5vNunTpknx8fOThwcx7AAAAAIBzWSwWZWZmqnz58vLyyj353K1DOAAAAAAAxQnDwwAAAAAAGIQQDgAAAACAQQjhAAAAAAAYhBAOAAAAAIBBCOEAAAAAABiEEA4AAAAAgEEI4QAAAAAAGIQQDgAAAACAQQjhAAAAAAAYhBDuYpcvX9b48eMVEhKisLAwLVq0yNUloRiLiorSAw88oJCQENtHcnKyq8tCMRITE6O+ffvqgQce0IQJE+y2JSQkqH///mrWrJm6d++u7777zkVVojgpqM907NhRTZs2tZ1vevTo4aIqUZxkZWVp8uTJ6tixo61frFmzxradcw1udqs+w7kGeXn99dcVHh6u5s2bq2PHjvr0009t20r6ecbL1QXc7aZMmaKsrCzt2LFDp0+f1pAhQ1S3bl21a9fO1aWhmBoyZIheeuklV5eBYiogIECjRo3S7t27deHCBdv6a9euaeTIkerfv79iYmK0ZcsWjRkzRps2bVLlypVdWDFcLb8+k2POnDl6+OGHXVAZiiuz2ayAgAB9/vnnuueeexQXF6fnnntO99xzjx544AHONciloD4TEhIiiXMNcnv66ac1efJk+fr6KiUlRUOHDlWtWrXUuXPnEn+eYSTchdLT07VhwwZNmDBB/v7+CgoKUv/+/bVy5UpXlwaghOrSpYs6deqkihUr2q3/4YcflJGRoREjRsjb21vdu3dX/fr1tWHDBhdViuIivz4D5MfPz0/jx4/XvffeK5PJpJYtW6p58+bat28f5xrkqaA+A+Tn/vvvl6+vr23Zw8NDSUlJbnGeIYS70MmTJ2W1WtWgQQPbuoYNG+qXX35xYVUo7v7973+rdevW6t27t7788ktXl4MS4pdfflGDBg3k4fHf036jRo2UkJDgwqpQEkRFRalNmzaKiIhQXFycq8tBMZSenq5Dhw6pfv36nGtQKDf2mRyca5CXWbNmKTg4WO3bt1d6erp69+7tFucZQrgLpaeny9/f325duXLllJaW5qKKUNxFRERow4YN2r17tyZNmqS///3v2rhxo6vLQgmQlpamcuXK2a3jfINbee+99xQbG6utW7eqW7duGj58uE6fPu3qslCMWCwWRUVF6S9/+YvCwsI41+CWbu4zEuca5O/FF1/Uvn37tGLFCvXq1ct2Pinp5xlCuAv5+fnl6ixXrlxRmTJlXFQRirsmTZqoUqVK8vLyUps2bTRo0KASNfUGrlOmTBlduXLFbh3nG9xKy5Yt5evrK19fXz311FNq3Lixtm/f7uqyUExYrVa9+eabOnv2rGbPni2TycS5BgXKq89InGtQMJPJpKZNm8rb21vR0dFucZ4hhLtQnTp1JMlu+vnRo0ftpuYABfHw8JDVanV1GSgB6tevr4SEBFksFtu6o0eP2l0OA9yKyWTinANJ18PU22+/raNHj2r+/Pm2//xyrkF+8uszeeFcg7xkZ2crKSnJLc4zhHAX8vPzU9euXTV79mylpqYqISFBX375pfr16+fq0lBMrVu3TqmpqbJYLNq7d69iYmLUuXNnV5eFYsRsNiszM1Nms1kWi0WZmZm6du2aWrduLR8fH82fP19ZWVlav369EhIS9Oijj7q6ZLhYfn0mOTlZe/fuVVZWlrKysvTvf/9bhw4dsk0fxd1typQp2r9/vxYsWGB3aR3nGuQnvz7DuQZ5uXTpkr7++mvb/3vj4uK0dOlSPfjgg25xnjFZ+TOTS12+fFmvvfaaduzYoTJlymjYsGEaMmSIq8tCMTVo0CAdO3ZM2dnZqlGjhiIiIjRgwABXl4ViJDo6WnPmzLFb9/jjj2vmzJk6duyYXnvtNR07dkw1a9bUG2+8obZt27qoUhQX+fWZYcOG6cUXX1RSUpJKlSqlevXq6fnnn1doaKiLKkVxcfr0aXXs2FHe3t7y8vrv026fe+45jRw5knMNcimoz3Tq1IlzDXK5fPmyxowZo6NHj8psNqtatWrq27evhg8fLpPJVOLPM4RwAAAAAAAMwnR0AAAAAAAMQggHAAAAAMAghHAAAAAAAAxCCAcAAAAAwCCEcAAAAAAADEIIBwAAAADAIIRwAABg07FjR61YscLwdqOiovTSSy8VuE90dLQGDhxoUEUAADgHIRwAAINEREQoKChIy5Yts1ufmpqqkJAQBQUFKTExsUjaKorAeurUqXxrCgoK0u7du+/o9Qviqj8GAADgbIRwAAAMdP/992v58uV261avXq2aNWu6qCIAAGAkQjgAAAbq0KGDzp07p/3799vWLVu2TE8++aTdfvv371dERIRCQ0PVoUMHffjhhzKbzbbtQUFBWrJkiQYMGKCQkBD16tVLe/fulSR98803+uc//6n4+HiFhIQoJCREe/fuVWZmpsaNG6fw8HCFhISoa9eu+uKLL4rkuI4fP67nnntODz74oMLDw/XWW28pPT3dtv2jjz5S165dFRISonbt2mnq1Km6evVqnq81bNgwJScna8qUKQoJCVGPHj3sts+ZM0dhYWFq3bq13njjDbv3BQCA4o4QDgCAgTw9PfXEE0/YpqTv3btXqampat++vW2f3377TUOGDNGAAQO0a9cuxcTEKDY2VvPmzbN7rRUrVujdd9/Vjz/+qDZt2ujll1+WJPXu3VvPPfecgoODtW/fPu3bt08tW7aU1WpVu3bt9O233youLk6vvvqqZsyYoR07dtzRMZ0/f16DBg1S27ZttXXrVq1evVonT57U9OnTbfvUrl1bCxcu1E8//aT58+dr+/btmjt3bp6vN3/+fNWoUUNvvPGG9u3bp2+//da27cCBAypdurRiY2O1fPlybdiwQatXr76j+gEAMBIhHAAAg/Xv318bN27U5cuXtXTpUj3xxBMymUy27f/zP/+jDh06qEePHvLy8lLNmjU1bNgwrVq1yu51nn32WdWuXVteXl7q37+/kpOTde7cuXzb9fX1Vb9+/VSuXDl5eHioffv2Cg8P165duwqs9/HHH1fLli3tPm60evVq1a5dW0OGDJG3t7cqVaqksWPH6uuvv1Z2drYkqU+fPqpRo4ZMJpPq16+vQYMG3bLdvFSvXl1Dhw6Vt7e36tatqzZt2ujAgQMOvw4AAK7i5eoCAAC421SvXl2hoaFasGCBYmNj9corrygrK8u2/eTJk9qzZ49d2LVYLLJarXavExAQYPu6dOnSkqS0tDRVqVIlz3azsrI0e/ZsxcbG6ty5czKZTMrIyJC/v3+B9X711VeqXbu23bqgoCC7eg8fPmxXr9Vqlclk0rlz51StWjUtW7ZMy5cvV3Jyssxms8xmsypUqFBgu3m58Zglyc/PT2lpaQ6/DgAArkIIBwDABQYOHKgRI0aoS5cuCggI0KlTp2zbqlatqp49e2rGjBm3/fo3jqznWLhwoWJjY/XJJ5+oTp068vDw0N/+9rdc4d5RVatWVfPmzbV48eI8t+/bt09Tp07VggUL1KJFC5UqVUqLFi3SZ5995lD9AAC4A6ajAwDgAuHh4Vq4cKEmTZqUa9vAgQO1ceNGrV+/XllZWcrOzlZiYqK2b99e6NevWrWqUlJSlJmZaVt35coV23Rxi8Wi9evX39aU8Jv17dtXR48e1RdffKGrV6/KarUqJSVFW7ZssbXr4eGhSpUqqVSpUjp8+LBiYmJuWf9vv/12x7UBAFDcEMIBAHABk8mktm3bqnr16rm2NW3aVAsXLtSKFSv08MMPKzQ0VOPGjVNycnKhX7979+6qW7euwsPD1bJlS+3du1fPPvusAgMD1aFDB4WHh+u7775Tp06d7vhYatSooWXLlmn37t3q3LmzWrZsqaFDh+rYsWOSpLCwMA0YMEARERFq0aKFPvjgA/Xp06fA1xw1apRiY2PVsmVL9erV645rBACguDBZ73QOGgAAAAAAKBRGwgEAAAAAMAghHAAAAAAAgxDCAQAAAAAwCCEcAAAAAACDEMIBAAAAADAIIRwAAAAAAIMQwgEAAAAAMAghHAAAAAAAgxDCAQAAAAAwCCEcAAAAAACD/D+sL6DNDe578QAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
],
"source": [
"feature = 'MentalHealth'\n",
"plot_hist(feature)\n",
"plt.figure(figsize=(15,3),dpi=80)\n",
"sns.boxplot(x= df[feature], y=df['HeartDisease'], data=df, orient=\"h\")\n",
"plt.title(f\"{feature} Distribution\", fontweight='bold')\n",
"plt.show()\n",
"# plot_kde(feature, df)"
]
},
{
"cell_type": "markdown",
"id": "77dfe169",
"metadata": {
"id": "77dfe169"
},
"source": [
"## MentalHealth:\n",
"* `MentalHealth` following same distribution as `PhysicalHealth` and has outliers and most of the data (75%) is distributed between 0 to 3 days. This seems like people who are suffering from physically illness are also suffering from Mental illness. \n",
"* While the boxplots show there are ``NO Significant`` differences between adults with and without heart disease in MentalHealth. \n",
"* Lets handle outliers and normalize to draw further insights."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "873ca989",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 962
},
"id": "873ca989",
"outputId": "5782bb75-727f-4fd5-d1e2-5033dab4f031"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAECCAYAAAB33x2nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAxOAAAMTgF/d4wjAAAvm0lEQVR4nO3df3zNdeP/8efZZmObzZi1H7qImPzcuvwsEjEhoh/yIyKS/GiEElEUykW4tvhcUaHFdesHFZchXDE/IsuGwtTV0Da/omkb+3XO9499d+rMrB027+Pscb/d3HbO+5yd8zzvva931/O8Xu/322SxWCwCAAAAAAA3lYvRAQAAAAAAqIgo5AAAAAAAGIBCDgAAAACAASjkAAAAAAAYgEIOAAAAAIABKOQAAAAAABiAQg4AAAAAgAEo5ACACmHv3r0KDQ1VaGiofvnlF6PjXFNUVJRCQ0PVqVMno6OUSqdOnRQaGqqoqKhye481a9ZY/3aFBg0apNDQUE2ePPmmvi8AAGXJzegAAADcqIyMDEVFRWnLli06e/asPDw85O/vrwYNGmjevHlyd3c3OqIGDRqkffv2lficlStXqnnz5ho8eLB8fX1vUrKr/bmAurm5ydvbWyEhIerQoYMGDx4sPz8/6+OPPPKI0tPT1bx581K99i+//KIHHnhAUsHnbd269V/+zp133qnBgwfb+SlKLyoqStHR0QoJCdG2bdtu2vsCAEAhBwDc8qZNm6YNGzbotttu08MPP6z8/HydOHFCW7duVW5urkMU8q5du6phw4aSpMTERCUmJkqSTeELDAxU7dq1dd999xmSsajmzZurUaNGOnXqlL755ht9//33+uSTT7RixQrVq1dPkjRmzJhyzZCTk6NmzZqpWbNm5fo+xTHqfQEAFQeFHABwy9uxY4ckaerUqeratat1eXp6uqpUqXLN37NYLFq3bp0+/PBDJScny9XVVU2aNNH48ePVuHFj6/O2b9+uZcuW6fjx48rPz1doaKhGjx6ttm3bSiqY2vzyyy9LkubPn69Fixbp3Llzatq0qV577TXVq1dPTz75pPX1oqKirIV86tSpNpmKG63t1KmTUlJSNHDgQJ09e1ZxcXGqWbOmJk+eLC8vL82ePVunTp1S48aNNXv2bNWuXVuSlJWVpffff1+xsbFKSUmRn5+f7rnnHo0bN041a9b8y/Xavn17jR07VpJ09OhRDRgwQOfOndPLL7+sjz/+2CbbmDFjNHbsWGVmZmr27NnasWOHLl68KC8vL9WuXVvDhw+Xr6+vzRcQhbf79OmjN9980zoyP3LkSCUmJio+Pl4TJkyQj4+Pdf0eO3bMJmNOTo5mzJih//znP6pUqZJ69OihiRMnyt3dXXv37rW+x9atW1WrVq2rlkVHR2vt2rWSpJSUFGuGlStXKiUl5ar3zc3N1UcffaQ1a9bo1KlT8vLyUuPGjTVmzBg1bdr0qr/h4MGDtXz5cqWnp6tFixaaM2eO/P39/3LdAwAqBo4hBwDc8gIDAyUVjJSPGzdOS5cuVWJioqpWrSoXl2v/p27RokWaNGmSTp48qS5duqhVq1bauXOn+vXrp++//16S9Mknn2jEiBE6dOiQ2rdvr/vvv1+JiYkaOnSozfTmQnPnzlWrVq1UvXp17du3T8OGDdPly5fL5HOuWrVKZrNZ9evX16lTpzRhwgRFRkaqSZMmqlq1qvbv36/XXntNUsGXDSNGjFBUVJTy8vL08MMPKzAwUJ9++qmeeOIJZWZm2vXeDRs21BNPPCGpYIT/Wsfhv//++/r000/l7u6uxx57TO3atdPly5eVlJSkwMBAPfLII9bndu3aVYMHD9a9995r8xr/+te/lJ+fr969e1v/ttcSGxurpKQk3Xffffrtt9+0YsUKvf3226X+XPfee691ur2Xl5cGDx6swYMHX/N9J0+erDlz5ujEiRPq2rWrbr/9dn399dfq37+/vvvuO5vnpqSkaOXKlWrbtq3MZrN27NihBQsWlDobAMD5MUIOALjlzZkzR5MmTVJycrJiY2MVGxsrqeBY6KVLl+q222676ndycnK0fPlySdJdd90lLy8veXl5KSAgQGfOnFFMTIzmzJmjpUuXSio4nrhatWqSpNtvv10//fSTPvjgg6tOvrZ48WI1adLEWvLT0tL03//+V927d7/hz3n//fdr8eLFOnz4sB599FFduXJFkZGRevrpp7VixQrNnj1bCQkJkqTvvvtO3377rSQpPDxc7u7uaty4sQ4cOKCUlBRt3rxZffr0sev9a9WqZb199uxZm/uFsrOzJUl169ZV165dVbt2bQUHBysvL09ubm4aPXq01qxZI0kaOHBgsceQR0RE6J///Kf1fuHzi3PnnXfqo48+suZbsmSJ/v3vf+ull14q1Wfq2bOnkpOTlZiYqGrVqtnMWIiPj7d57unTp7V+/XpJBTMb+vbtK4vFop49e+r48eNavny57r77buvzXVxcFBMTo+DgYFWpUkUfffSRDh48WKpcAICKgUIOALjlNWvWTJs2bdKxY8eUkJCgnTt3avPmzTp27Jjee+89TZky5arfuXjxonXkes+ePdqzZ4/N46mpqTY/Dx06pEOHDtk8Jy0t7arXbdCggSTpb3/7mzw8PJSdnW19jRtVOJ36zyd8KzwuvWrVqpIKpqn/Obck65TsP7ueTCdPnrTeDggIKPY5Tz/9tE6cOKGdO3daDyUonF7/0EMPlep9Cg8FKI369etbbxeu+8uXL+vixYvFPj8/P7/Ur11USkqK9Xbh38JkMql+/fo6fvz4VevU399fwcHBkmT9MsfemQkAAOdGIQcA3PJ2796tVq1aWS9R9cQTT6hnz55KSkpSRkZGsb/j5+enKlWq6PLly3r55Zc1ZMgQ62MZGRnWsh4UFKSTJ09q0KBBeuWVV6zPycnJ0fnz56963aSkJOsIeeFocWEpu1FubgX/2TaZTNZlrq6uxT43KCjIenvt2rVq1KiR9f7p06etBbG0jh49aj1uvFmzZsWOjksF076joqJkNpuVkpKi2NhYzZ8/X2+88YYeeugh62eQJLPZXOxreHh4lDrX8ePHrbeTkpIkSVWqVJGfn588PT2tj6Wnp6tWrVpXHYMu/bEOr5WnUEhIiM17NW/eXBaLRT/++KOkq//OlSpVst7+898MAIBCFHIAwC1v/PjxcnNzU9OmTXXbbbcpNTXVWs46dOhQ7O+4u7tr0KBBevfddzVv3jzt379f1atXV0pKiuLj4zV9+nQ98sgjGjZsmF599VXFxMQoOTlZISEhOnPmjOLj4zV48GDrSc8KjR49Wu3atbOOuAcGBur+++8v189fnLvvvlvh4eE6cOCAhg4dqo4dO8pkMunnn39WYmKivvrqq2uW6kJxcXG6cOGCTp06pT179igvL081a9bUm2++ec3fWbp0qWJjY9WwYUP5+vpap9AXjur7+/tbZw4sXLhQ27ZtU9euXdWiRYvr+pw//vijBg4cqKCgIOuhCn379pXJZFLdunXl7e2tjIwMzZw5U2FhYdYvFf6ssGifPn1aL7/8sry9vTVp0qSrnhcYGKju3btrw4YNmjVrlr777judOHFCSUlJcnNz4xJpAAC7UcgBALe8oUOHateuXTp8+LB27twpV1dX3XXXXerXr5/NWdeLeuGFF1SvXj2tWrVK+/btU05OjgICAtStWzeFhYVJkvr166fbbrtN77//vn744Qft27dP/v7+at++fbGXJ5s6darmz5+vCxcuqFWrVnr11VdtRmpvFhcXFy1btkzLly9XbGysNm7cKDc3N4WEhGjIkCE21xK/lsTERB0+fFje3t4KDQ0t9jrkRTVq1Ei7du3Szp07lZGRIW9vb7Vv314TJ06UVDDKP336dEVHR+vgwYNKSEhQ7dq1r7uQd+vWTdWqVdO6devk6+ur7t27a8KECZIKRuvnzp2ruXPnKikpSa6urho5cuRVJ33r1q2btm3bpl27dlmPVx83blyx7/fWW2+padOmWrt2rTZu3CgvLy/dd999GjNmTKmvxQ4AQCGTxWKxGB0CAIBb2Z8ve1bclGgAAIDicNkzAAAAAAAMQCEHAAAAAMAATFkHAAAAAMAAjJADAAAAAGAApz7Lel5entLT0+Xh4SEXF757AAAAAACUL7PZrOzsbPn6+srNreTK7dSFPD09XcnJyUbHAAAAAABUMHXq1FGNGjVKfI5TF3IPDw9JBSuiSpUqkqT8/HwlJSWpQYMGcnV1NTIeUObYvuHM2L7hzNi+4azYtuHMrrV9X758WcnJydY+WhKnLuSF09SrVKkiT09PSQUrTZI8PT3ZKcDpsH3DmbF9w5mxfcNZsW3Dmf3V9l2aw6Y5sBoAAAAAAANQyAEAAAAAMACFHAAAAAAAA1DIAQAAAAAwAIUcAAAAAAADOPVZ1gEY7/XXX1daWprRMWykp6dLknx9fQ1O8oegoCBNmzbN6BgAAAC4iSjkAMpVWlqaTv2SIpdK3kZHsTLnZkiSMq4YHOT/K8wDAACAioVCDqDcuVTylle97kbHsMr8aYMkOUymwjwAAACoWDiGHAAAAAAAA1DIAQAAAAAwAIUcAAAAAAADUMgBAAAAADAAhRwAAAAAAANQyAEAAAAAMACFHAAAAAAAA1DIAQAAAAAwAIUcAAAAAAADUMgBAAAAADAAhRwAAAAAAANQyAEAAAAAMACFHAAAAAAAA1DIAQAAAAAwAIUcAAAAAAADUMgBAAAAADAAhRy3jNWrV2v16tVGxwAAK/ZLAADgRlDIccuIi4tTXFyc0TEAwIr9EgAAuBEUcgAAAAAADEAhBwAAAADAABRyAAAAAAAMQCEHAAAAAMAAFHIAAAAAAAxAIQcAAAAAwAAUcgAAAAAADEAhBwAAAADAABRyAAAAAAAMQCEHAAAAAMAAFHIAAAAAAAxAIQcAAAAAwAAUcgAAAAAADOBmdABIPXv2tN5et26dgUn+4IiZAAAlc8R9N5lKp3fv3tbbjpDJEdfRo48+qpycHLm7u+uzzz4zOo4kx1xPCQkJmjVrlqZOnaqwsDCj4zjcti053jqSpKioKG3evFkREREaO3as0XEkSVu3btWiRYsUGRmpBx54wOg46tWrlywWi0wmk7788kuj45QZw0bIBw0apEaNGunnn3+2Lvvpp58UGhpqVCQAAAA4qJycHJufKF5UVJSuXLmiqKgoo6M4LEdcR5s3b7b56QiWLFkii8WiJUuWGB1FkmSxWGx+OgtDp6xXrVpVixYtMjKC4f78zWpx943giJkAACVzxH03mUrH0TI5Wh6pYHS8pPtGcMT1lJCQoLNnz0qSzp49q4SEBEPzsI5Kp+gXA47wRcHWrVuVnZ0tScrOztbWrVsNzdOrV68S79/KDJ2y/uSTT+r999/XDz/8oEaNGtk8lpGRodmzZ2v79u1ydXVVt27dNGHCBLm7uxuUFka7dOmSMjMzNWrUKKOjOLQrV66ocuXKRsewSktLk8XianQMh2bJz1ZaWhrbdik44vbt5eVldAzA6RUdFWeUvHjFFbv33nvPoDSOyRHXUdFR8c2bNxs+bb3oqPiSJUsMnbZedFTcmUbJDR0h9/f31+DBg/X2229f9dgbb7yhM2fOKDY2Vp999pm+++47vfPOOwakBAAAABxf4cjvte6DdVRahaPj17qPsmP4Sd2GDRumLl266Ntvv1X16tUlSfn5+Vq/fr0+/fRT+fj4SJLGjh2radOmafz48UbGhYF8fHzk4+OjxYsXGx3FYeXn5yshIUFhYWFydXWMUelRo0Yp5Uy60TEcmsnVQ0G3+bJt/wVH3b4BwFEEBATYFMyAgAAD0zgm1lHpeHh42JRwDw8PA9M4N8Mve+bj46Phw4dr/vz51mUXL15Ubm6uQkJCrMtCQkJ07tw5p5qeAAAAgL9W9JBFDmEsXtFpzkZPe3ZEjriOIiIiSrxvhOeee67E+zebyWQq8f6tzPBCLhWccT0lJUVff/21JMnPz0+VKlVSSkqK9TkpKSmqWbOmU6186erLPzjC5SAcMRMAoGSOuO8mU+k4WiZHyyPpqsucOcJlzxxxPYWFhVlHfAMCAgy/pBfrqHQc8UuCBx54wDoq7uHhYfhlz4pe5ozLnpWxypUra/To0Xr33XclSa6ururRo4fmz5+vS5cu6fz583rnnXf08MMPG5wUAAAARigcFWd0vGRjx45V5cqVHaLUOSpHXEeFo+KOMDpe6LnnnpPJZDJ8dLxQ4cCssw3QXtcx5GfOnFFaWlqZfqP02GOP6f3339dvv/0mSXrllVc0e/ZsPfjgg3JxcdGDDz6o0aNHl9n7ORJH+LawKEfMBAAomSPuu8lUOp9//rn1HAmOwBHXkSOMihfliOspLCxMn3zyidExrBxt25Ycbx1JBV8SONIXBFLBKLnRI+N/5kyj4n9mVyG/cOGCJk6cqN27d6ty5cpKSEjQhg0bFB8fr2nTptn1xh9++KFtEDc3m1P+V61aVXPmzLHrNQEAAAAAuFXYNWV91qxZqlmzprZv365KlSpJklq3bq2dO3eWSzgAAAAAAJyVXSPk33zzjbZs2aIqVapY5+7XqFFDv/76a7mEAwAAAADAWdk1Qu7q6ioXF9tfycjIUNWqVcs0FAAAAAAAzs6uQt6yZUv985//tFn23nvvqXXr1mUaCgAAAAAAZ2fXlPUXX3xRQ4YM0fr165WZmamIiAjl5eXp3//+d3nlAwAAAADAKdlVyG+77TZ98cUX2r59u5KTk1WzZk116dJFXl5e5ZUPAAAAAACnZPd1yN3d3dWlSxdJUlZWllxdXcs8FAAAAAAAzs6uY8gXLFigxMRESdLu3bvVpk0btW7dWrt27SqXcAAAAAAAOCu7CvkXX3yhO+64Q5K0ZMkSvfDCC5oyZYoWLlxYHtkAAAAAAHBadhXy33//XT4+PsrOztYPP/yggQMHqm/fvkpOTi6neAAAAAAAOCe7jiH39vbWmTNndOzYMTVq1EiVKlVSdna2zGZzeeUDAAAAAMAp2VXIH3nkEfXt21c5OTmaNGmSJOnQoUOqU6dOeWQDAAAAAMBp2VXIIyMj1bJlS1WqVEktW7aUVHDW9cJyDpSn9u3bGx0BAGywXwIAADfC7sue3XPPPTb3mzVrVmZhgJL079/f6AgAYIP9EgAAuBF2F/Jdu3Zp586dunDhgiwWi3X53LlzyzQYAAAAAADOzK6zrH/00UcaOXKkTpw4oQ0bNigjI0ObNm1Sfn5+eeUDAAAAAMAp2TVCHhMTo+joaHXo0EEtW7bU4sWLFRsbq71795ZXPgAAAAAAnJJdI+RnzpxRhw4dJMk6XT0iIkJfffVV2ScDAAAAAMCJ2VXIvb29lZGRIUmqUaOGTpw4oYyMDF2+fLlcwgEAAAAA4KzsmrIeHh6ur776Sn369FGnTp00cuRIubu7Wy+BBgAAAAAASseuQv6Pf/zDOlV9/PjxqlatmjIyMvT000+XSzgAAAAAAJyVXYXc3d3d5vazzz5b5oEAAAAAAKgI7DqGXJLWr1+voUOHqmfPnpKk/fv3a8uWLWUeDAAAAAAAZ2ZXIf/www81f/58tW7dWqmpqZIkX19fLVu2rFzCAQAAAADgrOwq5DExMVq6dKlGjhwpF5eCX61bt65+/vnncgkHAAAAAICzsquQX7x4UXfeeackyWQylUsgAAAAAAAqArsKeZ06dbR3716bZfv27VPdunXLNBQAAAAAAM7OrrOsjx49WmPGjNGAAQOUm5urxYsXKyYmRnPnzi2vfAAAAAAAOCW7Rsg7dOigqKgoJSUlKSgoSN98841mzpypdu3alVc+AAAAAACckl0j5JLUpk0btWnTpjyyAHBS5twMZf60wegYVubcDElymEwFeXyNjgEAAICbzK5CHh8fr8DAQIWEhOjChQuaM2eO3Nzc9OKLL8rPz6+8MgK4hQUFBRkd4Srp6QU/fX0dpQT7OuR6AgAAQPmyq5C/9tprioqKkiTNmzdPZ86ckbu7u9544w3Nnz+/XAICuLVNmzbN6AgAAACAQ7KrkKelpalOnTqSpO3bt2vt2rXy9PRUREREeWQDAAAAAMBp2VXIXV1dlZubqxMnTqhq1aoKCAiQxWLR5cuXyysfAAAAAABOya5C3rx5c73++us6d+6c7r//fknSL7/8wvHjAAAAAADYya7Lns2YMUNZWVmqVq2annvuOUnSoUOH9NBDD5VLOAAAAAAAnJVdI+RBQUGaN2+ezbLu3bure/fuZRoKAAAAAABn95eF/Ntvv1XLli0lSXv27Lnm89q2bVt2qQAAAAAAcHJ/WchHjBihAwcOSJKGDh1a7HNMJpOOHDlStskAAAAAAHBif1nIC8u4JB09erRcwwAAAAAAUFHYdVI3AAAAAABQNkp9Ure0tDQtWrRIu3bt0m+//aZq1aqpXbt2Gjt2rIKDg8szIwAAAAAATqdUhfzixYt64oknVKVKFfXp00dBQUFKS0vT5s2b9cQTT+iLL75Q9erVyzsrAAAAAABOo1SFfPny5WrQoIHeeecdeXh4WJePHj1azz//vJYvX64XXnih3EICAAAAAOBsSnUMeVxcnJ5//nmbMi5JHh4eGj16tHbu3Fku4QAAAAAAcFalKuQpKSlq0qRJsY81btxYv/zyS5mGAgAAAADA2ZWqkOfl5cnFpfinurq6Kj8/v0xDAQAAAADg7Ep1DLnFYrH+u9ZjAAAAAACg9EpVyLOystSoUaPyzgLACb3++utKS0szOoaN9PR0SZKvr6/BSf4QFBSkadOmGR0DAAAAN1GpCvnKlSvLOwcAJ5WWlqbUX06pehVXo6NYZV4uOMzGIy/T4CQFLlzmsB8AAICKqFSFvFWrVpKk06dPKzAw8KrHT58+XbapADiV6lVcNfrv/kbHsHon/rwkOUymwjwAAACoWEp1UrdC3bt3L3Z5r169yiQMAAAAAAAVhV2FvLiTt5nN5jILAwAAAABARVGqKesvvviiJCk3N9d6u9DJkydVt27dsk8GAAAAAIATK1Uhd3V1Lfa2yWRS69at1bdv37JPBgAAAACAEytVIZ8zZ44sFovuuOMODR8+XC4uds10BwAAAAAARZS6WVssFkVHRys/n8vzAAAAAABwo0pdyF1cXBQUFKSsrKzyzAMAAAAAQIVg19zzyMhIvfLKKzpx4oTy8vJkNput/wAAAAAAQOmV6hjyQi+88IIkacuWLVc9duTIkbJJBAAAAABABWBXIV+5cmV55QAAAAAAoEKxq5C3atWqvHIAAAAAAFCh2FXIJSkvL08///yzfv31V1ksFuvytm3blmkwAAAAAACcmV2F/OjRoxo1apRSU1NlMplksVhkMpkkcQw5AAAAAAD2sOss63PmzFG7du20d+9eeXt7a9++ferdu7cWLlxYTvEAAAAAAHBOdhXyo0ePavLkyfL19ZXFYpGPj49eeuklLViwoLzyAQAAAADglOwq5JLk4eEhSfL09FRGRoZ8fX115syZMg8GFLV69WqtXr3a6BgAYMV+CQAA3Ai7Cvkdd9yhQ4cOSZIaNWqkqKgoRUdHKygoqFzCAX8WFxenuLg4o2MAgBX7JQAAcCPsOqnbCy+8YD2z+rhx4zRu3DhlZGRo9uzZ5RIOAAAAAABndd3XIW/YsKE2btxY5oEAAAAAAKgI7D6GPCMjQ+vWrdPSpUslSefPn9e5c+fKPBgAAAAAAM7MrkJ+5MgRRUREKDo6WosXL5Yk/fDDD3r99dfLJRwAAAAAAM7KrkI+e/ZsjR49Wps2bZKbW8Fs97vvvlsJCQnlkQ0AAAAAAKdlVyFPSkpS//79JUkmk0mS5O3trczMzLJPBgAAAACAE7OrkPv4+Oj8+fM2y1JTU+Xv71+moQAAAAAAcHZ2FfJu3bpp8uTJSk5OliSdPn1ar7/+unr27Fke2QAAAAAAcFp2FfIxY8YoICBADz74oC5duqSOHTvK1dVVI0aMKK98AAAAAAA4JbuuQ+7u7q4333xTkydP1smTJ+Xv76/g4ODyygYAAAAAgNMqVSF/8cUX//I5c+fOveEwAAAAAABUFKWasu7q6mrzLzY29qplAAAAAACg9Eo1Qj5nzhyb+1u2bLlqGQAAAAAAKD27TupWqPAa5AAAAAAA4PrYdVK3GzFy5EgFBARo5syZ1mWHDx/WU089pTVr1qh27do3K4rD+fNl49atW2dgkj84YiYAQMkccd/9+OOP68qVK6pcubI++eQTo+NIcsz11KdPH1ksFplMJn355ZdGx3HIdZSQkKBZs2Zp6tSpCgsLMzqOpIK/W15entzc3LR27Vqj40iSUlNTNX/+fE2YMMEhTr785JNPKiMjQ97e3lq9erXRcRzW1q1btWjRIkVGRuqBBx4wOo5DioqK0ubNmxUREaGxY8caHafMXNcI+fWYOXOmNm3apD179kiScnNzNWXKFEVGRlboMg4AgDO7cuWKzU8Uz2Kx2PzE1aKionTlyhVFRUUZHcUqLy/P5qcjWLVqlZKSkrRq1Sqjo0iSMjIybH6ieEuWLJHFYtGSJUuMjuKwNm/ebPPTWZSqkC9atMjm35UrV65a9lcCAgI0ZcoUTZ06VZmZmfrXv/4lHx8fhYWFaeDAgWrZsqW6detms4J37Nihnj17Kjw8XPfee6/eeuut6/+kDurP30AXd98IjpgJAFAyR9x3P/744yXeN4IjrqdevXqVeP9mc8R1lJCQoLNnz0qSzp49q4SEBGMDqWB0vKT7RkhNTVVcXJwkKS4uTqmpqYbm6d+/f4n3UWDr1q3Kzs6WJGVnZ2vr1q0GJ3I8Rb+Ic6Qv5m5Uqaas79+/3+Z+8+bNbZaV9pjyhx9+WBs3btSECRMUHx+v//u//9MzzzyjWbNmqWPHjjp8+LCeeeYZ1atXT/Xq1dOUKVM0ceJE9e7dW5mZmfrxxx/t+GhwNpcuXVJmZqZGjRpldBSHVjg11FGkpaXJ3WQ2OoZDy8w162JaGtt2KTji9u3l5WV0DIdVdFScUfLiFR0VZ5T8asX9n/H33nvPoDQFio6KO8Io+apVq+Ti4iKz2SwXFxetWrVKEydONCxP0VFxRsmLV3RUfMmSJUxbL6LoqPjmzZudZtp6qQr5hx9+WGZvOHPmTEVERGjMmDH67rvv1LZtW3Xu3FlSQdHv3LmzYmNjNWbMGFWqVEknT57UhQsXVL16dTVv3rzMcgAAAODWUDg6fq37KLBz507l5+dLKviCYOfOnYYWcpRO4ej4te7Dud20k7oVqlmzpvz8/FS/fn1t27ZNW7duVYsWLayP5+fnW6dqRUdHa8mSJeratav+9re/acyYMerYsePNjgwH4ePjIx8fHy1evNjoKA4rPz9fCQkJCgsLk6urq9FxJEmjRo3SlV+NnTLn6LwquahGjSC27b/gqNs3gPIXEBBgU8IDAgIMTOO42rVrp127dllPNHfvvfcaHQml4OHhYVPCPTw8DEyDm+2mndStOMHBwerRo4f2799v/XfgwAHNmDFDktS4cWNFR0frm2++0ZAhQ/T8888rKyvLyMgAAKCUih5e4EiHGziSoof+cXnZqxWdmuoIU1Xd3NxKvG+EAQMGyGwuOEzMbDZrwIABhubx9vYu8T4KPPfccyXehxQREVHi/VuZoYW8V69e2rFjh7Zt26a8vDzl5OQoMTFRP/30k3JycvT5558rPT1drq6u8vHxkclkcphRkbJS9FIijnBpEUfMBAAomSPuu4te5swRLnvmiOup6GXOjL7smSOuo7CwMOuoeEBAgENc9qzoZc4c4bJnwcHBat++vSSpffv2hl/2rOhlzrjsWfEeeOAB66i4h4cHx48XwxG/lCsrhhbywMBAvfvuu1qxYoXuvfdetW/fXvPnz1dOTo4kaf369erSpYvCw8M1b948LVy4kCkcAADcQgpHxRkdL1nhqDij49c2duxYVa5c2aH+j3jhqLgjjI4XGjBggBo0aGD46HihwlFxRsdL9txzz8lkMjE6XoLCUXFnGh2XJJPFiU/lmZWVpSNHjuiuu+6Sp6enJMc8BhGlU3isJsfZXpsjbt+Fx5CP/ru/0VGs3ok/L0kOk+md+POqXCOYbfsvOOr2LbFfwo1zxO0bKAts23Bm19q+i+uh12LoCDkAAAAAABUVhRwAAAAAAANQyAEAAAAAMACFHAAAAAAAA1DIAQAAAAAwAIUcAAAAAAADUMgBAAAAADAAhRwAAAAAAANQyAEAAAAAMACFHAAAAAAAA1DIAQAAAAAwAIUcAAAAAAADuBkdACit9u3bGx0BAGywXwIAADeCQo5bRv/+/Y2OAAA22C8BAIAbwZR1AAAAAAAMQCEHAAAAAMAAFHIAAAAAAAxAIQcAAAAAwAAUcgAAAAAADEAhBwAAAADAABRyAAAAAAAMQCEHAAAAAMAAFHIAAAAAAAxAIQcAAAAAwAAUcgAAAAAADEAhBwAAAADAABRyAAAAAAAMQCEHAAAAAMAAFHIAAAAAAAxAIQcAAAAAwABuRgcA4PwuXM7XO/HnjY5hdeFyviQ5TKYLl/MVbHQIAAAA3HQUcgDlKigoyOgIV/FKT5ckVfb1NThJgWA55noCAABA+aKQAyhX06ZNMzoCAAAA4JA4hhwAAAAAAANQyAEAAAAAMACFHAAAAAAAA1DIAQAAAAAwAIUcAAAAAAADUMgBAAAAADCAU1/2zGw2S5IuX75sXZafny9JysrKkqurqyG5gPLC9g1nxvYNZ8b2DWfFtg1ndq3tu7B/FvbRkpgsFoulfOIZ79dff1VycrLRMQAAAAAAFUydOnVUo0aNEp/j1IU8Ly9P6enp8vDwkIsLs/MBAAAAAOXLbDYrOztbvr6+cnMreVK6UxdyAAAAAAAcFcPGAAAAAAAYgEIOAAAAAIABKOQAAAAAABiAQg4AAAAAgAEo5AAAAAAAGIBCDgAAAACAASjkAAAAAAAYgEIOAAAAAIABKOQAAAAAABigQhXyS5cuKTIyUuHh4WrXrp2WL19udCSgTEyePFlNmjRReHi49V9qaqrRsYDrEhMTo0ceeURNmjTR+PHjbR5LSkpS37591bx5c3Xv3l179uwxKCVwfUravjt16qRmzZpZ9+M9evQwKCVwfXJycjR16lR16tTJug2vW7fO+jj7cNyq/mrbvpH9t1t5BHZUM2fOVE5OjuLi4pSSkqIhQ4bojjvuUIcOHYyOBtywIUOGaOLEiUbHAG5YQECARo0apd27d+vixYvW5bm5uRo5cqT69u2rmJgYbdmyRWPGjNHmzZtVo0YNAxMDpXet7btQdHS07rvvPgOSATcuLy9PAQEBWrFihWrVqqX4+Hg9++yzqlWrlpo0acI+HLeskrbt8PBwSde//64wI+RZWVnauHGjxo8fL29vb4WGhqpv37767LPPjI4GAPiTiIgIde7cWX5+fjbL9+3bpytXrmjEiBFyd3dX9+7dVb9+fW3cuNGgpID9rrV9A87A09NTkZGRuv3222UymdSiRQvdfffdOnDgAPtw3NJK2rZvVIUp5MnJybJYLGrQoIF1WcOGDXX8+HEDUwFl5+OPP1arVq3Uq1cvffrpp0bHAcrc8ePH1aBBA7m4/PGfrrvuuktJSUkGpgLK1uTJk9WmTRsNGjRI8fHxRscBbkhWVpYOHz6s+vXrsw+HU/nztl3oevffFaaQZ2Vlydvb22aZj4+PMjMzDUoElJ1BgwZp48aN2r17t6ZMmaJ//OMf2rRpk9GxgDKVmZkpHx8fm2Xsx+FM5s6dq23btunrr79Wt27d9MwzzyglJcXoWMB1MZvNmjx5spo2bap27dqxD4fTKLptSze2/64whdzT0/Oq/8H//vvv8vLyMigRUHYaN26s6tWry83NTW3atNHAgQOZAgan4+Xlpd9//91mGftxOJMWLVqocuXKqly5sgYMGKBGjRppx44dRscC7GaxWPTqq6/q7NmzWrBggUwmE/twOIXitm3pxvbfFaaQ16lTR5JspqgfOXLEZpoB4CxcXFxksViMjgGUqfr16yspKUlms9m67MiRIzaHIgHOxGQysS/HLcdisWjGjBk6cuSIli1bZi3c7MNxq7vWtl0ce/bfFaaQe3p6qmvXrlqwYIEyMjKUlJSkTz/9VI8++qjR0YAbtmHDBmVkZMhsNmv//v2KiYlRly5djI4FXJe8vDxlZ2crLy9PZrNZ2dnZys3NVatWreTh4aFly5YpJydHsbGxSkpK0oMPPmh0ZKDUrrV9p6amav/+/crJyVFOTo4+/vhjHT582DodErhVzJw5U4mJiXrvvfdsDhdlH45b3bW27Rvdf5ssFeir10uXLumVV15RXFycvLy8NHz4cA0ZMsToWMANGzhwoI4dO6b8/HwFBwdr0KBB6tevn9GxgOsSFRWl6Ohom2V9+vTRm2++qWPHjumVV17RsWPHFBISounTp6tt27YGJQXsd63te/jw4ZowYYJOnjypSpUqqV69eho3bpxat25tUFLAfikpKerUqZPc3d3l5vbH1ZWfffZZjRw5kn04blklbdudO3e+of13hSrkAAAAAAA4igozZR0AAAAAAEdCIQcAAAAAwAAUcgAAAAAADEAhBwAAAADAABRyAAAAAAAMQCEHAAAAAMAAFHIAAG4he/fuVWhoqPLy8oyOYjV9+nRNnTrV6BgAANxy3P76KQAA4GY6deqUFixYoH379ikzM1NeXl666667NGvWrJueZfjw4YqPj5ck5efnKzs7W56entbHn332Wc2cOfOm5wIAwBlQyAEAcDAjRoxQixYttH79elWrVk3nz59XXFycTCbTTc+ybNky6+3du3dr6NChOnDgwE3PAQCAM2LKOgAADuTixYv63//+p379+qlatWqSJH9/f/Xp00c1a9Ys9nc+//xz9erVS3//+9/Vo0cP/ec//7F5PDExUYMGDVLr1q3VsWNHLVy40GbKe2hoqD744AM9+uijCg8P12OPPaZDhw6VOvPkyZM1ceJE6/1OnTopKipKw4YNU3h4uCIiIrRnzx7t3btXPXv2VHh4uIYMGaJz585Zfyc7O1tvv/22OnfurJYtW2rgwIH64YcfSp0BAIBbEYUcAAAH4ufnpwYNGmj69On67LPPdPToUZnN5ms+f82aNVq4cKFmzZqlb7/9VjNmzNC0adO0f/9+SdL//vc/DRkyRP369dOuXbsUExOjbdu2aenSpTavs2rVKr311lvau3evOnTooGeeeUa///77dX+ONWvWaNKkSdq/f786deqkSZMm6cMPP9SKFSsUFxenK1euKCoqyvr8V199VQcPHlRMTIz27Nmjbt26adiwYbp06dJ1ZwAAwNFRyAEAcDArV67Ufffdp9WrV+vxxx9XmzZt9NZbbyknJ+eq537wwQcaOXKkmjZtKhcXF7Vo0ULdu3fX2rVrJRUU7Y4dO6pHjx5yc3NTSEiIhg8frjVr1ti8zuDBg3XnnXfK3d1do0ePlpubm7Zu3Xrdn+Gxxx5Tw4YN5erqqt69e+vcuXMaNmyYqlevLm9vb0VEROjgwYOSCmYFrF27VtOnT1dgYKDc3Nz05JNPqmrVqvrvf/973RkAAHB0HEMOAICD8fPzU2RkpCIjI5WTk6MdO3bopZdekqenp1q1amXz3BMnTuitt97SvHnzrMvy8/PVokULSVJycrL27t1rvS9JZrNZFovF5nVq1aplve3i4qLg4GCdPn36uj9DQECA9XaVKlUkyWbKfZUqVZSZmSlJOnnypCSpb9++Nq+Rm5urM2fOXHcGAAAcHYUcAAAH5u7urs6dO+uee+7R999/f1Uh9/f31/PPP6/evXsX+/s1a9bUQw89pDlz5pT4PikpKdbbZrNZqampCgwMvOH8peHv7y9J+vLLLxUcHHxT3hMAAEfAlHUAABxIenq65s2bp6NHjyonJ0f5+fnWE6K1bNnyquc/9dRTWrx4sQ4ePCiz2aycnBwdPHhQhw8fliT1799fmzZtUmxsrPX1Tpw4oR07dti8zsqVK/XTTz8pJydHS5YsUW5urjp16nRTPnNISIg6d+6smTNnWr8YyMjI0Pbt23X27NmbkgEAACMwQg4AgAOpVKmSLl68qMjISJ09e1aurq4KDAzU8OHD9fTTT2vfvn02z3/qqafk5+en1157TSdPnpSrq6saNGig559/XpLUrFkzffDBB1q0aJFmzJihvLw8hYSEqH///jav079/f02aNEk///yz6tatq6VLl8rHx+emfe758+dr6dKlevrpp3X27Fl5eXkpLCxM06ZNu2kZAAC42UyWogeRAQCACqXwsmf33HOP0VEAAKhQmLIOAAAAAIABKOQAAAAAABiAKesAAAAAABiAEXIAAAAAAAxAIQcAAAAAwAAUcgAAAAAADEAhBwAAAADAABRyAAAAAAAMQCEHAAAAAMAAFHIAAAAAAAzw/wDw5PS3EMsaxQAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
],
"source": [
"feature = 'SleepTime'\n",
"plot_hist(feature)\n",
"plt.figure(figsize=(15,3),dpi=80)\n",
"sns.boxplot(x= df[feature], y=df['HeartDisease'], data=df, orient=\"h\")\n",
"plt.title(f\"{feature} Distribution\", fontweight='bold')\n",
"plt.show()\n",
"# plot_kde(feature, df)"
]
},
{
"cell_type": "markdown",
"id": "610c9c84",
"metadata": {
"id": "610c9c84"
},
"source": [
"## SleepTime:\n",
"* SleepTime has outliers and most (75%) of the data is distributed between 1 to 8 hours with an average sleep time of 7.1 hours. \n",
"* While the boxplots show there are `No Significant` differences between adults with and without heart disease in SleepTime.\n",
"* Distribution shows minimum of 1 hour and maximum of 24 hours which is shocking, definitely this is a data issue as no one can sleep for 1 hour or 24 hours on average per day."
]
},
{
"cell_type": "markdown",
"id": "e15ecdac",
"metadata": {
"id": "e15ecdac"
},
"source": [
"### What are the likely distributions of the numeric variables?\n",
"* All the Numeric features (PhysicalHelath, MentalHealth, BMI, SleepTime) - are following Normal distributions but every feature has extreme outliers so all the distribution are SKEWED."
]
},
{
"cell_type": "markdown",
"id": "9c58487c",
"metadata": {
"id": "9c58487c"
},
"source": [
"### Outlier Handling: \n",
"\n",
"#### 1. Standard Deviation Method:\n",
"\n",
"* Standard deviation is a metric of variance i.e. how much the individual data points are spread out from the mean. If a dataset approximately follows normal distribution then around 68% of the data lies in 1 standard deviation from the mean, Similarly ~95% of the data lies in 2 standard deviations from the mean and ~99.7% of the data lies in 3 standard deviations from the mean.\n",
"\n",
"#### 2. Inter Quantile Range Method:\n",
"* IQR is a concept in statistics that is used to measure the statistical dispersion and data variability by dividing the dataset into quartiles.\n",
"* Q1 (1st Quantile) = df.quantile(0.25)\n",
"* Q3 (3rd Quantile)= df.quantile(0.75)\n",
"* IQR = Q3-Q1\n",
"* LowerLimit = Q1-1.5*IQR\n",
"* UpperLimit = Q3+1.5*IQR\n",
"\n",
"why we use 1.5 as a factor --> as Standard Devaiation method, 1 IQR from Q1 & Q2 covers around ~70% of the data and 2 IQR covers around ~ 97% of the data, so bigger scale will lead to consider outliers as a data point and a smaller scale will lead to percieve some of the datapoints has outliers. so it is aproximated that 1.5 factor will cover around ~95% of the data.\n",
"\n",
"Anything outside the`LowerLimit` and `UpperLimit` are can be replaced with Median or Mean or Mode."
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "ee04eaa9",
"metadata": {
"id": "ee04eaa9"
},
"outputs": [],
"source": [
"raw_df1 = df.copy()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "89ec79b4",
"metadata": {
"id": "89ec79b4"
},
"outputs": [],
"source": [
"df= raw_df1.copy()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "3232e6f9",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 270
},
"id": "3232e6f9",
"outputId": "140c367a-ce71-4ba4-a283-3a7df8b3a7d9"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" HeartDisease BMI_value Smoking AlcoholDrinking Stroke PhysicalHealth \\\n",
"0 No 16.60 Yes No No 3.0 \n",
"1 No 20.34 No No Yes 0.0 \n",
"2 No 26.58 Yes No No 20.0 \n",
"3 No 24.21 No No No 0.0 \n",
"4 No 23.71 No No No 28.0 \n",
"\n",
" MentalHealth DiffWalking Sex AgeCategory Race Diabetic \\\n",
"0 30.0 No Female 55-59 White Yes \n",
"1 0.0 No Female 80 or older White No \n",
"2 30.0 No Male 65-69 White Yes \n",
"3 0.0 No Female 75-79 White No \n",
"4 0.0 Yes Female 40-44 White No \n",
"\n",
" PhysicalActivity GenHealth SleepTime Asthma KidneyDisease SkinCancer \\\n",
"0 Yes Very good 5.0 Yes No Yes \n",
"1 Yes Very good 7.0 No No No \n",
"2 Yes Fair 8.0 Yes No No \n",
"3 No Good 6.0 No No Yes \n",
"4 Yes Very good 8.0 No No No \n",
"\n",
" BMI \n",
"0 UnderWeight \n",
"1 NormalWeight \n",
"2 OverWeight \n",
"3 NormalWeight \n",
"4 NormalWeight "
],
"text/html": [
"\n",
"
\n",
"\n",
""
]
},
"metadata": {}
}
],
"source": [
"plot_cat_dist_with_target(df, 'BMI')"
]
},
{
"cell_type": "markdown",
"id": "a7648537",
"metadata": {
"id": "a7648537"
},
"source": [
"#### Now BMI Class makes more sense and relatable than using BMI actual values, so lets drop BMI_value feature and use this class BMI\n",
"* Except NormalWeight, all other classes are prone to HeartDisease depending on the level of class they belong to which seems more realistic"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "c90d93ee",
"metadata": {
"id": "c90d93ee"
},
"outputs": [],
"source": [
"df = df.drop('BMI_value', axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "caa5a0f7",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "caa5a0f7",
"outputId": "cc9e7551-0c68-44c5-a504-6cf4a1d9e5ed"
},
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
":1: FutureWarning:\n",
"\n",
"The default value of numeric_only in DataFrame.quantile is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.\n",
"\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"PhysicalHealth 0.0\n",
"MentalHealth 0.0\n",
"SleepTime 6.0\n",
"Target 0.0\n",
"Name: 0.25, dtype: float64"
]
},
"metadata": {},
"execution_count": 20
}
],
"source": [
"df.quantile(0.25)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "62439fbf",
"metadata": {
"id": "62439fbf"
},
"outputs": [],
"source": [
"def remove_oultliers_using_quantiles(df, feature,factor):\n",
" Q1 = df[f\"{feature}\"].quantile(0.25)\n",
" Q3 = df[f\"{feature}\"].quantile(0.75)\n",
" IQR=Q3-Q1\n",
" lower_limit=Q1-factor*IQR\n",
" upper_limit=Q3+factor*IQR\n",
"# print(df[feature].describe())\n",
" df.loc[(df[feature] < lower_limit) | (df[feature] > upper_limit), feature] = df[feature].mean()\n",
"# print(df[feature].describe())\n",
" return df"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "0fc0c510",
"metadata": {
"id": "0fc0c510"
},
"outputs": [],
"source": [
"df = remove_oultliers_using_quantiles(df, 'PhysicalHealth', 1.5)\n",
"df = remove_oultliers_using_quantiles(df, 'SleepTime', 1.5)\n",
"df = remove_oultliers_using_quantiles(df, 'MentalHealth', 1.5)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "c16e81f4",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "c16e81f4",
"outputId": "b780715f-af19-4760-f808-5f3961c8e9fe"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"['PhysicalHealth', 'MentalHealth', 'SleepTime', 'Target']"
]
},
"metadata": {},
"execution_count": 23
}
],
"source": [
"numerical_feats = df.select_dtypes(include='number').columns.tolist()\n",
"numerical_feats"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "cecc617c",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 498
},
"id": "cecc617c",
"outputId": "ad4e124d-9348-4443-d161-669b049cbdcd"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABNYAAAHhCAYAAACiMjMNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABleklEQVR4nO3deXhMd///8deELILYl9u+ZsQascRahFJ71Voaey1dqOVWulCqN9rSVtDWUnuLokhsrVK1L60WFWpfS+0JEYnk/P7wm/lmJCGOxCTyfFyX68qcc+ac9zkzc455zefzORbDMAwBAAAAAAAAeCwuzi4AAAAAAAAASIsI1gAAAAAAAAATCNYAAAAAAAAAEwjWAAAAAAAAABMI1gAAAAAAAAATCNYAAAAAAAAAEwjWAAAAAAAAABMI1gAAAAAAAAATCNYAAAAAAAAAEwjWAOAZZbVaZbVaVbVqVYWFhSW4zPTp02W1WhUUFPSUq3Oe4cOHy2q1ateuXU91u0FBQbJarVq+fLmp5+/fv9/+mk6ZMiWZq3s8u3btktVq1fDhwx2mP+k+Pgtsx+DBf5UrV1br1q01bdo03blzx9llJllafk2vXbumYcOGqU6dOvLx8Umz+5GeBAYGymq16ty5c84uJdUKCAiQ1WqNN91qtSogIMAJFQEACNYA4BkXHh6u2bNnO7sMPKGVK1fa/w4ODk50ucRCL5tz587JarUqMDAw2Wt8WtLCPpQpU0Zt2rRRmzZt1Lp1a1WsWFHHjx/XF198oS5duqSpcC25PO0v/u+8845WrlypnDlzqnnz5mrTpo2KFCmSpsNCPNvSwrkNABBfRmcXAABIORaLRW5ubpo3b566d++ubNmyObskpxs8eLBeffVVFShQwNmlJFl0dLRWr14tScqTJ49OnTqlP//8U5UqVXJKPRUrVtSaNWuUNWtWp2w/LWjUqJHefPNNh2lnz55Vx44d9ddff2nRokXq0aOHk6p79kVFRenXX39VwYIFtWLFCrm4/N9vyTt27HBiZXiYCRMm6M6dO8qXL5+zS0lz1qxZI1dXV2eXAQDpEi3WAOAZ5uLiog4dOujWrVv65ptvnF1OqpA3b16VLFlSmTJlcnYpSbZlyxZdv35dfn5+evnllyU5tmB72jJlyqSSJUsqb968TqshLSpcuLA6duwoSdqzZ4+Tq3m2XblyRTExMSpYsKBDqIbUrUCBAipZsiQBkQklS5ZUkSJFnF0GAKRL/E8DAJ5xffr0kYeHh+bPn6/r168n6TkPG+cmsa4qcbtXHTx4UL1791bVqlVVvXp1DRw4UBcvXpQkRURE6OOPP1ZAQIAqVKigFi1aaN26dYnWcvz4cQ0fPlz16tVT+fLlVatWLQ0aNEhHjx6Nt+zy5cvtY8adPHlSgwYNUq1atVSmTBlt2LBB0sPHWIuIiND06dP10ksvyc/PT76+vnrhhRc0evRonTx50r7c3bt39f3336t///5q2LChKlasqKpVq6pLly72lmXJadWqVZKkVq1aqVWrVpLut06Ijo52WG748OHq2rWrJOmHH35wGOMrKChIQUFBatiwoSRp9+7dDvPjdh21ddmLiorSlClT9MILL6h8+fJ67bXXJD26u6kk/fnnn+rVq5eqVq0qPz8/9ejRQ3/88Ue85eK+Zgl58L2Y1H2QpBs3bmjixIlq1qyZKlasqCpVqqhr167atGlTgtv6+++/NXToUDVs2FAVKlRQjRo11Lp1a3300Uf6999/E93Xx5ErVy5JUkxMTILzV6xYoZdffll+fn6qVKmSWrZsqa+//lp37961LxMTE6NOnTrJarVq4cKF8daxd+9e+fj4qE6dOg6fedvYTIZhaO7cuWrWrJkqVKigunXrauzYsYmOxZiY69eva8KECWrcuLEqVKig6tWrq1evXtq6davDcrbXWJLOnz/v8JolpcubYRgKCQnRoEGD1KRJE/n6+qpy5cpq166dFi5cqNjYWIflAwIC1KBBA0mO75GAgAAFBATYxygcMWKEQy0PnhP+/PNPDRgwQHXq1FH58uX13HPP6d1339WFCxfi1Rj3/Ld//3717dtX/v7+slqtCg0Nfej+xf08Xb58We+++66ee+45lS1bVnPmzLEv988//2jMmDFq1KiR/Xj37dtXv//++0PXefXqVb3zzjuqXbu2fH199fLLLzs857vvvlPLli1VsWJF1atXT0FBQfGOqc2xY8c0ZMgQ+zGpW7euhg0bphMnTjgs9+OPP8pqteqtt95KdL/Hjx8vq9WqefPm2acldu2xvX4xMTGaPn26mjRpovLly6tevXr65JNPFBUVleA2Dh8+rH79+qlq1aqqXLmyunTpom3btiXpHPYk+y+l7LktIQ/rap3c19Hbt2/r66+/VqtWrVSlShVVrlxZjRo10oABA7Rly5ZH1goAzxq6ggLAMy5v3rzq1KmT5syZo1mzZmno0KEpur0///xTo0aNUunSpVWnTh0dOnRI69at0+HDh7V06VL16NFDFy5cUNWqVXX9+nXt2bNHb731lmbMmKG6des6rGvDhg0aNGiQoqKi5OPjo0qVKunixYtau3atNm3apBkzZqhatWrxajh58qTatWun7Nmzy9/fX2FhYcqY8eGXvH///Vc9e/bU0aNHlS1bNlWvXl1ubm46d+6cFi1apKJFi6p48eKS7oeL7733nvLmzavixYurYsWKunLlivbt26e9e/fqxIkT8boBmhUeHq6NGzfK1dVVTZs2Vfbs2VW5cmXt27dPW7ZscfgiVaVKFV2+fFlbt25VkSJFVKVKFfs8Hx8fSVKTJk20fv165c6d2+F4x11WkmJjY/X6669r7969qlatmqxWq7Jnz56kmvft26eRI0eqaNGieu6553T69Glt375de/bs0VdffaU6deqYPh4+Pj5J2oeTJ0+qR48e+ueff1SwYEHVqVNHt2/f1p9//ql+/fpp2LBh6tWrl335gwcPqnPnzrp7966sVqsaNmyoyMhInT17VvPmzVOjRo2SpYXewYMHJUklSpSIN2/kyJFavHix3N3dVaNGDXl4eGj37t2aNGmSNm3apNmzZytTpkzKkCGDPvnkE7Vu3Voff/yxatSooZIlS0q6/34ZNmyYDMPQhAkTlCNHjnjb+fDDD7VkyRJVr15d3t7e2rNnj+bPn6/du3fr22+/VZYsWR65H5cuXVKXLl109uxZFShQQI0aNdK1a9e0Y8cObd26VSNGjFD37t0lSUWKFFGbNm30ww8/yNPTU02aNLGvJ6Hj8KCoqCgNGTJE2bNnV6lSpVS2bFnduHFD+/bt05gxY3TgwAGNHz/evnyTJk10/vz5eO8R27HYvn27Dh8+LD8/PxUtWtT+vNy5c9v/XrhwocaOHStJqlChgqpUqaKTJ09q6dKl2rhxoxYsWGA/5nHt2bNHI0eOVLFixVS7dm39+++/slgsj9xH6f7NFtq1a6eYmBj5+fkpKirK3rJ237596tu3r27evKnixYurfv36unbtmrZu3aotW7bo008/VbNmzeKt8+bNm+rYsaNiY2NVvXp1nT9/Xr///rt69uyp77//XosXL9b3338vf39/FSxYULt379aUKVN07949DRo0yGFdO3bsUL9+/RQZGamyZcuqevXqOnHihFauXKmffvpJM2bMUNWqVSVJ9evXV9asWbVp0ybdvn1bmTNndlhXbGysVq9erQwZMqh58+ZJOj6SNGTIEG3evFn+/v4qXry49u7dq5kzZ+rSpUv69NNPHZbdt2+fevTooTt37shqtapUqVI6c+aMevfurS5duiR5m2b234ykntseV3JfR2NiYtSjRw/9+eefypEjh6pXry53d3ddvHhRv/76qzw9PeNdywHgmWcAAJ5J3t7eho+Pj2EYhnH58mWjUqVKhq+vr3H16lX7Ml9//bXh7e1tTJ482eG5r7zyiuHt7W2cPXs23nrPnj1reHt7G6+88orD9MmTJxve3t6Gt7e38e2339qnR0VFGd27dze8vb2NZs2aGV27djVu375tn79kyRLD29vb6NKlS7zt+Pr6Gr6+vsa2bdsc5m3evNkoV66cUa9ePePu3bv26cuWLbPXMGbMGOPevXvx6n/77bcNb29vY+fOnQ7Tu3XrZnh7exsDBw40bt26Fa+W0NBQ++Nr164Z27ZtM2JjYx2WO3PmjNGgQQOjTJky8Y6d7fgsW7YsXk0PYzs+/fv3t09buHCh4e3tbQwYMCDe8jt37jS8vb2Nt99+O8H1Jfb6xWU7hs8//7xx8eLFJG8j7ntg0qRJDsfHVnPt2rWNO3fu2KfbXrMH34M2Cb0XH7UP9+7dM1q0aGF4e3sbM2bMMGJiYuzzTp06ZQQEBBg+Pj7GkSNH7NOHDRtmeHt7G7NmzYq3vmPHjhmXLl1KcFsPsh2DuPsTExNj/PPPP8bXX39tlClTxqhatapx5swZh+etW7fO8Pb2NurUqWOcPHnSPj0sLMx4+eWXDW9vb2P8+PEOz1m+fLnh7e1tvPjii/bPweDBgw1vb2/jo48+ildbgwYNDG9vb8PPz884cOCAffqtW7eMrl27Gt7e3sbYsWMT3J8H37d9+/Y1vL29jcGDBzt8Bvfs2WNUqlTJ8PHxMQ4dOuTwHG9vb6NBgwYPO3wJio6ONn766ScjKirKYfrVq1eNl156yfD29jZ2797tMO9h75FHfRb37dtn+Pj4GHXr1nU4Tobxf5/H9u3bJ7hOb29vY/r06Y+1f7bPk7e3t/H6668bkZGRDvPDw8ON2rVrGz4+PsbKlSsd5u3fv9+oVq1avHN73HUOHTrU4djZam3WrJlRp04d4/Tp0/Z5R48eNcqVK2dUqlTJ4Tx4+/Zto1atWoa3t7exYMEChxpmz55teHt7G88995xD7e+8847h7e1t/PDDD/H2efv27Ya3t7fRq1cvh+mJXXts+9K0aVPj33//tU8/c+aMUbVqVcPb29thP2JiYozGjRsb3t7expdffumwLttr+LDz5IPM7H9KnNsM4/8+xw9K6POVEtfRHTt2GN7e3kbbtm0TfK8++JkBgPSArqAAkA7kzp1bL7/8siIiIjRjxowU3VaVKlXs44BJkqurq1555RVJ0okTJ/TBBx/I09PTPv+ll15Sjhw59Mcffzh0bZw7d64iIiI0ZMgQ1apVy2Ebzz33nDp16qR//vlHmzdvjldDzpw5NXToUGXIkCFJNe/fv187duxQrly5NHbs2HitKwoVKqQyZcrYH+fIkUO1atWK1xKlcOHC6t+/v2JjYxPtbvi44nYDtWnatKlcXV21adMmhYeHJ8t2EjJ48GBTg4gXLFhQb775psPx6dy5sypVqqTLly9r/fr1yVlmPJs2bdLff/+tJk2aqHfv3g5jbBUtWlTDhw9XTEyMlixZYp9+7do1SYr3XpNkajy5KVOm2Ltx+fj4qF69epo4caJq1aqlxYsXq3Dhwg7Lz58/X5L0xhtvqFixYvbpWbNm1ciRI2WxWLRo0SKHLqFt2rTRCy+8oEOHDunzzz/XqlWrFBISIm9v74e2TH3llVdUvnx5++PMmTPr/fffl8Vi0dKlSx22kZCzZ89q06ZN8vT01Pvvvy83Nzf7vKpVq6pTp06KiYlJsJuqGRkzZlSjRo3ijbuVM2dODRkyRJL0888/J8u2JGn69OmKiYnR6NGjHY6TJLVv314BAQH6888/dejQoXjP9fb2Vu/evU1t183NTe+//77c3d0dpi9dulSXL19Wt27dHM4D0v3WdK+99poiIiLs54q4smTJovfee8/h2HXv3l0Wi0XHjh3TgAEDHMblKlWqlOrXr687d+7YW1dK0tq1a3XlyhV7d8q4unfvrnLlyunixYsOn21brQndxdhWa8uWLR95XOJ67733lCdPHvvjwoUL27ezd+9e+/SdO3fq1KlTKlasmPr06eOwjvbt28vPz++xtmtm/1ODlLiO2s6Vfn5+8d6rWbJkifeZAYD0gGANANKJV199VZ6envruu+905cqVFNtO7dq1402zhQgFCxa0d6e0yZAhgwoUKKDo6GiH8aC2bdsmSXr++ecT3I6ty83+/fvjzatVq9Zj3Zxg+/btkqTmzZsnqRuczd69ezVt2jSNGjVKI0aM0PDhw+3jxZ0+fTrJ60nMhQsXtGfPHnl5eTl0+cyRI4eee+453b1796Hj0z0Ji8WS6Hg9j9K4ceMEu97aunz99ttvT1Tbo9jG+ErsvWPrVnXgwAH7tHLlykmSRo8erV27dunevXtPVEOZMmXUpk0b+7969eopb9682rZtm7744gvduXPHvmx0dLR9/LmEgoYyZcrIarUqIiIi3nhdY8aMUf78+TV79myNGjVKbm5u+uSTTxzCrgcl1GWwVKlSKlOmjCIiIhIMjOKyvX5169ZNsHtw69atJTkGHckhNDRUM2bM0OjRo+2ft++++06SdOrUqWTZRmxsrHbs2KFMmTIl2mX5YeeeBg0aJLnr54PKlSuXYJD9qHOh7f2cUD3ly5ePdzforFmz2qcltI+28/Xly5ft02yvZWJBWELhVrVq1ZQ/f37t3LlTV69etU+/e/eufvzxR3l6eia6TwlxdXWVv79/vOm2IDpuvbYx5Bo3bpzgzSsS+gw8jJn9Tw1S4jrq4+MjFxcXLV++XEuWLEny2K0A8CxjjDUASCdy5sypzp07a+bMmZo+fbreeeedFNlOQl8MbS3UEmv9ZGshFncA6vPnz0u6/6v6wyT0n/r//Oc/SSv2//vnn38kKcl3VAsPD9cbb7yhnTt3JrrM7du3H6uGhAQHB8swDDVp0iReUNKqVSv9/PPPWrVqldq3b//E23pQrly5HhrOPEyBAgUSnF6wYEFJSrYbASTG9t4ZOnToQ1tuxX3v9O7dW7/99pt2796trl27ytPTU5UrV1a9evX00ksvKWvWrI9VQ6NGjeKNsxcVFaXRo0dr6dKlcnd318cffyzp/k0WoqOjlSNHDofWnHEVLFhQhw8f1qVLlxymZ8uWTSNHjrS3Who6dKhD68rE1pXY9NDQ0Ee+Prb5D1uPpHi1mhUVFaURI0YoJCQk0WWS4/Mm3X9PRERESNIjW94kx7knKc+1vZ/jtgROaj0PO+feuHHjoefruOfjR73mhQoVclhOun9X6ubNm2vWrFlas2aN/UYVmzZt0q1bt9SiRYtE3+8JyZ07d4KtkBO6ftjqyJ8/f4LretzXycz+pwYpcR0tXry4/vvf/2rSpEl6//337WOq1qxZU23atHnk+QcAnkUEawCQjvTq1UvffvutFi1aZLq7kmEYD52fUOuApMx7kO2udG3atHnocpUqVYo37cHuKcntk08+0c6dO1W9enW9+eabKl26tLy8vJQhQwZt3bpVvXr1euRxSoqVK1dKun+HuAe/VNu6ze7Zs0fnz59P9AufWSl9DJMqsbsTJuU5devWdRiQ/kFxB/bPkiWL5s2bp99++02bNm3S7t27tXPnTm3btk3Tp0/XwoULHbpomuHm5qYRI0Zo2bJlCg4O1jvvvJPkG0I8rBXUmjVr7H//9ddfT1RjcjDbYisxc+bMsXdx/e9//6ty5crJy8tLrq6uOnnypF544YVk25btvfPgTRYSUrp06XjTnuRzk9hzbTU1adLkoUFUQjeCeNQ593HOyWa0atVKs2bNUkhIiD1Ys3UNfbBb66OkdK1Pm5lzm9ltJPd1tGfPnmratKk2bNigbdu26bffftOcOXM0d+5cjRgxQt26dXuywgEgjSFYA4B0JGfOnAoMDNTXX3+t6dOnJzpulG08HlvLjbhsrbtSWv78+XXmzBm9/fbbCd7ZMDnZfpk/c+ZMkpbfsGGDMmTIoC+//DJe19GzZ88mS00HDx7U8ePHJd3vVppY11LDMBQcHKx+/foly3aTw4ULFx46Pe777mHvNcnc+83WSqV9+/aPDEfislgsqlq1qr171NWrV/W///1PISEh+uyzz/TFF188di0PypIli3LkyKFr167pzJkzyp49u7Jnzy5XV1d7a6mEwhNby5MHWxiFhIQoJCREpUuXlqurq9auXav69evrxRdfTLSG8+fPy2q1xpue0OuTENv8xF7nxGo166effpIkTZo0KV6YlVyfN5scOXLI3d1dLi4uGjduXLKHhGbkz59fJ0+eVJ8+fZw2fpXtNbe9tg+yTX/wvVOmTBl5e3vrjz/+0NmzZ+Xl5aXNmzcrZ86cCQ4bkNz1Xrx4McH5iU1/1PoeZ/9T4tz2uFLyOvqf//xHgYGBCgwM1L1797R69Wq98847+uSTT/Tiiy/G64IMAM+yZ+unHwDAI/Xo0UOZM2fW4sWLE+2qZRscOqFxi2xjtqQ020DLGzZseGrbWr16dZK6lIWFhSlLliwJjse2du3aZKnJNrh3z549deTIkQT/2Qa8jztoue3LXGJjhD1qfnL48ccfFRMTE2+6rWVV3IHDbe+1kydPxlv+5MmTCX75fNQ+2L6w2wIZs3LlyqU33nhDknT06NEnWpfNrVu37N2ubF3YXF1d5evrK+n+e/BBf//9tw4fPixPT0/5+PjYp//zzz8aPXq03Nzc9Omnn+qTTz6Ru7u7Pvzww4cGTgm9R48fP67Q0NB420iIbUyvLVu2KCwsLN58W0tLW0Bp4+rqaup9Z9tGQt36zHzebO+fhN6jGTNmVPXq1XXr1i3t2LHjsdedEmznpyd9Pz8J22uZ0PtT+r9z0IOvufR/45IFBwdr/fr1io6OVrNmzRIchzG52M4xP/30U4Kthx/3fWNm/1Pi3Pa4ntZ1NGPGjGrdurUqVKig6OjoZBljFADSEoI1AEhncuTIocDAQEVFRWnp0qUJLlOtWjVJ0jfffOMwyPqOHTs0b968p1Jnz5495eHhoQkTJujHH3+MNz8qKkrr1q177JYHCalYsaL8/f119epVjRw5Ml4Lg3PnzunIkSP2x8WKFdPNmzcduuBJ97us7dq164nriYmJsX+Ba9GiRaLLVa1aVfny5dPx48ftd/CztZhI6MucdP/1d3V11dmzZxMMFpLD+fPnNWXKFIdpixcv1r59+5Q7d26HVmQVKlRQpkyZtGXLFoe7EF67dk3vvfdegt2lHrUPjRs3VqlSpRQcHKypU6c6jL0k3W/l99tvvzncROG7775LMIyy3S3vScbOsomKitK4ceNkGIYKFSrk0HXPdufcKVOmONRx69YtffjhhzIMQ506dbJ3z4qNjdWwYcMUFhamQYMGqUyZMipVqpSGDh2qW7duadiwYYm+vgsWLHC4QcGdO3c0duxYGYahtm3bysPD46H7UbhwYdWvX1+3b9/WRx995HA333379mnRokXKkCFDvLsn5s2bV1evXk0wjHsYWxdc240KbNatW2cP8R6H7TNy4sSJBOf369dPLi4uGjFiRIKf59u3b2vp0qWKjIx87G2b0alTJ+XKlUuzZs3S4sWL430m7t27py1btujvv/9OsRqaNm2q3Llz67ffftPixYsd5s2bN08HDx5Uvnz5Emwh2qJFC1ksFoWEhNi7gT7u3UAfV40aNVSsWDGdPHky3p2wly9f/tg3GTCz/ylxbntcKXEd3blzp7Zv3x6v/rNnz+r48eOyWCzJ1loVANIKuoICQDrUs2dPLViwQLdu3UpwfosWLTRz5kzt27dPzZo1U4UKFXTx4kUdOHBA3bt31zfffJPiNRYtWlQTJ07U0KFD9eabb6po0aIqUaKEPD09denSJR06dEgRERFasWJFogNUP45PPvlE3bp1U0hIiLZu3So/Pz+5ubnp7NmzCg0N1dtvv23vPtenTx/997//1aBBg7Rw4ULlz59fhw8f1okTJ9S9e3fNmTPniWrZunWrrly5omLFitnvVpkQFxcXNWvWTLNnz9bKlStVvnx5FSpUSFarVQcPHlS7du1UunRpubi4KCAgQA0bNpSbm5vq1KmjTZs2qXXr1ipbtqxcXV3l5+entm3bPlHdNh06dNCMGTP0008/yWq16vTp0zpw4IBcXV01btw4hzvNZc6cWT179tTUqVPVuXNnVatWTRaLRfv371eJEiVUuXJl7du3z2H9j9qHjBkzaurUqerVq5cmT56shQsXymq1KmfOnLpx44ZCQ0N19epVjRgxwt76atGiRfrggw9UqlQplSxZUhkyZNCJEyd0+PBhubu767XXXnusY7BhwwaHbmPXr1/XoUOH9O+//ypTpkz63//+59DN8IUXXlDHjh21ePFitWjRQjVq1JCHh4d2796ta9euydfXVwMGDLAvP2vWLO3evVs1a9ZUjx497NMDAwO1efNmbd26VV9//XWCdbdq1UodOnSQv7+/smbNqr179+ry5csqXbq0Bg4cmKT9GzNmjDp37qwVK1Zoz5498vX11bVr17R7927FxMRo+PDh8Vq+BQQEaP78+WrTpo0qV64sd3d3FS9e/JHjPfbu3VtbtmzRxIkTtW7dOhUvXlynTp3SwYMH1bNnz8c+H9WuXVvu7u6aO3eujh49qrx588pisahXr14qUaKEqlatqpEjR+rDDz9U165d5e3trWLFiiljxow6f/68QkNDFRUVpcaNGz8yhEwOXl5emjZtmvr166eRI0fqyy+/tI/reOXKFR06dEhhYWGaOnWqvL29U6QGT09Pffrpp/YaFi9erOLFi+vEiRM6dOiQPD09NWnSpATH5SpQoICqVq2qPXv26Pjx4ypSpIi9hWZKcXFx0fjx49WjRw9NnDhRq1evVqlSpXTmzBkdOHBAXbp00cKFC+0txB7FzP6nxLntcaXEdfTw4cMaN26ccubMqXLlyil79uy6fv26du/eraioKAUGBhKsAUh3aLEGAOlQtmzZHjq4sIeHh+bOnasWLVro9u3b2rx5s2JiYvTZZ5/Fa4WSkho1aqRVq1apc+fOslgs2r59u3755RddvXpVDRo00Oeff66SJUsmy7by5cunpUuXasCAAcqXL5+2b9+uX3/9VXfu3FHnzp3VoEED+7KtWrXS9OnT5evrq9DQUP3666/Kmzev5s6dq4CAgCeuxdat6GGt1WyaN28u6X4XJVv3oaCgIDVq1Ehnz57VihUrtHTpUocWSh999JFat26tGzduKCQkREuXLtWePXueuG6bypUra/78+cqdO7c2bdqk48ePq2bNmpo3b16Cd6d78803NWzYMOXPn1+7du3S0aNH1bZtW82ePTvRL76P2odixYppxYoVeuutt5Q/f3798ccf+umnn3Ty5En5+Pho5MiRDoOnDxw4UG3btpXFYtGOHTu0adMmRUZGqn379lqxYoU9gEuqw4cP64cffrD/2759uzJlyqSOHTtq5cqV8vf3j/ecMWPGaMKECfLx8dHu3bu1adMm5cqVS4MGDdLcuXPtgWRoaKi++OILZcuWTRMmTHAI6CwWi8aNG6fs2bNr6tSp2r9/f7ztvPfeexo8eLAuXLign3/+WZLsQUNS735q+7z07NlTGTJk0I8//qi//vpLNWvW1KxZsxzCPpvBgwfrlVdeUUxMjNauXaulS5faWwQ+TLVq1fTtt9+qRo0aOnfunDZt2iRXV1cFBQWZOh/ly5dP06ZNU6VKlfTbb79p2bJlWrp0qS5fvmxf5uWXX9ayZcvUpk0b3b59W5s2bdLWrVsVERGhli1b6uuvv37sO8U+CV9fXwUHB6t3797KkiWL9uzZo59//lkXLlxQtWrVNH78eNWsWTNFa6hZs6aWLl2qFi1a6NKlS1q/fr0uX76sVq1aadmyZQl2A7WJ20ItpVur2VSuXFmLFi1SgwYNdO7cOW3cuFEZM2a0n7slJfnmIZK5/U+Jc9vjSu7raIMGDdS/f38VK1ZMhw8f1rp163T06FFVqVJFQUFBevfdd03XCgBplcVIjtuWAQAAIFULCAjQ+fPnHbo1A+mRrdXZZ599pmbNmjm7HABAGkeLNQAAAADPlBs3bujcuXPxpq9Zs0ZLly6Vl5eX6tev//QLAwA8cxhjDQAAAMAz5dSpU+rYsaOsVqsKFy4s6f7db0+ePKkMGTJo9OjR8vT0dHKVAIBnAcEaAAAAgGdK4cKF1aVLF+3cuVO7du3SnTt3lCNHDjVu3Fg9e/ZU5cqVnV0iAOAZwRhrAAAAAAAAgAmMsQYAAAAAAACYQLAGAAAAAAAAmMAYa5L27dsnwzDk6urq7FIAAAAAAADgZNHR0bJYLI8cl5NgTZJhGGKoOQAAAAAAAEhKck5EsCbZW6pVqFDByZUAAAAAAADA2Q4cOJCk5RhjDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwIaOzCwAAAAAAICUYhqG7d+86u4w0xzAMSZLFYnFyJWmLu7s7xywdIlgDAAAAADxzDMPQ22+/rdDQUGeXgnTCx8dHEyZMIFxLZ+gKCgAAAAAAAJhAizUAAAAAwDPHYrFowoQJdAV9TJGRkQoMDJQkzZ8/Xx4eHk6uKO2gK2j6RLAGAAAAAHgmWSwWgqEn4OHhwfEDHoGuoAAAAAAAAIAJBGsAAAAAAACACQRrAAAAAAAAgAkEawAAAAAAAIAJBGsAAAAAAACACQRrAAAAAAAAgAkEawAAAAAAAIAJBGsAAAAAAACACQRrAAAAAAAAgAkEawAAAAAAAIAJBGsAAAAAAACACQRrAAAAAAAAgAkEawAAAAAAAIAJBGsAAAAAAACACQRrAAAAAAAAgAkEawAAAAAAAIAJBGsAAAAAAACACQRrAAAAAAAAgAkEawAAAAAAAIAJBGsAAAAAAACACQRrAAAAAAAAgAkEawAAAAAAAIAJBGsAAAAAAACACakqWDt9+rRGjhyp1q1bq2zZsmrRokWCy33//fdq0qSJKlSooFatWmnTpk1PuVIAAAAAAACkd6kqWDt69Kg2b96sokWLqmTJkgkus3r1ar3//vtq2rSpZsyYIV9fX73xxhv6448/nm6xAAAAAAAASNcyOruAuAICAtSoUSNJ0vDhw3Xw4MF4y0yePFnNmzfXW2+9JUmqUaOG/v77b02dOlUzZsx4muUCAAAAAAAgHUtVLdZcXB5eztmzZ3Xq1Ck1bdrUYXqzZs20Y8cORUVFpWR5AAAAAAAAgF2qCtYe5cSJE5Kk4sWLO0wvWbKkoqOjdfbsWWeUBQAAAAAAgHQoVXUFfZSbN29Kkry8vBym2x7b5pthGIYiIiLMFwcAAAAAQBoXGRlp/zsiIkKxsbFOrAZwHsMwZLFYHrlcmgrWUlJ0dLRCQ0OdXQYAAAAAAE4Td4ilI0eOyM3NzYnVAM6VlPd/mgrWsmXLJkkKDw9Xnjx57NPDwsIc5pvh6uqqUqVKPVmBAAAAAACkYXFbrFmtVnl4eDixGsB5jh07lqTl0lSwVqJECUn3x1qz/W177OrqqsKFC5tet8Vikaen5xPXCAAAAABAWhX3poKenp4Ea0i3ktINVEpjNy8oXLiwihUrpnXr1jlMX7NmjWrWrEkTVQAAAAAAADw1qarF2p07d7R582ZJ0vnz53Xr1i17iFa9enXlzJlTb775poYOHaoiRYrI399fa9as0f79+7VgwQJnlg4AAAAAAIB0JlUFa1evXtXAgQMdptkez5s3T/7+/mrRooXu3LmjGTNmaPr06SpevLimTJmiypUrO6NkAAAAAAAApFOpKlgrVKiQjhw58sjl2rdvr/bt2z+FigAAAAAAAICEpakx1gAAAAAAAIDUgmANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMCFNBms///yz2rdvr8qVK6tOnToaOHCgzp496+yyAAAAAAAAkI6kuWBt165deuONN1SqVClNnTpV77zzjg4fPqyePXsqMjLS2eUBAAAAAAAgncjo7AIe1+rVq1WgQAH973//k8VikSTlzJlT3bp108GDB1W1alUnVwgAAAAAAID0IM21WLt3754yZ85sD9UkKWvWrJIkwzCcVRYAAAAAAADSmTTXYu2ll17SypUrtXDhQrVq1Uo3btzQpEmTVLZsWfn5+Tm7PAAAAABIdoZh6O7du84uA+lA3CGWGG4JT4u7u7tDA6q0xGKkwWZemzZt0pAhQ3T79m1Jko+Pj2bOnKncuXObWt+BAwdkGIZKlSqVnGUCAAAAQLKIjIxUt27dnF0GAKSIuXPnysPDw9llODh27JgsFosqVKjw0OXSXIu133//XcOGDVOHDh1Uv3593bhxQ9OmTVOfPn307bffmn4hoqOjFRoamszVAgAAAMCTi4qKcnYJAJBijhw5Ijc3N2eXEU9SakpzwdrYsWNVo0YNDR8+3D7N19dX9evX18qVK9WxY0dT63V1daXFGgAAAIBUKW6XvBzNisqSMW12mULaYOvYlla75iFtMO4Zur7mtCTJarWmyhZrSZHmgrXjx4+rYcOGDtPy58+vHDly6MyZM6bXa7FY5Onp+aTlAQAAAECyc3H5v/vOWTJaZMmY5u5DhzSEOA1PR6z9L09Pz1QXrCU1WE5zZ+MCBQro0KFDDtPOnz+v69evq2DBgk6qCgAAAAAAAOlNmgvWOnXqpA0bNmjs2LHavn271qxZo379+ilXrlxq2rSps8sDAAAAAABAOpHmuoJ27dpVbm5u+u6777Rs2TJlzpxZvr6++vzzz5UjRw5nlwcAAAAAAIB0Is0FaxaLRS+//LJefvllZ5cCAAAAAACAdCzNdQUFAAAAAAAAUgOCNQAAAAAAAMAEgjUAAAAAAADABII1AAAAAAAAwASCNQAAAAAAAMAEgjUAAAAAAADABII1AAAAAAAAwASCNQAAAAAAAMAEgjUAAAAAAADABII1AAAAAAAAwASCNQAAAAAAAMAEgjUAAAAAAADABII1AAAAAAAAwASCNQAAAAAAAMAEgjUAAAAAAADABII1AAAAAAAAwASCNQAAAAAAAMAEgjUAAAAAAADABII1AAAAAAAAwASCNQAAAAAAAMAEgjUAAAAAAADABII1AAAAAAAAwASCNQAAAAAAAMCEjM4uAAAAICUYhqG7d+86u4w0xTAMSZLFYnFyJWmPu7s7xw1PjXEv1tklAMATe1bOZQRrAADgmWMYht5++22FhoY6uxSkEz4+PpowYQLhGlKMLfiWpOtrzjixEgBIfnHPcWkNXUEBAAAAAAAAE2ixBgAAnjkWi0UTJkygK+hjiIyMVGBgoCRp/vz58vDwcHJFaQtdQZHS4r6/cjQrIktG2kgASNuMe7H2Frhp+RpKsAYAAJ5JFouFcMgkDw8Pjh2QilkyuhCsAUAqwdkYAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADAhY3Kt6M6dO1q9erWioqJUr149FSxYMLlWDQAAAAAAAKQ6poK1d955R/v371dISIgkKSoqSh06dNDRo0clSVmzZtXcuXNVtmzZ5KsUAAAAAAAASEVMdQXdtWuXnn/+efvjkJAQHT16VJ9++qlCQkKUO3duTZkyJdmKBAAAAAAAAFIbU8HalStXHLp6btiwQeXLl1eLFi1UqlQpdejQQfv370+2IhPyww8/6MUXX1SFChXk7++v3r17KzIyMkW3CQAAAAAAANiY6gqaKVMmhYeHS5Lu3bun3bt365VXXrHPz5w5s31+Svjyyy81Y8YM9evXT76+vrp+/bp27NihmJiYFNsmAAAAAAAAEJepYK1cuXJasmSJ/P39tXHjRt2+fVsBAQH2+WfOnFGuXLmSrci4Tpw4oSlTpmjatGmqV6+efXqTJk1SZHsAAAAAAABAQkwFa2+99ZZ69+6ttm3byjAMNWnSRBUrVrTP/+mnn+Tn55dsRca1fPlyFSpUyCFUAwAAAAAAAJ42U8FahQoVtHbtWv3+++/y8vJS9erV7fPCwsLUuXNnh2nJ6c8//5S3t7emTZum+fPnKzw8XOXLl9eIESNUqVKlFNkmAAAAAKQWxj1DUqyzy8AzzDAMSZLFYnFyJXiW3T+XpX2mgjVJypkzpxo1ahRvupeXl7p16/ZERT3M5cuXdfDgQf39998aNWqUMmXKpK+++ko9e/bUjz/+aLoLqmEYioiISOZqAQAA0oa4N4GKiIhQbCxf2oHUJO5n9Pqa006sBACSX2r8v4dhGEkKl00HazExMVq3bp127dqlq1evasCAAbJarQoPD9eOHTvk5+en3Llzm119omwB2BdffKEyZcpIkipVqqSAgAAtWLBAAwcONLXe6OhohYaGJmepAAAAaUZUVJT97yNHjsjNzc2J1QB4UNzPKAA8a1Lr/z2SUpOpYC0sLEy9e/fW/v375enpqTt37tjvCurp6amxY8fqxRdf1ODBg82s/qG8vLyUPXt2e6gmSdmzZ1fZsmV17Ngx0+t1dXVVqVKlkqNEAACANCduaxir1SoPDw8nVgPgQYZhaO7cuc4uA+nA3bt31adPH0nS9OnT5e7u7uSKkB64u7unuq7HSc2YTAVrn376qY4ePapZs2bJx8dHtWrVss/LkCGDmjRpos2bN6dIsFaqVCmdOXMmwXl37941vV6LxSJPT0/TzwcAAEjLXFxc7H97enoSrAGpUObMmZ1dAtKBuD+05MiRg+sB0q2kBn0uj14kvp9//lmBgYGqXbt2ghsqVqyYzp8/b2bVj9SgQQPduHHDodvm9evX9ddff6lcuXIpsk0AAAAAAADgQaZarIWHh6tQoUKJzr93755iYmJMF/UwjRo1UoUKFTRgwAANGjRI7u7umj59utzc3NS5c+cU2SYAAAAAAADwIFMt1ooUKaK//vor0fnbtm1TyZIlTRf1MC4uLpo+fbp8fX01cuRIDR48WFmyZNHChQuVJ0+eFNkmAAAAAAAA8CBTLdbatWunTz/9VP7+/qpRo4ak+31Po6KiNHXqVG3ZskVjxoxJ1kLjypkzpz755JMUWz8AAAAAAADwKKaCtW7duunYsWMaPHiwvLy8JElDhw7VjRs3dO/ePXXs2FHt27dP1kIBAAAAAACA1MRUsGaxWDR27Fi9+OKLWr9+vU6fPq3Y2FgVKVJETZs2VbVq1ZK7TgAAAAAAACBVMRWs2VStWlVVq1ZNrloAAAAAAACANMPUzQsAAAAAAACA9M5Ui7WAgABZLJaHLmOxWLRhwwZTRQEAAAAAAACpnalgrXr16vGCtZiYGF24cEG///67SpcurbJlyyZLgQAAAAAAAEBqZCpYGz9+fKLzDh8+rF69eqlly5amiwIAAAAAAABSu2QfY61MmTLq2LGjPv300+ReNQAAAAAAAJBqpMjNC3LlyqVjx46lxKoBAAAAAACAVCHZg7Xr169r2bJlyp8/f3KvGgAAAAAAAEg1TI2x1rVr1wSnh4eH68SJE4qOjtbHH3/8RIUBAAAAAAAAqZmpYM0wjHjTLBaLChUqpJo1a6pt27YqWbLkExcHAAAAAAAApFamgrX58+cndx0AAAAAAABAmpIiNy8AAAAAAAAAnnVJarG2YsUKUyt/8cUXTT0PAAAAAAAASO2SFKwNHz78sVdssVgI1gAAAAAAAPDMSlKw9vPPP6d0HQAAAAAAAECakqRgrWDBgildBwAAAAAAAJCmcPMCAAAAAAAAwIQktVhLyOXLl7V06VIdOnRI4eHhio2NdZhvsVg0d+7cJy4QAAAAAAAASI1MBWuHDx9W165dFRkZqeLFi+vvv/9WqVKlFBYWpkuXLqlIkSLKnz9/ctcKAAAAAAAApBqmuoJOnDhRnp6eWrdunWbPni3DMPTOO+9o8+bN+uyzz3Tz5k0NHTo0uWsFAAAAAAAAUg1Twdrvv/+ujh07qkCBAnJxub8KwzAkSU2bNlXLli318ccfJ1+VAAAAAAAAQCpjqitobGyscufOLUny8vJShgwZdOPGDft8q9WqZcuWJUuBwOMyDEN37951dhlpji0ct1gsTq4kbXF3d+eYAQAAAEA6ZSpYK1SokM6dOydJcnFxUaFChbRjxw41a9ZM0v0WbVmzZk2+KoEkMgxDb7/9tkJDQ51dCtIJHx8fTZgwgXANAAAAANKhJAdrN2/eVLZs2SRJderU0bp16zRo0CBJ0ssvv6zx48fr7NmzMgxDu3fvVo8ePVKmYgAAAAAAACAVSHKwVrt2bdWrV08tW7ZUjx491Lx5c0VHR8vV1VXdunVTRESEfvzxR7m4uOi1115T3759U7JuIEEWi0UTJkygK+hjioyMVGBgoCRp/vz58vDwcHJFaQddQQEAAAAg/UpysNakSRNt3LhRGzduVObMmfX888+rVatWqlGjhiwWi1577TW99tprKVkrkCQWi4Vg6Al4eHhw/AAAAAAASIIkB2sTJ05UZGSkNmzYoJCQEAUHB2vFihXKlSuXWrRooZYtW6pcuXIpWSsAAAAAAACQajzWzQs8PDzUokULtWjRQjdv3tTatWsVEhKiuXPnau7cuSpatKhatWqlli1bqnDhwilVMwAAAAAAAOB0LmafmC1bNnXq1EkLFizQL7/8oiFDhihTpkyaPHmyGjdurE6dOiVnnQAAAAAAAECqYjpYiytfvnzq3bu3xo8fr4YNG8owDP3555/JsWoAAAAAAAAgVXqsrqAJuXDhgkJCQhQSEqKjR4/KMAxVrlxZLVu2TI76AAAAAAAAgFTJVLB27do1+/hqf/zxhwzDUIkSJTRgwAC1bNlShQoVSu46AQAAAAAAgFQlycFaRESEfvrpJ4WEhGjHjh26d++e8uTJo27dunFHUAAAAAAAAKQ7SQ7WatWqpbt378rT01MtW7ZUy5YtVaNGDbm4JMswbQAAAAAAAECakuRgrWbNmmrZsqUaNmwod3f3lKwJAAAAAAAASPWSHKx9+eWXKVkHAAAAAAAAkKbQjxMAAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwIc0Ha7dv39Zzzz0nq9WqAwcOOLscAAAAAAAApBNpPlibNm2aYmJinF0GAAAAAAAA0pk0HawdP35c3377rd58801nlwIAAAAAAIB0Jk0Ha2PHjlWnTp1UvHhxZ5cCAAAAAACAdCajswswa926dfr7778VFBSkv/7664nXZxiGIiIikqEyIO2JjIy0/x0REaHY2FgnVgMAcAauBQAAiesBYGMYhiwWyyOXS5PB2p07dzR+/HgNGjRIWbJkSZZ1RkdHKzQ0NFnWBaQ1UVFR9r+PHDkiNzc3J1YDAHAGrgUAAInrARBXUt7/aTJY+/LLL5UrVy61bds22dbp6uqqUqVKJdv6gLQk7q9SVqtVHh4eTqwGAOAMXAsAABLXA8Dm2LFjSVouzQVr58+f1zfffKOpU6cqPDxckuxdOCMiInT79m1lzpz5sddrsVjk6emZrLUCaYWLy/8Nt+jp6cnFEwDSIa4FAACJ6wFgk5RuoFIaDNbOnTun6Oho9enTJ968rl27qlKlSlqyZIkTKgMAAAAAAEB6kuaCNR8fH82bN89hWmhoqMaNG6fRo0erQoUKTqoMAAAAAAAA6UmaC9a8vLzk7++f4Lxy5cqpXLlyT7kiAAAAAAAApEcuj14EAAAAAAAAwIPSXIu1hPj7++vIkSPOLgMAAAAAAADpCC3WAAAAAAAAABMI1gAAAAAAAAATCNYAAAAAAAAAEwjWAAAAAAAAABMI1gAAAAAAAAATCNYAAAAAAAAAEwjWAAAAAAAAABMI1gAAAAAAAAATCNYAAAAAAAAAEwjWAAAAAAAAABMI1gAAAAAAAAATCNYAAAAAAAAAEwjWAAAAAAAAABMI1gAAAAAAAAATCNYAAAAAAAAAEwjWAAAAAAAAABMI1gAAAAAAAAATCNYAAAAAAAAAEwjWAAAAAAAAABMI1gAAAAAAAAATCNYAAAAAAAAAEwjWAAAAAAAAABMyOrsAAACQOMMwdPfuXWeXgXQgMjIywb+BlOTu7i6LxeLsMvAM4zr6+LgemMc5LX0iWAMAIBW7e/eu2rdv7+wykM4EBgY6uwSkE99//708PDycXQaeUYZh6O2331ZoaKizS0mzuB48Hh8fH02YMIFwLZ2hKygAAAAAAABgAi3WAABII4b655FbBn4BRcoxDEOS+KUdKSoqxtCnuy47uwykAxaLRRMmTKArqAlcD8yhK2j6RLAGAEAa4ZbBQrCGFMb7C8CzxWKx0N0YQIqiKygAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYEJGZxfwuNauXatVq1bpr7/+UlhYmIoWLarAwEC1bdtWFovF2eUBAAAAAAAgnUhzwdqcOXNUsGBBDR8+XDly5ND27dv1/vvv6+LFi3rjjTecXR4AAAAAAADSiTQXrH355ZfKmTOn/XHNmjV148YNzZ49W6+99ppcXOjdCgAAAAAAgJSX5lKouKGajY+Pj27duqWIiAgnVAQAAAAAAID0KM21WEvIb7/9pnz58ilLlizOLiVZGYahu3fvOrsMpAORkZEJ/g2kJHd3d8bGBAAAAJCmpflgbe/evVqzZo3efvvtJ1qPYRiprsVbZGSkunXr5uwykM4EBgY6uwSkE3PnzpWHh4ezy0j1CLsBPMsiIiIUGxvr7DIAAIjHMIwkNQRI08HaxYsXNWjQIPn7+6tr165PtK7o6GiFhoYmU2XJIyoqytklAECKOXLkiNzc3JxdRqrHtQDAs4xrAQAgNUvKNSrNBmthYWF69dVXlT17dgUFBT3xTQtcXV1VqlSpZKouecRtpZC59IuyuKTZlwtpgGEYkkTXPKQoI/aebh9dIUmyWq20WEsCWqwBeJZxLQAApFbHjh1L0nJpMqmJjIxU3759FR4ersWLFytr1qxPvE6LxSJPT89kqC75xA0LLS4ZCdaQoojT8LR5enryZSoJuNs1gGcZ1wIAQGqV1EYnaS6puXfvnt566y2dOHFCCxcuVL58+ZxdEgAAAAAAANKhNBesjR49Wps2bdLw4cN169Yt/fHHH/Z5ZcuWZYwGAAAAAAAAPBVpLljbtm2bJGn8+PHx5v38888qVKjQ0y4JAAAAAAAA6VCaC9Y2btzo7BIAAAAAAAAAMSIyAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgAsEaAAAAAAAAYALBGgAAAAAAAGACwRoAAAAAAABgQpoM1o4fP64ePXrI19dXtWvX1scff6yoqChnlwUAAAAAAIB0JKOzC3hcN2/eVLdu3VSsWDEFBQXp0qVLGj9+vCIjIzVy5EhnlwcAAAAAAIB0Is0Fa4sWLdLt27c1ZcoUZc+eXZIUExOj0aNHq2/fvsqXL59zCwQAAAAAAEC6kOa6gv7666+qWbOmPVSTpKZNmyo2Nlbbtm1zXmEAAAAAAABIV9Jci7UTJ06obdu2DtO8vLyUJ08enThxwklVpbzYe5GyuKS5l8spDMOQjBhnl4H0wpJBFovF2VWkGUbsPWeXkKbdioqVWwbeb0llGIaiY51dBdILVxdxPUiiqBjD2SUAAJBs0lxSExYWJi8vr3jTs2XLpps3b5per2EYioiIeJLSkt2dO3fsf0ccD3FiJQCQ/G7fvq3YWFKPR4l7LZi894oTKwGA5Me1AACQWhmGkaQfzdJcsJZSoqOjFRoa6uwyHNy9e9fZJQBAijly5Ijc3d2dXUaqx7UAwLOMawEAIDVzc3N75DJpLljz8vJSeHh4vOk3b95UtmzZTK/X1dVVpUqVepLSkp1hGJozZ46ioqKcXUqaYhgGxwxPjZubG11/THBzc5OHhwfHLgm4FpjH9QBPE9eDx8e1AACQmh07dixJy6W5YK1EiRLxxlILDw/X5cuXVaJECdPrtVgs8vT0fNLykl3mzJmdXQIAwMm4FgAAAABPV1J/+ElzdwV97rnntH37doWFhdmnrVu3Ti4uLqpdu7YTKwMAAAAAAEB6kuaCtU6dOilz5sx6/fXXtXXrVi1btkwff/yxOnXqpHz58jm7PAAAAAAAAKQTaS5Yy5Ytm+bOnasMGTLo9ddf18SJE9WuXTsNHz7c2aUBAAAAAAAgHUlzY6xJUsmSJTVnzhxnlwEAAAAAAIB0LM21WAMAAAAAAABSA4I1AAAAAAAAwASCNQAAAAAAAMAEgjUAAAAAAADABII1AAAAAAAAwASCNQAAAAAAAMAEgjUAAAAAAADABII1AAAAAAAAwASCNQAAAAAAAMCEjM4uIDWIjo6WYRg6cOCAs0sBAAAAAACAk0VFRclisTxyOYI1KUkHCgAAAAAAAOmDxWJJUl5kMQzDeAr1AAAAAAAAAM8UxlgDAAAAAAAATCBYAwAAAAAAAEwgWAMAAAAAAABMIFgDAAAAAAAATCBYAwAAAAAAAEwgWAMAAAAAAABMIFgDAAAAAAAATCBYAwAAAAAAAEwgWAMAAAAAAABMIFgDAAAAAAAATCBYAwAAAAAAAEwgWAMAAAAAAABMIFgDHlNQUJCsVqv9X40aNdS1a1ft3btXkrR8+XJZrVZdu3YtxWsJDAxU3759k329w4cPV4sWLeyPd+3aJavVqgMHDsRb9mHzkoPVatWsWbPsj5cvX67g4OB4y6XUsQCAx2G7RtStW1exsbHx5nfq1ElWq1XDhw9P9m2HhoYqKChId+7cMfX8B8+3D14L4nrYvCf14HU0LCxMQUFBOnbsmMNy586dk9Vq1bp161KkDgB4WlatWqV27dqpSpUq8vPzU9OmTfXuu+/q6tWr9mUCAgI0ZswYp9Rn+//+o/7ZzstxryVAepDR2QUAaZGHh4fmzp0rSbp48aKmTZum7t27a/ny5U+1jlGjRsnFJX3l4z/88IM8PT3VsmVLZ5cCAAlydXXV9evXtWfPHvn7+9unnz9/Xn/88Yc8PT1TZLuhoaGaMmWKunTpokyZMqXINpwhLCxMU6ZMUenSpVWqVClnlwMAyWrGjBmaOHGiunfvrgEDBsgwDB09elTBwcH6999/lStXLmeXqHLlymnx4sX2x3/99ZfGjBmjcePGqUSJEvbpefPm1eLFi1WgQAFnlAk4DcEaYIKLi4t8fX3tjytWrKiAgAAtWrRI5cuXf2p18AUDAFIfV1dX1axZU6tXr3YI1lavXq3SpUunux9EAACJmz9/vtq0aePQkrlevXrq3bt3gi2fnSFLliwO333u3r0rSSpdurQqVKjgsGzc5YD0gv/ZAcmgQIECypkzp86dO2efdvHiRfXu3Vu+vr5q3LixVqxYYZ83f/58VapUSbdu3XJYz/Hjx2W1WrV582ZJ0m+//aYuXbqoSpUqqly5slq2bKkffvjBvnxC3R+PHz+uN954Q9WrV1elSpXUqlUrhYSE2Od/8803atu2rapUqaKaNWuqb9++OnnyZHIeDkn3u/K0bNlSFSpUUN26dfXZZ58pJibGPv/ff//ViBEj1LBhQ1WsWFGNGzfWpEmTFBUVleg6AwMDtXv3bv3yyy/2JudBQUEOy6xbt05NmjRR5cqV1bVrV505cybZ9w0AHqVFixZav369oqOj7dNCQkIS7D55/Phx9e/fX1WqVJGvr6/69OkT79xltVo1Y8YMBQUFqVatWvL399eIESMUEREh6f45d8SIEZKkmjVrymq1KiAgQJK5860ZYWFh+uCDD1SnTh2VL19eL730krZu3eqwzC+//KIePXqoZs2a8vPzU/v27fXrr78mus5z586pYcOGkqSBAwc6dDeyuXv3rsaMGaNq1aqpTp06mjBhgu7du5es+wYAKSUsLEx58+ZNcN6jfojZt2+funbtKl9fX1WpUkVDhgxx6D4qSVFRUZo0aZIaNGig8uXLq2nTpvGGVbF179+8ebNatGihChUq6KWXXtIff/zx2PvzYFdQ2/eVkJAQNW7cWJUqVVK/fv108+ZNnT9/Xr169VLlypXVvHlz7dq1K976HvWdAkgNCNaAZHDr1i3duHHD4aI4dOhQ1alTR1OnTpWPj4+GDx+u48ePS5JatWolwzAcAi9JWrp0qfLly6c6dero1q1b6tu3r7JkyaJJkyZp2rRp6tChg8LCwhKt49SpU+rYsaNOnz6td999V19++aVeeuklXbhwwb7MxYsX9corr2jatGkaO3asYmNj1alTJ924ceOR+xkbG6t79+45/Evol7TZs2frvffeU506dfTVV1/p1Vdf1bx58/TZZ5/Zl7l+/bqyZ8+uESNGaObMmerdu7d++OEHjRo1KtHtjxo1SmXLlpWfn58WL16sxYsXq3379vb5oaGhmjVrloYOHapx48bpzJkz+u9///vI/QKA5NagQQNFRUVp27ZtkqRjx47pyJEjatasmcNyZ8+eVadOnXTz5k2NHz9en376qa5du6bu3bvHC74WLlyoU6dOafz48Xr99dcVHBysadOmSZLq16+v/v37S5JmzpypxYsXa8qUKZLMnW/jevC8f+/ePRmG4bBMVFSUevTooV9++UVvvfWWvvzyS5UsWVJ9+/bVkSNH7MudO3dODRo00Mcff6ygoCD5+fmpT58+CX6Zku53K7Ltx+DBg+3n/rjX288//1wuLi76/PPP1alTJ33zzTf6/vvvk7RvAOBs5cqV06JFi/T999/r8uXLSX7evn37FBgYqKxZs+qzzz7Thx9+qAMHDui1115zWG7gwIFavHixevTooa+//lp169bVf//7X/sP+TaXL1/W6NGj1atXL33++edyc3NTr1694gV1Zhw6dEjz5s3TsGHDNHr0aO3du1fvv/++BgwYoPr16ysoKEg5c+bUm2++qdu3b9ufl5TvFEBqQFdQwCTbr+EXL17UhAkTFBMToyZNmtgviF26dFGXLl0kSZUrV9bmzZu1fv16vfbaa8qWLZuaNGmiZcuWqVOnTvb12QYuzZAhg06ePKnw8HANHjxYVqtV0v1WCA8TFBQkV1dXfffdd8qSJYskqVatWg7LvPPOO/a/Y2JiVLt2bdWsWVPr169Xx44dH7r+Dh06PPK43Lp1S5MnT1bv3r01ePBgSVLt2rXl6uqq8ePHq1evXsqRI4esVqvefvtt+/P8/PyUKVMmDR8+XCNHjkxwfKBSpUopS5Ys8vT0TLCZeXh4uFasWKGcOXNKkiIiIjRixAhdvHhR+fPnf2TtAJBcMmXKpICAAK1evVr169dXSEiIKleurMKFCzssN2XKFGXLlk2zZ8+Wu7u7pPvnw4YNG+r777+3X0ckKU+ePJo4caIk6bnnntOhQ4e0fv16DR06VDlz5lSRIkUk3f+SZjsPSjJ1vrU5evSoypUrl+C80qVL2/8ODg7W4cOHtXLlSvswBXXr1tXp06c1bdo0ffHFF5KkV155xf6c2NhY+fv769ixY1qyZIlDt1kbNzc3+fj4SJKKFi2a4Lm/YsWKeu+99yTdv97s2rVL69ev18svv5zofgFAajFq1Ci98cYb9vNYoUKF1KBBA3Xv3l2FChVK9HkTJ05U+fLlNWXKFFksFkmSt7e3veVZvXr1tHPnTm3cuFGzZs1SnTp1JN0/T16+fFlBQUGqV6+efX03btzQ559/bv++Ub16ddWrV09z5szRkCFDnmgfb926pa+++sp+bTpy5Ii++eYbffDBB/Zzdd68edWyZUvt2LFDjRo1SvJ3CiA1IFgDTIiIiHD4opEtWzaNHDlSdevWtd/AwHbxkiRPT08VKFBAFy9etE/r0KGDXnnlFR09elSlS5fW5s2bdfXqVbVt21aSVKRIEWXJkkUffPCBAgMDVaNGDYcvSgnZuXOnmjRpYg/VEvLHH3/oiy++0KFDhxxaqZ06deqR+z1hwgSVLFnSYdpff/3l0Oph3759ioiI0AsvvODQFadWrVqKjIzU0aNHVb16dRmGoblz52rJkiU6d+6cfawG6X4LDm9v70fW86AyZco4HCPblzuCNQDO0KJFCw0ZMkSRkZFas2aNAgMD4y2zbds2NWvWTBkyZLCfM728vFS2bFkdPHjQYdkHfygpWbKkVq9e/cg6nuR8W6RIEU2aNCne9KlTpzp0x9y2bZu8vb1VrFixeOf+VatW2R9fvHhRn332mbZv367Lly/bW74lFt4lRdzrrXT/uOzcudP0+gDgafL29lZISIh27NihrVu3as+ePZo/f76WL1+uhQsX2n9ciOvOnTv6/fffNWzYMIdukcWKFdN//vMfHThwQPXq1dO2bduUPXt21ahRI965+YMPPlBMTIwyZMggScqaNavDj/hZs2ZVrVq19Oeffz7xPj74f/RixYrZ63hwmu37UlK/UwCpAcEaYIKHh4cWLFggi8WiHDly6D//+U+8MRCyZs3q8NjV1dWhW0+1atVUvHhxLV26VCNGjNCyZctUrVo1e4sDWwuGyZMn2y+aVatW1XvvvWdvwfagB7ujPujChQvq2bOnypcvr9GjRytv3rxydXVV3759Hb5oJaZkyZLxBii1je9jc/36dUlSmzZtElzHP//8I0maO3euJkyYoN69e8vf319eXl46cOCAxowZk6RaEuLl5eXw2NXVVZJMrw8AnkSdOnXk6uqqL774QufOnVPTpk3jLXP9+nXNnTvXfqfpuGznMJuEznFJGSftSc637u7u8c77kpQ9e3aHYO369es6dOhQggGZ7UtbbGys+vfvr/DwcA0YMEBFixZVpkyZNHnyZPu1wYxHXW8BILVzc3NTvXr17C3ItmzZor59+2rq1Kn27vBxhYWFKSYmRuPGjdO4cePizbedU69fv64bN24k+uPF5cuX7T8+J/QDfq5cuexD2TyJxP6PHvf87ebmJun//t+e1O8UQGpAsAaY4OLikuAXjcfVvn17zZw5Uz169NDmzZv10UcfOcyvWLGiZs6cqcjISO3atUsTJkzQ66+/rg0bNiS4vuzZs+vff/9NdHtbtmxRRESEpkyZYr/A3bt3Tzdv3nzifbHJli2bpPvdmxJqJWZr0r5u3ToFBAQ4NC1Pjgs3AKQWrq6uaty4sebMmaOaNWsqd+7c8ZbJli2b6tWrp86dO8eblzlz5mSp42mcb7Nlyyar1RrvOhbX6dOndejQIU2dOlWNGjWyT4+MjEzWWgAgratbt67KlCmT6Lk6a9asslgs6tu3r8P51MbWRTJbtmzKmTOnpk+fnuB64oZp165dizf/6tWrypMnj5ldeGJJ/U4BpAYEa4ATtWnTRp999pmGDh0qDw8PvfDCCwku5+HhoXr16unMmTP66KOPdPfuXftYPHHZxkobOnRogt1BIyMjZbFYlDHj/330165dm6x3T6tcubIyZcqkixcv6vnnn090ucjIyHitMR68Q1FCXF1daYEGIM1o3769rl69mugYlTVr1tTRo0dVtmxZe8sus2zn1Adba5k93z6OWrVqafPmzcqbN6/y5cuX4DK2c3fcWs6fP699+/bZuwAlhNbHAJ5lV65ciffDS2RkpP755x/7sCYPso03fOLEiYf+2F+rVi3NnDlTrq6uKlOmzEPrCA8P144dO+zdQcPDw7V9+3aHsT6fpqR+pwBSA4I1wIly5syphg0bat26derYsaM8PDzs83755RctXbpUjRo1UoECBXTlyhUtWLBAfn5+CYZqkvTGG2/ol19+UefOndW7d2/lyZNHx48f1507d/Tqq6+qRo0akqQRI0aoU6dOOnr0qGbPnh2vefaT8PLy0oABA/TJJ5/o4sWLql69ujJkyKCzZ8/q559/VlBQkDJlyqRatWpp3rx5WrBggYoVK6ZVq1bp9OnTj1x/iRIltGLFCm3cuFF58uR56Jc4AHC2ihUr2u/cmZABAwaoXbt26tWrlzp06KDcuXPrypUr2r17t6pWraoWLVokeVu2MTAXLlyoRo0aycPDQ1ar1fT59nG8+OKLWrRokbp27aqePXuqWLFiCg8P16FDhxQdHa0hQ4aoRIkSyp8/vyZOnKjY2FhFRERo8uTJDx3CQLp/0wYvLy+tXr1ahQoVkpubW6JDIgBAWtOyZUs1aNBAderUUd68eXXp0iUtWLBA169fV7du3RJ93rBhw9StWze99dZbat68uby8vHTx4kVt375dL730kvz9/VW7dm01aNBAvXv3Vu/evWW1WnXnzh0dO3ZMp0+fdmhlnD17dr377rsaMGCAsmbNqhkzZsgwjIfWkJKS+p0CSA0I1gAne/7557Vu3Tq1a9fOYXqRIkXk4uKizz//XFevXlX27NlVp04d+11xElKsWDEtWrRIEydO1OjRoxUTE6NixYqpT58+ku7fGW7cuHGaMmWK+vbtKx8fH33xxRd66623knWfevbsqXz58mn27NlasGCBMmbMqCJFiqh+/fr2lgevv/66rl+/rsmTJ0uSmjRpovfee0/9+vV76LpfffVVnTlzRm+//bbCwsL0xhtv6M0330zW+gHgaSlatKi+//57ff755xo9erQiIiKUJ08eVatW7bHDo7Jly+rNN9/U999/r5kzZ+o///mPNm7caPp8+zjc3Nw0b948BQUF6auvvtLly5eVPXt2lS1b1t7N1c3NTUFBQRozZowGDhyo//znP+rfv7927twZ70YNcbm4uGjcuHGaNGmSunfvrqioKP3888/JVjsAONMbb7yhTZs2afz48bp27Zpy5Mghq9WqOXPm2H8UT4ifn5++/fZbBQUFacSIEYqOjlb+/PlVo0YNFS1a1L7c5MmTNX36dH333Xc6f/68smbNqtKlS+ull15yWF+ePHk0dOhQffzxxzpz5oxKly6tWbNmJTiMwdOSlO8UQGpgMWy3YwLgFMOGDVNoaGiyd8sBAAAAgEcZPny4Dh48qJCQEGeXAqRJtFgDnOTIkSMKDQ3VmjVrNGrUKGeXAwAAAAAAHhPBGuAk/fv317Vr1/Tiiy+qbdu2zi4HAAAAAAA8JrqCAgAAAAAAACa4OLsAAAAAAAAAIC0iWAMAAAAAAABMIFgDAAAAAAAATCBYAwAAAAAAAEwgWAMAAEjFrFargoKCUmTd586dk9Vq1fLly1Nk/clh165dslqt2rVrl31aYGCgWrRo4cSqAAAA7iNYAwAAadby5ctltVpVoUIFXbp0Kd58Apjkt3nzZlmtVtWpU0exsbHx5l+6dElBQUEKDQ2NNy84OFhz5sx5ClU+vtRcGwAASL0I1gAAQJoXFRWl6dOnO7uMFLF//37179/f2WXYrVq1SgULFtTly5e1c+fOePP//fdfTZkyJcFgLSQkRPPmzXus7VWrVk379+9XtWrVTNecFGZqAwAAIFgDAABpno+Pj5YsWZJgq7W0KDY2Vnfv3pUkubu7K2PGjE6u6L6IiAht3LhRPXr0UNmyZRUcHJxi27p7965iY2Pl4uIid3d3ubjw31YAAJD68D8UAACQ5vXt21exsbGaMWPGQ5d72JhiD45lFhQUJKvVqpMnT2ro0KGqUqWKatSooc8//1yGYeiff/5R//795efnp9q1a+ubb76Jt86oqChNnjxZzz//vMqXL6969erp448/VlRUVLxtjxkzRqtWrVLz5s1VoUIFbdmyJcG6pPvdLd955x3VqVNH5cuXV0BAgEaNGmVf740bNzRhwgS1bNlSlStXlp+fn3r37q3Dhw8n7YAm4qefflJkZKReeOEFNWvWTD/++KM9AJTuj4fWrl07SdKIESNktVrtxzswMFC//PKLzp8/b58eEBBgf57VatXq1av12WefqW7duqpUqZJu3bqV4BhrNgcPHlSnTp1UsWJFBQQE6LvvvnOYb+sqfO7cOYfpD67zYbVJSX8dt23bppdffllVq1ZV5cqV1aRJE02aNOkJjjgAAEjtUsfPnwAAAE+gUKFCat26tZYsWaJXX31V+fLlS7Z1Dxo0SCVLltSQIUO0efNmffnll8qePbsWLVqkGjVqaOjQoQoODtaECRNUoUIFe5fF2NhY9e/fX7/99ps6dOigkiVL6u+//9bcuXN16tQpTZs2zWE7O3fu1Nq1a9WlSxflyJFDBQsWTLCeS5cuqV27dgoPD1eHDh1UokQJXbp0SevXr1dkZKTc3Nx09uxZbdiwQS+88IIKFSqkK1euaPHixXrllVe0evVq08cnODhY/v7+ypMnj5o3b66JEydq48aNatq0qSSpZMmSGjBggCZPnqyOHTuqSpUqkiQ/Pz/ly5dP4eHhunjxokaMGCFJypw5s8P6p02bJldXV/Xq1UtRUVFydXVNtJabN2+qT58+atq0qZo3b661a9fqgw8+kKurqz3cS6p+/folWltSX8ejR4+qb9++slqtGjBggNzc3HT69Gn9/vvvj1ULAABIWwjWAADAM6F///5auXKlZsyYoffeey/Z1luxYkWNGTNGktSxY0cFBARo/PjxGjx4sPr06SNJatGiherWratly5bZg7Xg4GBt375d8+fPV9WqVe3rK126tEaNGqXff/9dfn5+9uknT55UcHCwSpUq9dB6Jk2apCtXrmjJkiWqUKGCffrAgQNlGIak+63c1q9f79B9snXr1mratKmWLl2q119//bGPw9WrV7Vjxw598MEHkqQCBQrI19dXwcHB9mAtd+7ceu655zR58mT5+vqqdevW9ucXLlxY8+bNU1hYmMP0uO7evatly5bJw8PjkfX8+++/Gj58uHr06CHp/mvToUMHTZo0Sa1bt35oKPeg2rVrJ1pbUl/Hbdu2KTo6WjNmzFDOnDmTvG0AAJC20RUUAAA8EwoXLqxWrVppyZIl+vfff5NtvXFbP2XIkEHly5eXYRgO0728vFS8eHGdPXvWPm3dunUqWbKkSpQooWvXrtn/1ahRQ5LidW2sVq3aI0O12NhYbdiwQQ0aNHAI1WwsFoskyc3NzR6qxcTE6Pr16/L09FTx4sV16NChxzwC961evVoWi0WNGze2T2vRooV+/fVX3bx509Q6H/Tiiy8mKVSTpIwZM6pjx472x25uburYsaOuXr2qv/76K1nqkZL+Onp5eUmSfv755wTvlgoAAJ5NtFgDAADPjNdee02rVq3S9OnTk63VWoECBRweZ82aVe7u7vFaJWXNmlU3btywPz59+rSOHz+umjVrJrjeq1evOjwuVKjQI2u5du2abt26pdKlSz90udjYWM2bN0/ffvutzp07p5iYGPu87NmzP3I7CVm1apUqVqyoGzdu2PfTx8dH0dHRWrdunUPIZVZSjoFN3rx55enp6TCtWLFikqTz58/L19f3ieuRkv46NmvWTN9//73ee+89TZw4UTVr1tTzzz+vF154gRsvAADwDCNYAwAAz4y4rdZs3TTjsrXoelDc4OlBCYUiGTJkSHBZW1dM6X645e3tbR+z60H58+d3eJzUllpJ8dVXX+mLL75Q27ZtNXDgQGXLlk0uLi763//+51BjUp06dUoHDhyQJIcWazbBwcHJEqwl5zGQEn+9H6dFWVJfRw8PDy1cuFC7du3SL7/8oi1btmjNmjVavHixvvnmm0TfMwAAIG0jWAMAAM+U/v37a9WqVQneITRbtmySpLCwMIfpFy5cSPY6ihQposOHD6tmzZqJBjyPK2fOnMqSJYuOHj360OXWr18vf39//e9//3OYHhYWphw5cjz2doODg+Xq6qqPP/44XtD422+/af78+bpw4YIKFCjw0H1NruMg3R9jLSIiwqHV2qlTpyTJfuMHW/fM8PBwh+eeP38+ybU9zuvo4uKimjVrqmbNmhoxYoS++uorffbZZ9q1a5dq1aqV5H0DAABpB+3SAQDAM6VIkSJq1aqVFi9erMuXLzvMy5Ili3LkyKG9e/c6TP/222+TvY6mTZvq0qVLWrJkSbx5kZGRioiIeOx1uri4qFGjRtq0aZO9BVlcttZoGTJkiNcybe3atbp06dJjb1O6H6xVqVJFzZo10wsvvODwr3fv3pKkkJAQSVKmTJkkxQ8vbfMeDLnMunfvnhYvXmx/HBUVpcWLFytnzpwqV66cpPvvBUnas2ePfbmYmJgEX5PEakvq6xi3G7CNj4+PvTYAAPBsosUaAAB45vTr108rV67UyZMn441H1r59e02fPl3vvvuuypcvr7179+rkyZPJXkPr1q21du1ajRo1Srt27ZKfn59iYmJ04sQJrVu3TjNnzkzwBgSPMnjwYG3btk2BgYHq0KGDSpYsqcuXL2vdunX69ttv5eXlpfr162vq1KkaMWKEKleurL///lvBwcEqXLjwY2/vzz//1OnTp9WlS5cE5+fLl09ly5ZVcHCw+vTpoyJFisjLy0uLFi1S5syZ5enpqYoVK6pw4cIqV66c1qxZo3HjxqlChQry9PRUQEDAY9ck3R9jbcaMGTp//ryKFSumNWvWKDQ0VB9++KH9jqClS5eWr6+vJk2apJs3bypbtmxas2aN7t27F299idWW1Ndx6tSp2rt3r+rVq6eCBQvq6tWr+vbbb5U/f35VqVLF1D4CAIDUj2ANAAA8c4oWLapWrVrphx9+iDfv9ddf17Vr17R+/XqtXbtWzz33nGbOnJno4PRmubi4aOrUqZozZ45Wrlypn376SZkyZVKhQoUUGBio4sWLm1pvvnz5tGTJEn3xxRcKDg7WrVu3lC9fPj333HP2Mcr69eunO3fuKDg4WGvWrFHZsmX19ddfa+LEiY+9veDgYEl6aAAWEBCgoKAgHT58WGXKlNH48eM1adIkffDBB7p3757GjRunwoULq3PnzgoNDdXy5cs1Z84cFSxY0HSwli1bNo0fP15jx47VkiVLlDt3bo0cOVIdOnRwWO7TTz/VyJEjNX36dHl5ealdu3by9/dXjx49HJZLrLakvo4BAQE6f/68li1bpuvXrytHjhyqXr263nzzTWXNmtXUPgIAgNTPYpgZwRYAAAAAAABI5xhjDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADCBYA0AAAAAAAAwgWANAAAAAAAAMIFgDQAAAAAAADDh/wGibxyiAs1ixwAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
],
"source": [
"plt.figure(figsize=(15,5))\n",
"sns.set_theme(style=\"whitegrid\")\n",
"sns.boxplot(data=df[numerical_feats[:-1]]) # outliers are ignore to be plotted\n",
"plt.xlabel(\"Numerical Attributes\", fontsize= 12)\n",
"plt.ylabel(\"Values\", fontsize= 12)\n",
"plt.title(\"Numerical Attributes Boxplot after removing outliers\", fontsize= 15)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "5bdcd1a7",
"metadata": {
"id": "5bdcd1a7"
},
"source": [
"#### After fixing outliers, lets normalize them so that all the features are in same class"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "86ede2b8",
"metadata": {
"id": "86ede2b8"
},
"outputs": [],
"source": [
"# Using MinMaxScaler to normalize the data\n",
"from sklearn.preprocessing import MinMaxScaler\n",
"\n",
"scaler = MinMaxScaler()\n",
"df[numerical_feats[:-1]] = pd.DataFrame(scaler.fit_transform(df[numerical_feats[:-1]].values), columns=numerical_feats[:-1], index=df.index)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "6bd4b529",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 270
},
"id": "6bd4b529",
"outputId": "69177784-ccd8-4602-e845-3834dfa4477b"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" HeartDisease Smoking AlcoholDrinking Stroke PhysicalHealth MentalHealth \\\n",
"0 No Yes No No 0.600000 0.556909 \n",
"1 No No No Yes 0.000000 0.000000 \n",
"2 No Yes No No 0.674342 0.556909 \n",
"3 No No No No 0.000000 0.000000 \n",
"4 No No No No 0.674342 0.000000 \n",
"\n",
" DiffWalking Sex AgeCategory Race Diabetic PhysicalActivity \\\n",
"0 No Female 55-59 White Yes Yes \n",
"1 No Female 80 or older White No Yes \n",
"2 No Male 65-69 White Yes Yes \n",
"3 No Female 75-79 White No No \n",
"4 Yes Female 40-44 White No Yes \n",
"\n",
" GenHealth SleepTime Asthma KidneyDisease SkinCancer BMI Target \n",
"0 Very good 0.250 Yes No Yes UnderWeight 0 \n",
"1 Very good 0.500 No No No NormalWeight 0 \n",
"2 Fair 0.625 Yes No No OverWeight 0 \n",
"3 Good 0.375 No No Yes NormalWeight 0 \n",
"4 Very good 0.625 No No No NormalWeight 0 "
],
"text/html": [
"\n",
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABNsAAAHhCAYAAABXzLi9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzoElEQVR4nO3deXhMZ//H8c+ERASJndrXGbuINXYpVXtba6laS1WrtbSl7aNo+9iKVtCWai2tWlsliFJqX1stJdS+1k4SIhLJ+f3hN/NkJCGJE5nwfl2X65KzzffMzDln5jP3fR+LYRiGAAAAAAAAADw0t7QuAAAAAAAAAHhcELYBAAAAAAAAJiFsAwAAAAAAAExC2AYAAAAAAACYhLANAAAAAAAAMAlhGwAAAAAAAGASwjYAAAAAAADAJIRtAAAAAAAAgEkI2wAAAAAAAACTELYBcFk2m002m03VqlVTWFhYgstMnz5dNptNgYGBj7i6tDN06FDZbDbt2LHjkT5uYGCgbDabfvzxxxStv3fvXsdrOmXKFJOrS54dO3bIZrNp6NChTtMfdh8fB/bn4N5/VapUUZs2bTRt2jTdunUrrctMsvT8ml69elXvvPOO6tatq7Jly6bb/XiSdO3aVTabTWfOnEnrUlxWQECAbDZbvOk2m00BAQFpUFH6xnsu5RL7LPDjjz+63GfLxGoF4LoI2wC4vPDwcH377bdpXQYe0s8//+z4//LlyxNd7kEfKM+cOSObzaauXbuaXuOjkh72oUyZMnr++ef1/PPPq02bNqpUqZKOHj2qzz//XF26dElXgZtZHnUY8N577+nnn39Wzpw51aJFCz3//PMqUqRIug4Q8XhLD+c2AAAehYxpXQAA3I/FYpGHh4fmzJmj7t27y8fHJ61LSnODBg3SK6+8ogIFCqR1KUkWHR2tFStWSJLy5MmjEydO6K+//lLlypXTpJ5KlSpp5cqVypYtW5o8fnrQuHFjvfHGG07TTp8+rY4dO2r//v2aP3++evTokUbVPf6ioqK0ceNGFSxYUEuXLpWb2/9+H922bVsaVob7GTt2rG7duqV8+fKldSnpzsqVK+Xu7p7WZQBq0qSJKleurBw5cqR1KQDSMVq2AXBpbm5u6tChg27cuKFvvvkmrctxCXnz5lXJkiWVOXPmtC4lyTZt2qRr167Jz89PL774oiTnlm6PWubMmVWyZEnlzZs3zWpIjwoXLqyOHTtKknbt2pXG1TzeLl++rJiYGBUsWNApaINrK1CggEqWLElolAIlS5ZUkSJF0roMQNmyZVPJkiWVM2fOtC4FQDrGpzcALq9Pnz7y9PTU3Llzde3atSStc78xTBLr5hK3a9bff/+t3r17q1q1aqpRo4befPNNnT9/XpIUERGhcePGKSAgQBUrVlTLli0VHBycaC1Hjx7V0KFD1aBBA1WoUEG1a9fWwIEDdfjw4XjLxh0n5Pjx4xo4cKBq166tMmXKaO3atZLuP2ZbRESEpk+frhdeeEF+fn7y9fXVs88+q5EjR+r48eOO5W7fvq1FixapX79+evrpp1WpUiVVq1ZNXbp0cbRAM9OyZcskSa1bt1br1q0l3W3FEB0d7bTc0KFD9fLLL0uSfvrpJ6cxwwIDAxUYGKinn35akrRz506n+XG7ndq7+0VFRWnKlCl69tlnVaFCBb322muSkjb2yV9//aVevXqpWrVq8vPzU48ePfTnn3/GW+5BY7vc+15M6j5I0vXr1zVhwgQ1b95clSpVUtWqVfXyyy9r/fr1CT7WP//8oyFDhujpp59WxYoVVatWLbVp00affPKJLl68mOi+JkeuXLkkSTExMQnOX7p0qV588UX5+fmpcuXKatWqlb766ivdvn3bsUxMTIw6deokm82m77//Pt42du/erbJly6pu3bpOx7x9rCfDMDR79mw1b95cFStWVL169fTxxx8nOrZjYq5du6axY8fqmWeeUcWKFVWjRg316tVLmzdvdlrO/hpL0tmzZ51es6R0lzMMQ0FBQRo4cKCaNm0qX19fValSRe3atdP333+v2NhYp+UDAgLUqFEjSc7vkYCAAAUEBDjGPBw2bJhTLfeeE/766y8NGDBAdevWVYUKFVS/fn29//77OnfuXLwa457/9u7dq759+6pmzZqy2WwKCQm57/7FPZ4uXbqk999/X/Xr11e5cuU0a9Ysx3L//vuvRo0apcaNGzue7759++qPP/647zavXLmi9957T3Xq1JGvr69efPFFp3V++OEHtWrVSpUqVVKDBg0UGBgY7zm1O3LkiAYPHux4TurVq6d33nlHx44dc1rul19+kc1m01tvvZXofo8ZM0Y2m01z5sxxTEvs2mN//WJiYjR9+nQ1bdpUFSpUUIMGDTR+/HhFRUUl+BgHDx7Uq6++qmrVqqlKlSrq0qWLtmzZkuLxm5K6/1LqntsScr9u2mZfR2/evKmvvvpKrVu3VtWqVVWlShU1btxYAwYM0KZNmx5Yq5T849r+HNmPs0OHDunVV19V9erV5evrq5deeinBY0G6e86cOXOmnn32WVWsWFENGjTQxx9/rBs3biSpVjNqkJJ2freL+1ll06ZN6tq1q6pVqyabzaawsDCn1+nUqVN68803VbNmTfn5+al37946cuSIJOnOnTv68ssv1bRpU1WsWFFNmjRJ8LohSb/99puGDRumZs2aOT4DtW7dWl9++WWix1hCEnrv26fd79+9x8qdO3c0b948dezYUX5+fqpUqZLatGmjWbNm6c6dOwk+9uHDh/Xaa6+pevXqqlKlijp37qyNGzcmuXYAroNupABcXt68edWpUyfNmjVLM2fO1JAhQ1L18f766y99+OGHKl26tOrWrasDBw4oODhYBw8e1OLFi9WjRw+dO3dO1apV07Vr17Rr1y699dZbmjFjhurVq+e0rbVr12rgwIGKiopS2bJlVblyZZ0/f16rVq3S+vXrNWPGDFWvXj1eDcePH1e7du2UPXt21axZU2FhYcqY8f6n7IsXL6pnz546fPiwfHx8VKNGDXl4eOjMmTOaP3++ihYtquLFi0u6Gzh+8MEHyps3r4oXL65KlSrp8uXL2rNnj3bv3q1jx47F60KYUuHh4Vq3bp3c3d3VrFkzZc+eXVWqVNGePXu0adMmpy9XVatW1aVLl7R582YVKVJEVatWdcwrW7asJKlp06ZavXq1cufO7fR8x11WkmJjY9W/f3/t3r1b1atXl81mU/bs2ZNU8549ezR8+HAVLVpU9evX18mTJ7V161bt2rVLX375perWrZvi56Ns2bJJ2ofjx4+rR48e+vfff1WwYEHVrVtXN2/e1F9//aVXX31V77zzjnr16uVY/u+//1bnzp11+/Zt2Ww2Pf3004qMjNTp06c1Z84cNW7c2JSWfH///bckqUSJEvHmDR8+XAsWLFCmTJlUq1YteXp6aufOnZo4caLWr1+vb7/9VpkzZ1aGDBk0fvx4tWnTRuPGjVOtWrVUsmRJSXffL++8844Mw9DYsWMT7Mbz0UcfaeHChapRo4asVqt27dqluXPnaufOnZo3b56yZs36wP24cOGCunTpotOnT6tAgQJq3Lixrl69qm3btmnz5s0aNmyYunfvLkkqUqSInn/+ef3000/y8vJS06ZNHdtJ6Hm4V1RUlAYPHqzs2bOrVKlSKleunK5fv649e/Zo1KhR2rdvn8aMGeNYvmnTpjp79my894j9udi6dasOHjwoPz8/FS1a1LFe7ty5Hf///vvv9fHHH0uSKlasqKpVq+r48eNavHix1q1bp++++87xnMe1a9cuDR8+XMWKFVOdOnV08eJFWSyWB+6jdPeGDu3atVNMTIz8/PwUFRXlaIG7Z88e9e3bV6GhoSpevLgaNmyoq1evavPmzdq0aZM+/fRTNW/ePN42Q0ND1bFjR8XGxqpGjRo6e/as/vjjD/Xs2VOLFi3SggULtGjRItWsWVMFCxbUzp07NWXKFN25c0cDBw502ta2bdv06quvKjIyUuXKlVONGjV07Ngx/fzzz1qzZo1mzJihatWqSZIaNmyobNmyaf369bp586ayZMnitK3Y2FitWLFCGTJkUIsWLZL0/EjS4MGDtWHDBtWsWVPFixfX7t279fXXX+vChQv69NNPnZbds2ePevTooVu3bslms6lUqVI6deqUevfurS5duiT5MVOy/ymR1HNbcpl9HY2JiVGPHj30119/KUeOHKpRo4YyZcqk8+fPa+PGjfLy8op3LU9Ico/ruP7++2+NGjVKhQsXVt26dXXs2DHt2rVL3bt31+LFi2W1Wp2Wf/vtt7VixQplzpxZderUUcaMGbV06VL98ccfKW5Fmdwaknp+v1dQUJAWLVrkCPxPnTrldE45c+aM2rdvr1y5cql27do6cuSINm3apP3792vZsmX68MMPtXPnTtWsWVOFChXSjh07NGrUKLm7u6tDhw5Oj/X+++8rMjJSpUuXls1mU3h4uPbt26dJkyZp27Zt+uabb5QhQ4YUPV/260BCNm3apMuXLzu1Qo6MjFSfPn20Y8cOZc+eXb6+vvLw8NDevXs1evRo7dixQ1OnTnVaZ9++fXr55ZcVEREhq9Wq0qVL68SJE+rTp4+jVwCAdMQAABdltVqNsmXLGoZhGJcuXTIqV65s+Pr6GleuXHEs89VXXxlWq9WYPHmy07ovvfSSYbVajdOnT8fb7unTpw2r1Wq89NJLTtMnT55sWK1Ww2q1GvPmzXNMj4qKMrp3725YrVajefPmxssvv2zcvHnTMX/hwoWG1Wo1unTpEu9xfH19DV9fX2PLli1O8zZs2GCUL1/eaNCggXH79m3H9CVLljhqGDVqlHHnzp149b/77ruG1Wo1tm/f7jS9W7duhtVqNd58803jxo0b8WoJCQlx/H316lVjy5YtRmxsrNNyp06dMho1amSUKVMm3nNnf36WLFkSr6b7sT8//fr1c0z7/vvvDavVagwYMCDe8tu3bzesVqvx7rvvJri9xF6/uOzPYZMmTYzz588n+THivgcmTpzo9PzYa65Tp45x69Ytx3T7a3bve9Auoffig/bhzp07RsuWLQ2r1WrMmDHDiImJccw7ceKEERAQYJQtW9Y4dOiQY/o777xjWK1WY+bMmfG2d+TIEePChQsJPta97M9B3P2JiYkx/v33X+Orr74yypQpY1SrVs04deqU03rBwcGG1Wo16tataxw/ftwxPSwszHjxxRcNq9VqjBkzxmmdH3/80bBarcZzzz3nOA4GDRpkWK1W45NPPolXW6NGjQyr1Wr4+fkZ+/btc0y/ceOG8fLLLxtWq9X4+OOPE9yfe9+3ffv2NaxWqzFo0CCnY3DXrl1G5cqVjbJlyxoHDhxwWsdqtRqNGjW639OXoOjoaGPNmjVGVFSU0/QrV64YL7zwgmG1Wo2dO3c6zbvfe+RBx+KePXuMsmXLGvXq1XN6ngzjf8dj+/btE9ym1Wo1pk+fnqz9sx9PVqvV6N+/vxEZGek0Pzw83KhTp45RtmxZ4+eff3aat3fvXqN69erxzu1xtzlkyBCn585ea/PmzY26desaJ0+edMw7fPiwUb58eaNy5cpO58GbN28atWvXNqxWq/Hdd9851fDtt98aVqvVqF+/vlPt7733nmG1Wo2ffvop3j5v3brVsFqtRq9evZymJ3btse9Ls2bNjIsXLzqmnzp1yqhWrZphtVqd9iMmJsZ45plnDKvVanzxxRdO27K/hvc7T94rJfufGuc2w/jfcXyvhI6v1LiObtu2zbBarUbbtm0TfK/ee8wkJiXHddzjbPbs2U7zPvnkE8NqtRpvv/220/QVK1YYVqvVaNiwodNzffnyZcd1IrHPOwlJSQ0pOb/bP6tYrVZjxYoV8eqI+zp9+umnjuttbGysMXToUMcx3rJlS6dzg/3YS+hcvGbNGqfrs2HcfU3t5/t7j+XEPgs86L0f1+rVqw2bzWY0atTIqc4RI0YYVqvVeOutt4ywsDCnel555ZV4nzVjY2ON5s2bG1ar1fj888+dHuO7775L9jEPIO3RjRRAupA7d269+OKLioiI0IwZM1L1sapWrer0C6K7u7teeuklSdKxY8c0YsQIeXl5Oea/8MILypEjh/7880+nbpGzZ89WRESEBg8erNq1azs9Rv369dWpUyf9+++/2rBhQ7wacubMqSFDhiT5F9i9e/dq27ZtypUrlz7++ON4rTAKFSqkMmXKOP7OkSOHateuHa/FSuHChdWvXz/FxsYm2lUxueJ2IbVr1qyZ3N3dtX79eoWHh5vyOAkZNGhQigYqL1iwoN544w2n56dz586qXLmyLl26pNWrV5tZZjzr16/XP//8o6ZNm6p3795Ov3wXLVpUQ4cOVUxMjBYuXOiYfvXqVUmK916TlKLx6aZMmeLoGlO2bFk1aNBAEyZMUO3atbVgwQIVLlzYafm5c+dKkl5//XUVK1bMMT1btmwaPny4LBaL5s+f79Td6Pnnn9ezzz6rAwcO6LPPPtOyZcsUFBQkq9V63xasL730kipUqOD4O0uWLPrPf/4ji8WixYsXJ9ilKa7Tp09r/fr18vLy0n/+8x95eHg45lWrVk2dOnVSTExMol2Vkitjxoxq3LhxvBYoOXPm1ODBgyVJv/76qymPJUnTp09XTEyMRo4c6fQ8SVL79u0VEBCgv/76SwcOHIi3rtVqVe/evVP0uB4eHvrPf/6jTJkyOU1fvHixLl26pG7dujmdB6S7re5ee+01RUREOM4VcWXNmlUffPCB03PXvXt3WSwWHTlyRAMGDHAa56tUqVJq2LChbt265WiFKUmrVq3S5cuXHV0x4+revbvKly+v8+fPOx3b9loTunuyvdZWrVo98HmJ64MPPlCePHkcfxcuXNjxOLt373ZM3759u06cOKFixYqpT58+Ttto3769/Pz8kvW4Kdl/V5Aa11H7udLPzy/eezVr1qzxjpnEPMxx7efn5xgywa5fv36SnN8HkjRv3jxJd8+thQoVckzPlSuX3n777STV+rA1pOT8btewYcMEW63aFS5cWAMGDHBcby0Wi7p16ybpbrfn9957z2nsNH9/f5UrV05nz56N1127cePG8vT0dJqWNWtWDRs2TJK551npbjfvd999V5kzZ9a0adMcdV65ckWLFi3SU089pdGjRzvdjClr1qz65JNP5O7urh9++MExfceOHTpy5IgKFy6s/v37Oz1Oly5d0uyGUgBSjm6kANKNV155RfPnz9cPP/ygXr16OXWZMlOdOnXiTbMHCwULFnR0xbTLkCGDChQooP379+vatWuOUGPLli2S7t7VKiHVqlXT3LlztXfv3njL1K5dO1k3QNi6daskqUWLFknqQme3e/du7dy5UxcuXFBUVJQMw9ClS5ckSSdPnkzydhJz7tw57dq1S97e3k7dRXPkyKH69evr119/VXBwsNq3b//Qj3Uvi8WS6Pg/D/LMM88k2G23RYsW+uuvv/T777+rTZs2D1tiouxjhiX23rF3ydq3b59jWvny5bVx40aNHDlSb731lqpWrfrArsf3U6ZMGUfXXenuF9SQkBBt2bJFn3/+ucaMGeN4j0ZHRzvGs0sofChTpoxsNpsOHjyokJAQ+fr6OuaNGjVKf/75p7799lt5enrKw8ND48ePdwrA7pXQF7dSpUqpTJkyCgkJ0YEDB1SlSpVE1//9998lSfXq1Uuwa3GbNm307bffxvvC+bBCQkK0efNmnTt3TpGRkTIMQzdv3pQknThxwpTHiI2N1bZt25Q5c+ZEuztXq1ZN69at0969e1WuXDmneY0aNUpyt9F7lS9fPsFw+0HnQvv7ee/evfHmVahQId5dqLNlyyYfHx9dv349wX20n6/t5zLpf+FBYuFY69attX//fu3evdsRflWvXl358+fX9u3bdeXKFcd4hbdv39Yvv/wiLy+vRPcpIe7u7qpZs2a86fbwIm699nGznnnmmQRvkNG8efP7jq11r5TsvytIjeto2bJl5ebmph9//FGlSpVSkyZNHuqukyk5rhP6nJEjRw5lz57daXzNuOfWhM579evXl4+Pj0JDQ5Ndd0pqSO75XdIDr8M1atSIF1jaj2F3d3fVqFEj3jqFCxfWgQMHdOnSJacAUrr7nG/YsEGnTp1SRESEDMOQYRiOeWa5cuWK+vXrp1u3bikwMNDpB80dO3YoOjpa9erVixf+SXfvyl6sWDH9888/ioyMlKenp+MYbdq0aYI/tNo/fwBIPwjbAKQbOXPmVOfOnfX1119r+vTpeu+991LlcRL6smhvyZZYKyl7S7K4A/CePXtW0t0Pw/eT0E0fnnrqqaQV+//+/fdfSUryndzCw8P1+uuva/v27YkuY/+y8DCWL18uwzDUtGnTeOFJ69at9euvv2rZsmWpErblypXrvoHN/RQoUCDB6QULFpQk0242kBj7e2fIkCH3beEV973Tu3dv/f7779q5c6defvlleXl5qUqVKmrQoIFeeOEFp1/Wk6Jx48bxxu2LiorSyJEjtXjxYmXKlEnjxo2TdPdGDtHR0cqRI4dTq8+4ChYsqIMHD+rChQtO0318fDR8+HBH66YhQ4Y4fWlJbFuJTQ8JCXng62Off7/tSIpXa0pFRUVp2LBhCgoKSnQZM4436e57IiIiQpIe2ELHjHNPUta1v58fNOZQQvXc75x7/fr1+56v456PH/Sa27+wx33vuLm5qUWLFpo5c6ZWrlzpuBnG+vXrdePGDbVs2TLR93tCcufOneCX6ISuH/Y68ufPn+C2kvs6pWT/XUFqXEeLFy+ut99+WxMnTtR//vMfxxit/v7+ev755x94/rF7mOM6sdfV/r62s59bc+bMmegPcAUKFEhR2JbcGlJyfpce/F5N6Bi2HxOJHTMJHePG/4/zOWvWLEe4di+zzrNRUVF6/fXXde7cOb355pvxgl77+3bhwoVOLdATEhoaKk9PT8ex96DPHwDSD8I2AOlKr169NG/ePM2fPz/FXZ0S+xBml1ArgqTMu5f9TmSJDahrl1DXgHu7tpht/Pjx2r59u2rUqKE33nhDpUuXlre3tzJkyKDNmzerV69eD3yekuLnn3+WdPfOdPd+0bZ3ud21a5fOnj1r+gfJ1H4OkyqxuyImZZ169erdtwVn3NYYWbNm1Zw5c/T7779r/fr12rlzp7Zv364tW7Zo+vTp+v777526/6SEh4eHhg0bpiVLlmj58uV67733knzTifu1llq5cqXj//v373+oGs2Q0pZdiZk1a5aje+zbb7+t8uXLy9vbW+7u7jp+/LieffZZ0x7L/t6590YOCSldunS8aQ9z3CS2rr2mpk2b3jecSuhmEw865ybnnJwSrVu31syZMxUUFOQI2+zdSpPbAiy1a33UUnJuS+ljmH0d7dmzp5o1a6a1a9dqy5Yt+v333zVr1izNnj1bw4YNc3RjvJ+HOa5d4b1gZg33O2c+6Jxi1meulStX6ttvv9VTTz2lYcOGydfXVzlz5pS7u7uioqJUsWLFJG/rQUaMGKE//vhDzZo1c9zlPC7756eyZcs+MLxN6Q0uALg+wjYA6UrOnDnVtWtXffXVV5o+fXqi41DZP7zYW3jEZW8Fltry58+vU6dO6d13332oLipJYf/l+NSpU0lafu3atcqQIYO++OKLeN1OT58+bUpNf//9t44ePSrpbpfUxLqlGoah5cuX69VXXzXlcc1w7ty5+06P+76733tNStn7zd7ioH379g8MTOKyWCyqVq2a446CV65c0X//+18FBQVp0qRJ+vzzz5Ndy72yZs2qHDly6OrVqzp16pSyZ8+u7Nmzy93d3dGqKqFAxf5L/72tGIKCghQUFKTSpUvL3d1dq1atUsOGDfXcc88lWsPZs2dls9niTU/o9UmIfX5ir3NitabUmjVrJEkTJ06MF3CZdbzZ5ciRQ5kyZZKbm5tGjx5tenCYEvnz59fx48fVp0+fJI+HZTb7a25/be9ln37ve6dMmTKyWq36888/dfr0aXl7e2vDhg3KmTNngt3wzK73/PnzCc5PbPqDtpec/U+Nc1typeZ19KmnnlLXrl3VtWtX3blzRytWrNB7772n8ePH67nnnovXfflej+K4tp9br1696uhueK/Ufh0e5vz+KNlfjxEjRqhhw4ZO88w8z86aNUtLlixR+fLlE73brP15qFq1qv7zn/8kabsPui4lNh2A60r7n1UAIJl69OihLFmyaMGCBYl287IPQJ3Q+Bz2MWBSm30w57Vr1z6yx1qxYkWSukmEhYUpa9asCY7vtmrVKlNqsg8g3rNnTx06dCjBf/ZBl+MOjG7/gnfnzp0Et/ug+Wb45ZdfFBMTE2+6vQVW3MHJ7e+148ePx1v++PHjCX4RetA+2L/E2788pFSuXLn0+uuvS5IOHz78UNuyu3HjhqPLlr2rj7u7u2OcnhUrVsRb559//tHBgwfl5eXlNA7cv//+q5EjR8rDw0Offvqpxo8fr0yZMumjjz6675ejhN6jR48eVUhISLzHSIh9jLBNmzYpLCws3nx7i0x7aGnn7u6eoved/TES6raVkuPN/v5J6D2aMWNG1ahRQzdu3NC2bduSve3UYD8/Pez7+WHYX8uE3p/S/85B977m0v/GqVq+fLlWr16t6OhoNW/e/KHGRHwQ+zlmzZo1CbYyTu77JiX7nxrntuR6VNfRjBkzqk2bNqpYsaKio6OTNGap2cd1Qtzd3R2t9hLa5ubNm526fKaGlJ7fH7VH8Xps3rxZ48aNU548eTRt2rQEw09JqlWrljJkyKD169c73TjrfuzXpV9++SXBVqNxW4ADSB8I2wCkOzly5FDXrl0VFRWlxYsXJ7hM9erVJUnffPONbt265Zi+bds2zZkz55HU2bNnT3l6emrs2LH65Zdf4s2PiopScHBwslsoJKRSpUqqWbOmrly5ouHDh8driXDmzBkdOnTI8XexYsUUGhoa78PbrFmztGPHjoeuJyYmxvGhvGXLlokuV61aNeXLl09Hjx513DnQ/utuQl/wpLuvv7u7u06fPp1g2GCGs2fPasqUKU7TFixYoD179ih37txOrc0qVqyozJkza9OmTU53P7x69ao++OCDBD80P2gfnnnmGZUqVUrLly/X1KlTncalke62Bvz9998dA/1L0g8//JBgQGW/S9/DjMVlFxUVpdGjR8swDBUqVMip25/9jr1TpkxxquPGjRv66KOPZBiGOnXq5OhSFBsbq3feeUdhYWEaOHCgypQpo1KlSmnIkCG6ceOG3nnnnURf3++++87pTpq3bt3Sxx9/LMMw1LZt20S/ANkVLlxYDRs21M2bN/XJJ584fRnas2eP5s+frwwZMsS7a2PevHl15cqVBAO6+7F334175zlJCg4OdgR7yWE/Ro4dO5bg/FdffVVubm4aNmxYgsfzzZs3tXjxYkVGRib7sVOiU6dOypUrl2bOnKkFCxbEOybu3LmjTZs26Z9//km1Gpo1a6bcuXPr999/14IFC5zmzZkzR3///bfy5cuXYEvSli1bymKxKCgoyNGFNLl3IU2uWrVqqVixYjp+/Hi8O3D/+OOPyb55R0r2PzXObcmVGtfR7du3a+vWrfHqP336tI4ePSqLxZKkFlpmH9eJsQ/BEBgY6NS66erVq45xM1Nbcs/vacH+eixYsMApoN69e7dmzpz50Ns/fvy4Bg4cqAwZMmjKlCmJjnkn3W3Z1rZtW509e1aDBw/W5cuX4y1z8uRJp7v/1qxZUyVKlNCpU6c0bdo0p2Xnz5+vPXv2PPQ+AHi06EYKIF3q2bOnvvvuO924cSPB+S1bttTXX3+tPXv2qHnz5qpYsaLOnz+vffv2qXv37vrmm29SvcaiRYtqwoQJGjJkiN544w0VLVpUJUqUkJeXly5cuKADBw4oIiJCS5cuve+HtqQaP368unXrpqCgIG3evFl+fn7y8PDQ6dOnFRISonfffdfR9a5Pnz56++23NXDgQH3//ffKnz+/Dh48qGPHjql79+6aNWvWQ9WyefNmXb58WcWKFVP58uUTXc7NzU3NmzfXt99+q59//lkVKlRQoUKFZLPZ9Pfff6tdu3YqXbq03NzcFBAQoKeffloeHh6qW7eu1q9frzZt2qhcuXJyd3eXn5+f2rZt+1B123Xo0EEzZszQmjVrZLPZdPLkSe3bt0/u7u4aPXq000DVWbJkUc+ePTV16lR17txZ1atXl8Vi0d69e1WiRAlVqVIl3ofkB+1DxowZNXXqVPXq1UuTJ0/W999/L5vNppw5c+r69esKCQnRlStXNGzYMMev4fPnz9eIESNUqlQplSxZUhkyZNCxY8d08OBBZcqUKcFxZe5n7dq1Tl3Orl27pgMHDujixYvKnDmz/vvf/zp1UXz22WfVsWNHLViwQC1btlStWrXk6empnTt36urVq/L19dWAAQMcy8+cOVM7d+6Uv7+/evTo4ZjetWtXbdiwQZs3b9ZXX32VYN2tW7dWhw4dVLNmTWXLlk27d+/WpUuXVLp0ab355ptJ2r9Ro0apc+fOWrp0qXbt2iVfX19dvXpVO3fuVExMjIYOHRqvlUZAQIDmzp2r559/XlWqVFGmTJlUvHjxB44f2bt3b23atEkTJkxQcHCwihcvrhMnTujvv/9Wz549k30+qlOnjjJlyqTZs2fr8OHDyps3rywWi3r16qUSJUqoWrVqGj58uD766CO9/PLLslqtKlasmDJmzKizZ88qJCREUVFReuaZZx4YTJrB29tb06ZN06uvvqrhw4friy++cIwTefnyZR04cEBhYWGaOnWqrFZrqtTg5eWlTz/91FHDggULVLx4cR07dkwHDhyQl5eXJk6cmGBYUKBAAVWrVk27du3S0aNHVaRIkXh3XDSbm5ubxowZox49emjChAlasWKFSpUqpVOnTmnfvn3q0qWLvv/++ySP95SS/U+Nc1typcZ19ODBgxo9erRy5syp8uXLK3v27Lp27Zp27typqKgode3aNUlhm9nHdWJatmypNWvWKDg4WC1atFCtWrWUMWNGbd++XYULF5avr6/jbqGpJbnn97TQtWtX/fTTT5o3b5527twpm82mCxcu6Pfff1ePHj0e+vWYMWOGwsLCVLRoUc2fP1/z58+Pt0zjxo3VuHFjSdL777+vs2fPavXq1dq0aZPKlCmjAgUKKCIiQkePHtXJkyf19NNPOwJu+zHfvXt3BQYGavXq1bJarTp58qT+/vtvde7cWfPmzXuofQDwaNGyDUC65OPjc98BjD09PTV79my1bNlSN2/e1IYNGxQTE6NJkybFa62Smho3bqxly5apc+fOslgs2rp1q3777TdduXJFjRo10meffaaSJUua8lj58uXT4sWLNWDAAOXLl09bt27Vxo0bdevWLXXu3FmNGjVyLNu6dWtNnz5dvr6+CgkJ0caNG5U3b17Nnj1bAQEBD12LvUvS/Vq12bVo0ULS3e4p9q5HgYGBaty4sU6fPq2lS5dq8eLFTi2ZPvnkE7Vp00bXr19XUFCQFi9erF27dj103XZVqlTR3LlzlTt3bq1fv15Hjx6Vv7+/5syZk+Bd8d544w298847yp8/v3bs2KHDhw+rbdu2+vbbbxP9MvygfShWrJiWLl2qt956S/nz59eff/6pNWvW6Pjx4ypbtqyGDx/uNED7m2++qbZt28pisWjbtm1av369IiMj1b59ey1dutQRyiXVwYMH9dNPPzn+bd26VZkzZ1bHjh31888/q2bNmvHWGTVqlMaOHauyZctq586dWr9+vXLlyqWBAwdq9uzZjpAyJCREn3/+uXx8fDR27Fin0M5isWj06NHKnj27pk6dqr1798Z7nA8++ECDBg3SuXPn9Ouvv0qSI3xI6l1X7cdLz549lSFDBv3yyy/av3+//P39NXPmTKcA0G7QoEF66aWXFBMTo1WrVmnx4sWOloP3U716dc2bN0+1atXSmTNntH79erm7uyswMDBF56N8+fJp2rRpqly5sn7//XctWbJEixcv1qVLlxzLvPjii1qyZImef/553bx5U+vXr9fmzZsVERGhVq1a6auvvkr2HWofhq+vr5YvX67evXsra9as2rVrl3799VedO3dO1atX15gxY+Tv75+qNfj7+2vx4sVq2bKlLly4oNWrV+vSpUtq3bq1lixZkmAXUru4LdlSu1WbXZUqVTR//nw1atRIZ86c0bp165QxY0bHuVtSkm9QIqVs/1Pj3JZcZl9HGzVqpH79+qlYsWI6ePCggoODdfjwYVWtWlWBgYF6//33k7Qds4/r+7EHjnnz5tWmTZv0559/qmXLlpo9e3aK77qdXEk9v6eV4sWLa/HixWrUqJGuXbumdevWKSIiQqNGjdK777770Nu3t4Q8efKk07Ux7r+QkBDH8p6enpoxY4bGjh2rSpUq6dixY1q9erX+/vtv5cyZU2+88Ybefvttp8eoXLmy45j/999/Hcf8l19+aeqNdAA8GhbDjNvNAQAApLKAgACdPXvWqUs08CSyt06bNGmSmjdvntblAACAe9CyDQAAAHAx169f15kzZ+JNX7lypRYvXixvb+94d10EAACugTHbAAAAABdz4sQJdezYUTabTYULF5Z09667x48fV4YMGTRy5Eh5eXmlcZUAACAhhG0AAACAiylcuLC6dOmi7du3a8eOHbp165Zy5MihZ555Rj179lSVKlXSukQAAJAIxmwDAAAAAAAATMKYbQAAAAAAAIBJCNsAAAAAAAAAkzBmWyL27NkjwzDk7u6e1qUAAAAAAAAgjUVHR8tisTxw7FTCtkQYhiGGswMAAAAAAICkJOdEhG2JsLdoq1ixYhpXAgAAAAAAgLS2b9++JC3HmG0AAAAAAACASQjbAAAAAAAAAJMQtgEAAAAAAAAmIWwDAAAAAAAATELYBgAAAAAAAJiEsA0AAAAAAAAwCWEbAAAAAAAAYBLCNgAAAAAAAMAkhG0AAAAAAACASQjbAAAAAAAAAJO4VNh28uRJDR8+XG3atFG5cuXUsmXLJK1nGIamT5+uhg0bqlKlSurYsaP+/PPP1C0WAAAAAAAAuIdLhW2HDx/Whg0bVLRoUZUsWTLJ682YMUOTJ09W9+7d9dVXXylPnjzq2bOnTp8+nYrVAgAAAAAAAM5cKmwLCAjQhg0bNHnyZJUvXz5J69y+fVtfffWVevbsqe7du8vf318TJ05U9uzZNXPmzFSuGAAAAAAAAPgflwrb3NySX84ff/yhGzduqFmzZo5pHh4eatKkiTZu3GhmeQAAAAAAAMB9ZUzrAh7WsWPHJEklSpRwml6yZEnNnj1bkZGR8vT0TIvS4EIMw9Dt27fTuox0xzAMSZLFYknjStKXTJky8ZwBLorrQfJxLUg5rgeAa+JakDJcD1KGa8GTKd2HbWFhYfLw8FCmTJmcpnt7e8swDIWGhqY4bDMMQxEREWaUiTRkGIaGDx+uf/75J61LwRPCZrNp5MiRXFQBF8P1AI8a1wPA9XAtwKPGteDxYhhGkl7LdB+2pabo6GiFhISkdRl4SIZh6NatW2ldBp4gERERCgkJ4YIKuBiuB3jUuB4ArodrAR41rgWPHw8Pjwcuk+7DNm9vb0VFRen27dtOrdvCwsJksVjk4+OT4m27u7urVKlSZpSJNDZ+/HiaiifT7du31adPH0nS9OnT47UeReJoKg64Lq4HycO14OFwPQBcE9eC5ON6kHJcCx4vR44cSdJy6T5ss4/Vdvz4cZUpU8Yx/dixYypQoMBDjddmsVjk5eX10DXCNWTJkiWtS0hXIiMjHf/PkSMHYx8CeGxwPUg6rgUAHldcC5KH6wFwV1KDU5e6G2lK+Pn5KWvWrFq1apVjWnR0tH755RfVr18/DSsDAAAAAADAk8alWrbdunVLGzZskCSdPXtWN27cUHBwsCSpRo0aypkzp7p166Zz585pzZo1ku42yezbt68CAwOVM2dOWa1W/fDDD7p+/bp69eqVZvsCAAAAAACAJ49LhW1XrlzRm2++6TTN/vecOXNUs2ZNxcbGKiYmxmmZV155RYZh6JtvvtHVq1dVtmxZzZw5U4ULF35ktQMAAAAAAAAuFbYVKlRIhw4duu8yc+fOjTfNYrGob9++6tu3b2qVBgAAAAAAADxQuh+zDQAAAAAAAHAVhG0AAAAAAACASQjbAAAAAAAAAJMQtgEAAAAAAAAmIWwDAAAAAAAATELYBgAAAAAAAJiEsA0AAAAAAAAwCWEbAAAAAAAAYBLCNgAAAAAAAMAkhG0AAAAAAACASQjbAAAAAAAAAJMQtgEAAAAAAAAmIWwDAAAAAAAATELYBgAAAAAAAJiEsA0AAAAAAAAwCWEbAAAAAAAAYBLCNgAAAAAAAMAkhG0AAAAAAACASQjbAAAAAAAAAJMQtgEAAAAAAAAmIWwDAAAAAAAATELYBgAAAAAAAJiEsA0AAAAAAAAwCWEbAAAAAAAAYBLCNgAAAAAAAMAkhG0AAAAAAACASQjbAAAAAAAAAJMQtgEAAAAAAAAmIWwDAAAAAAAATELYBgAAAAAAAJiEsA0AAAAAAAAwCWEbAAAAAAAAYBLCNgAAAAAAAMAkhG0AAAAAAACASQjbAAAAAAAAAJMQtgEAAAAAAAAmIWwDAAAAAAAATELYBgAAAAAAAJiEsA0AAAAAAAAwCWEbAAAAAAAAYBLCNgAAAAAAAMAkhG0AAAAAAACASQjbAAAAAAAAAJMQtgEAAAAAAAAmIWwDAAAAAAAATELYBgAAAAAAAJiEsA0AAAAAAAAwCWEbAAAAAAAAYBLCNgAAAAAAAMAkhG0AAAAAAACASQjbAAAAAAAAAJMQtgEAAAAAAAAmIWwDAAAAAAAATELYBgAAAAAAAJiEsA0AAAAAAAAwCWEbAAAAAAAAYBLCNgAAAAAAAMAkLhe2HT16VD169JCvr6/q1KmjcePGKSoq6oHrXbt2TcOHD1fDhg3l6+urli1b6ocffngEFQMAAAAAAAB3ZUzrAuIKDQ1Vt27dVKxYMQUGBurChQsaM2aMIiMjNXz48Puu++abb+rYsWMaNGiQnnrqKW3cuFEjRoxQhgwZ1KFDh0e0BwAAAAAAAHiSuVTYNn/+fN28eVNTpkxR9uzZJUkxMTEaOXKk+vbtq3z58iW43qVLl7Rjxw6NHj1aL7zwgiTJ399f+/bt04oVKwjbAAAAAAAA8Ei4VDfSjRs3yt/f3xG0SVKzZs0UGxurLVu2JLrenTt3JEnZsmVzmp41a1YZhpEqtQIAAAAAAAD3cqmw7dixYypRooTTNG9vb+XJk0fHjh1LdL2nnnpKdevW1ZdffqkjR47oxo0bWrlypbZs2aIuXbqkdtkAAAAAAACAJBfrRhoWFiZvb+940318fBQaGnrfdQMDAzVw4EC1aNFCkpQhQwZ98MEHatq0aYrrMQxDERERKV4fSM8iIyMd/4+IiFBsbGwaVgMASAtcCwAAEtcDwM4wDFkslgcu51JhW0oZhqFhw4bpxIkTmjBhgvLkyaOtW7fqv//9r3x8fBwBXHJFR0crJCTE5GqB9CHuXYAPHTokDw+PNKwGAJAWuBYAACSuB0BcSXn/u1TY5u3trfDw8HjTQ0ND5ePjk+h6v/32m4KDg7Vs2TLZbDZJUs2aNXXlyhWNGTMmxWGbu7u7SpUqlaJ1gfQu7q9XNptNnp6eaVgNACAtcC0AAEhcDwC7I0eOJGk5lwrbSpQoEW9stvDwcF26dCneWG5xHTlyRBkyZJDVanWaXrZsWS1atEi3bt1S5syZk12PxWKRl5dXstcDHgdubv8b0tHLy4sLKgA8gbgWAAAkrgeAXVK6kEoudoOE+vXra+vWrQoLC3NMCw4Olpubm+rUqZPoegULFlRMTIwOHTrkNH3//v3KlStXioI2AAAAAAAAILlcKmzr1KmTsmTJov79+2vz5s1asmSJxo0bp06dOilfvnyO5bp166YmTZo4/q5fv74KFCigAQMG6Oeff9a2bds0fvx4/fTTT3rppZfSYlcAAAAAAADwBHKpbqQ+Pj6aPXu2PvroI/Xv319ZsmRRu3btNHDgQKflYmNjFRMT4/g7a9asmjVrliZNmqRPP/1U4eHhKlSokIYOHUrYBgAAAAAAgEfGpcI2SSpZsqRmzZp132Xmzp0bb1rRokX12WefpU5RAAAAAAAAQBK4VDdSAAAAAAAAID0jbAMAAAAAAABMQtgGAAAAAAAAmISwDQAAAAAAADAJYRsAAAAAAABgEsI2AAAAAAAAwCSEbQAAAAAAAIBJCNsAAAAAAAAAkxC2AQAAAAAAACYhbAMAAAAAAABMQtgGAAAAAAAAmISwDQAAAAAAADAJYRsAAAAAAABgEsI2AAAAAAAAwCSEbQAAAAAAAIBJCNsAAAAAAAAAkxC2AQAAAAAAACYhbAMAAAAAAABMQtgGAAAAAAAAmISwDQAAAAAAADAJYRsAAAAAAABgEsI2AAAAAAAAwCSEbQAAAAAAAIBJCNsAAAAAAAAAkxC2AQAAAAAAACYhbAMAAAAAAABMQtgGAAAAAAAAmISwDQAAAAAAADAJYRsAAAAAAABgEsI2AAAAAAAAwCSEbQAAAAAAAIBJCNsAAAAAAAAAkxC2AQAAAAAAACYhbAMAAAAAAABMQtgGAAAAAAAAmISwDQAAAAAAADAJYRsAAAAAAABgEsI2AAAAAAAAwCSEbQAAAAAAAIBJCNsAAAAAAAAAkxC2AQAAAAAAACYhbAMAAAAAAABMQtgGAAAAAAAAmISwDQAAAAAAADAJYRsAAAAAAABgEsI2AAAAAAAAwCSEbQAAAAAAAIBJCNsAAAAAAAAAkxC2AQAAAAAAACYhbAMAAAAAAABMQtgGAAAAAAAAmISwDQAAAAAAADBJxrQuAAAAAACQfIZh6Pbt22ldBp4AkZGRCf4fSE2ZMmWSxWJJ6zJShLANAAAAANKh27dvq3379mldBp4wXbt2TesS8IRYtGiRPD0907qMFKEbKQAAAAAAAGASWrYBAAAAQDqXo3lRWTKmz+5WSB8Mw5CkdNutD+mDccfQtZUn07qMh0bYBgAAAADpnCWjRZaMdFxC6iFiw6MRm9YFmMLlzsZHjx5Vjx495Ovrqzp16mjcuHGKiopK0roXLlzQu+++q1q1aqlSpUpq1qyZli1blsoVAwAAAAAAAHe5VMu20NBQdevWTcWKFVNgYKAuXLigMWPGKDIyUsOHD7/vuhcvXlTHjh1VvHhxffTRR8qaNasOHz6c5KAOAAAAAAAAeFguFbbNnz9fN2/e1JQpU5Q9e3ZJUkxMjEaOHKm+ffsqX758ia47fvx45c+fX19//bUyZMggSfL3938UZQMAAAAAAACSXKwb6caNG+Xv7+8I2iSpWbNmio2N1ZYtWxJd78aNG1q1apU6d+7sCNoAAAAAAACAR82lwrZjx46pRIkSTtO8vb2VJ08eHTt2LNH19u/fr+joaGXMmFEvvfSSypcvrzp16mj8+PGKjo5O7bIBAAAAAAAASS7WjTQsLEze3t7xpvv4+Cg0NDTR9S5fvixJ+uCDD9ShQwe9/vrr2rt3ryZPniw3NzcNHjw4RfUYhqGIiIgUrQukd5GRkY7/R0REKDb28bgrDAAg6bgWAK4t7jEKAI8bV/zsYRiGLJYH35vXpcK2lLI/+bVr19bQoUMlSbVq1dLNmzf1zTffqH///vL09Ez2dqOjoxUSEmJqrUB6EffmIocOHZKHh0caVgMASAtcCwDXxs3gADzOXPWzR1JqcqmwzdvbW+Hh4fGmh4aGysfH577rSXcDtrj8/f315Zdf6uTJk7LZbMmux93dXaVKlUr2esDjIO4vpTabLUWBNQAgfeNaALg2WrYBeJy54mePI0eOJGk5lwrbSpQoEW9stvDwcF26dCneWG5xPSgQu337dorqsVgs8vLyStG6QHrn5va/IR29vLxc7iQHAEh9XAsA1xb3GAWAx40rfvZIShdSycVukFC/fn1t3bpVYWFhjmnBwcFyc3NTnTp1El2vYMGCslqt2rp1q9P0rVu3ytPTk9ZpAAAAAAAAeCRcKmzr1KmTsmTJov79+2vz5s1asmSJxo0bp06dOilfvnyO5bp166YmTZo4rTtw4ECtW7dOn3zyibZs2aIvv/xS33zzjbp3707rNAAAAAAAADwSLtWN1MfHR7Nnz9ZHH32k/v37K0uWLGrXrp0GDhzotFxsbKxiYmKcpgUEBGjixImaNm2afvjhB+XNm1dvvPGG+vTp8yh3AQAAAAAAAE8wlwrbJKlkyZKaNWvWfZeZO3dugtObN2+u5s2bp0JVAAAAAAAAwIO5VDdSAAAAAAAAID0jbAMAAAAAAABMQtgGAAAAAAAAmMS0Mdtu3bqlFStWKCoqSg0aNFDBggXN2jQAAAAAAACQLqQobHvvvfe0d+9eBQUFSZKioqLUoUMHHT58WJKULVs2zZ49W+XKlTOvUgAAAAAAAMDFpagb6Y4dO9SkSRPH30FBQTp8+LA+/fRTBQUFKXfu3JoyZYppRQIAAAAAAADpQYrCtsuXLzt1E127dq0qVKigli1bqlSpUurQoYP27t1rWpEAAAAAAABAepCisC1z5swKDw+XJN25c0c7d+5U3bp1HfOzZMnimA8AAAAAAAA8KVI0Zlv58uW1cOFC1axZU+vWrdPNmzcVEBDgmH/q1CnlypXLtCIBAAAAAACA9CBFYdtbb72l3r17q23btjIMQ02bNlWlSpUc89esWSM/Pz/TigQAAAAAAADSgxSFbRUrVtSqVav0xx9/yNvbWzVq1HDMCwsLU+fOnZ2mAQAAAAAAAE+CFIVtkpQzZ041btw43nRvb29169btoYoCAAAAAAAA0qMUh20xMTEKDg7Wjh07dOXKFQ0YMEA2m03h4eHatm2b/Pz8lDt3bjNrBQAAAAAAAFxaisK2sLAw9e7dW3v37pWXl5du3bqll156SZLk5eWljz/+WM8995wGDRpkarEAAAAAAACAK3NLyUqffvqpDh8+rJkzZ2rt2rUyDMMxL0OGDGratKk2bNhgWpEAAAAAAABAepCisO3XX39V165dVadOHVkslnjzixUrprNnzz50cQAAAAAAAEB6kqKwLTw8XIUKFUp0/p07dxQTE5PiogAAAAAAAID0KEVhW5EiRbR///5E52/ZskUlS5ZMcVEAAAAAAABAepSisK1du3ZasmSJVq5c6RivzWKxKCoqSpMmTdKmTZvUsWNHUwsFAAAAAAAAXF2K7kbarVs3HTlyRIMGDZK3t7ckaciQIbp+/bru3Lmjjh07qn379qYWCgAAAAAAALi6FIVtFotFH3/8sZ577jmtXr1aJ0+eVGxsrIoUKaJmzZqpevXqZtcJAAAAAAAAuLwUhW121apVU7Vq1cyqBQAAAAAAAEjXUjRmGwAAAAAAAID4UtSyLSAgQBaL5b7LWCwWrV27NkVFAQAAAAAAAOlRisK2GjVqxAvbYmJidO7cOf3xxx8qXbq0ypUrZ0qBAAAAAAAAQHqRorBtzJgxic47ePCgevXqpVatWqW4KAAAAAAAACA9eqgbJCSkTJky6tixoz799FP9+OOPZm8eAAAAAHAP405sWpcAAA/tcTmXmR62SVKuXLl05MiR1Ng0AAAAAECSYRiO/19beSoNKwEA88U9x6U3pt+N9Nq1a1qyZIny589v9qYBAAAAAAAAl5ailm0vv/xygtPDw8N17NgxRUdHa9y4cQ9VGAAAAAAgcXFvWpejeRFZMprelgIAHinjTqyjpe69N+ZMT1IUtiXUlM9isahQoULy9/dX27ZtVbJkyYcuDgAAAADwYJaMboRtAOAiUhS2zZ071+w6AAAAAAAAgHSPnz4AAAAAAAAAkySpZdvSpUtTtPHnnnsuResBAAAAAAAA6VGSwrahQ4cme8MWi4WwDQAAAAAAAE+UJIVtv/76a2rXAQAAAAAAAKR7SQrbChYsmNp1AAAAAAAAAOkeN0gAAAAAAAAATJKklm0JuXTpkhYvXqwDBw4oPDxcsbGxTvMtFotmz5790AUCAAAAAAAA6UWKwraDBw/q5ZdfVmRkpIoXL65//vlHpUqVUlhYmC5cuKAiRYoof/78ZtcKAAAAAAAAuLQUdSOdMGGCvLy8FBwcrG+//VaGYei9997Thg0bNGnSJIWGhmrIkCFm1woAAAAAAAC4tBSFbX/88Yc6duyoAgUKyM3t7iYMw5AkNWvWTK1atdK4cePMqxIAAAAAAABIB1IUtsXGxip37tySJG9vb2XIkEHXr193zLfZbNq/f78pBQIAAAAAAADpRYrCtkKFCunMmTN3N+DmpkKFCmnbtm2O+X/88YeyZctmToUAAAAAAABAOpHkGySEhobKx8dHklS3bl0FBwdr4MCBkqQXX3xRY8aM0enTp2UYhnbu3KkePXqkTsUAAAAAAACAi0py2FanTh01aNBArVq1Uo8ePdSiRQtFR0fL3d1d3bp1U0REhH755Re5ubnptddeU9++fVOzbgAAAAAAAMDlJDlsa9q0qdatW6d169YpS5YsatKkiVq3bq1atWrJYrHotdde02uvvZaatQIAAAAAAAAuLclh24QJExQZGam1a9cqKChIy5cv19KlS5UrVy61bNlSrVq1Uvny5VOzVgAAAAAAAMClJTlskyRPT0+1bNlSLVu2VGhoqFatWqWgoCDNnj1bs2fPVtGiRdW6dWu1atVKhQsXTq2aAQAAAAAAAJeUoruRSpKPj486deqk7777Tr/99psGDx6szJkza/LkyXrmmWfUqVMnM+sEAAAAAAAAXF6Kw7a48uXLp969e2vMmDF6+umnZRiG/vrrLzM2DQAAAAAAAKQbyepGmpBz584pKChIQUFBOnz4sAzDUJUqVdSqVSsz6gMAAPcwDEO3b99O6zLwBIiMjEzw/0BqypQpkywWS1qXAQBAiqUobLt69apjvLY///xThmGoRIkSGjBggFq1aqVChQqZXScAAPh/t2/fVvv27dO6DDxhunbtmtYl4AmxaNEieXp6pnUZAACkWJLDtoiICK1Zs0ZBQUHatm2b7ty5ozx58qhbt27ciRQAAAAAAABQMsK22rVr6/bt2/Ly8lKrVq3UqlUr1apVS25upgz7BgAAUmBIzTzyyEB3K6QewzAkiW59SFVRMYY+3XEprcsAAMAUSQ7b/P391apVKz399NPKlClTatYEAACSyCODhbANqYz3FwAAQHIkOWz74osvUrMOAAAAAAAAIN1zuT6gR48eVY8ePeTr66s6depo3LhxioqKStY2Zs2aJZvNpr59+6ZSlQAAAAAAAEB8KbobaWoJDQ1Vt27dVKxYMQUGBurChQsaM2aMIiMjNXz48CRt49KlS5o6dapy5cqVytUCAAAAAAAAzlwqbJs/f75u3rypKVOmKHv27JKkmJgYjRw5Un379lW+fPkeuI3x48crICBA586dS+VqAQAAAAAAAGcu1Y1048aN8vf3dwRtktSsWTPFxsZqy5YtD1x/9+7dWrt2rQYPHpyKVQIAAAAAAAAJc6mWbceOHVPbtm2dpnl7eytPnjw6duzYfdeNiYnRRx99pFdffVV58+ZNzTLTlGEYun37dlqXgSdAZGRkgv8HUlOmTJlksXDnQwAAAADpl0uFbWFhYfL29o433cfHR6Ghofddd968ebp165a6d+9uWj2GYSgiIsK07ZkhMjJS3bp1S+sy8ITp2rVrWpeAJ8Ts2bPl6emZ1mW4PAJwAI+ziIgIxcbGpnUZ6QLXAwCPM1e8HhiGkaTGAS4VtqXUlStXNHnyZI0dO1YeHh6mbTc6OlohISGmbc8Myb0zKwCkJ4cOHTL1PP644loA4HHGtSDpuB4AeJy56vUgKTW5VNjm7e2t8PDweNNDQ0Pl4+OT6Hqff/65bDabqlWrprCwMEnSnTt3dOfOHYWFhcnLy0sZMyZ/V93d3VWqVKlkr5ea4v56laX0c7K4udRLiMeMYRiSRLc+pCoj9o5uHl4qSbLZbLRsSwJaMgB4nHEtSDquBwAeZ654PThy5EiSlnOppKZEiRLxxmYLDw/XpUuXVKJEiUTXO378uHbt2qXq1avHm1e9enXNmDFD9evXT3Y9FotFXl5eyV4vNbm5/e+eFha3jIRtSFVEbHjUvLy8XO6C6oriXgsA4HHDtSDpuB4AeJy54vUgqQ1RXCqpqV+/vr788kunsduCg4Pl5uamOnXqJLree++952jRZvff//5Xnp6eGjRokGw2W6rWDQAAAAAAAEguFrZ16tRJc+fOVf/+/dW3b19duHBB48aNU6dOnZQvXz7Hct26ddO5c+e0Zs0aSVLZsmXjbcvb21teXl6qWbPmI6sfAAAAAAAATzaXanfs4+Oj2bNnK0OGDOrfv78mTJigdu3aaejQoU7LxcbGKiYmJo2qBAAAAAAAABLmUi3bJKlkyZKaNWvWfZeZO3fuA7eTlGUAAAAAAAAAM7lc2AYAAAAASB7jjiEpNq3LwGPMMAxJSR8gHkiJu+ey9I+wDQAAAADSuWsrT6Z1CQCA/+dSY7YBAAAAAAAA6Rkt2wAAAAAgHcqUKZMWLVqU1mXgCRAZGamuXbtKujs+uqenZxpXhCdBpkyZ0rqEFCNsAwAAAIB0yGKxEHrgkfP09OR9BzwA3UgBAAAAAAAAkxC2AQAAAAAAACYhbAMAAAAAAABMQtgGAAAAAAAAmISwDQAAAAAAADAJYRsAAAAAAABgEsI2AAAAAAAAwCSEbQAAAAAAAIBJCNsAAAAAAAAAkxC2AQAAAAAAACYhbAMAAAAAAABMQtgGAAAAAAAAmISwDQAAAAAAADAJYRsAAAAAAABgEsI2AAAAAAAAwCSEbQAAAAAAAIBJCNsAAAAAAAAAkxC2AQAAAAAAACYhbAMAAAAAAABMQtgGAAAAAAAAmISwDQAAAAAAADAJYRsAAAAAAABgEsI2AAAAAAAAwCSEbQAAAAAAAIBJCNsAAAAAAAAAkxC2AQAAAAAAACYhbAMAAAAAAABMQtgGAAAAAAAAmISwDQAAAAAAADAJYRsAAAAAAABgEsI2AAAAAAAAwCSEbQAAAAAAAIBJCNsAAAAAAAAAkxC2AQAAAAAAACYhbAMAAAAAAABMQtgGAAAAAAAAmISwDQAAAAAAADAJYRsAAAAAAABgEsI2AAAAAAAAwCSEbQAAAAAAAIBJCNsAAAAAAAAAkxC2AQAAAAAAACYhbAMAAAAAAABMQtgGAAAAAAAAmISwDQAAAAAAADAJYRsAAAAAAABgEsI2AAAAAAAAwCSEbQAAAAAAAIBJCNsAAAAAAAAAkxC2AQAAAAAAACYhbAMAAAAAAABMQtgGAAAAAAAAmCRjWhdwr6NHj+rjjz/Wnj17lCVLFrVp00ZvvfWWPDw8El3n4sWLmjVrlrZs2aJTp04pW7Zsql69ugYNGqSCBQs+wuoBAAAAAADwJHOpsC00NFTdunVTsWLFFBgYqAsXLmjMmDGKjIzU8OHDE11v//79WrNmjdq2bavKlSvr2rVr+uKLL9S+fXsFBQUpZ86cj3AvAAAAAAAA8KRyqbBt/vz5unnzpqZMmaLs2bNLkmJiYjRy5Ej17dtX+fLlS3C9qlWratWqVcqY8X+74+fnp4YNG2rp0qXq2bPnoygfAAAAAAAATziXGrNt48aN8vf3dwRtktSsWTPFxsZqy5Ytia7n7e3tFLRJUv78+ZUzZ05dvHgxtcoFAAAAAAAAnLhU2Hbs2DGVKFHCaZq3t7fy5MmjY8eOJWtbx48f15UrV1SyZEkzSwQAAAAAAAAS5VLdSMPCwuTt7R1vuo+Pj0JDQ5O8HcMw9PHHHytv3rxq0aJFiusxDEMREREpXj81REZGpnUJAJBqIiIiFBsbm9ZluDyuBQAeZ1wLANcT97MHxyieZIZhyGKxPHA5lwrbzBIYGKjt27fr66+/lpeXV4q3Ex0drZCQEBMre3hRUVFpXQIApJpDhw7d9+7TuItrAYDHGdcCwPXE/ezBMYonXVLe/y4Vtnl7eys8PDze9NDQUPn4+CRpGwsXLtTUqVP1ySefyN/f/6HqcXd3V6lSpR5qG2ajNQOAx5nNZpOnp2dal+HyuBYAeJxxLQBcT9zPHhyjeJIdOXIkScu5VNhWokSJeGOzhYeH69KlS/HGckvImjVrNGLECA0YMEDt2rV76HosFstDtYxLDW5uLjXMHgCYysvLiw9vScC1AMDjjGsB4HrifvbgGMWTLCldSCUXu0FC/fr1tXXrVoWFhTmmBQcHy83NTXXq1Lnvujt27NCgQYPUvn179e/fP7VLBQAAAAAAAOJxqbCtU6dOypIli/r376/NmzdryZIlGjdunDp16qR8+fI5luvWrZuaNGni+Pvo0aPq37+/ihUrpjZt2ujPP/90/Dt16lRa7AoAAAAAAACeQC7VjdTHx0ezZ8/WRx99pP79+ytLlixq166dBg4c6LRcbGysYmJiHH//9ddfCg8PV3h4uF588UWnZZ9//nmNGTPmkdQPAAAAAACAJ5tLhW2SVLJkSc2aNeu+y8ydO9fp7xdeeEEvvPBCKlYFAAAAAAAAPJhLdSMFAAAAAAAA0jPCNgAAAAAAAMAkhG0AAAAAAACASQjbAAAAAAAAAJMQtgEAAAAAAAAmIWwDAAAAAAAATELYBgAAAAAAAJiEsA0AAAAAAAAwCWEbAAAAAAAAYBLCNgAAAAAAAMAkhG0AAAAAAACASQjbAAAAAAAAAJMQtgEAAAAAAAAmIWwDAAAAAAAATELYBgAAAAAAAJiEsA0AAAAAAAAwCWEbAAAAAAAAYBLCNgAAAAAAAMAkhG0AAAAAAACASQjbAAAAAAAAAJMQtgEAAAAAAAAmIWwDAAAAAAAATELYBgAAAAAAAJiEsA0AAAAAAAAwCWEbAAAAAAAAYBLCNgAAAAAAAMAkhG0AAAAAAACASQjbAAAAAAAAAJMQtgEAAAAAAAAmIWwDAAAAAAAATELYBgAAAAAAAJiEsA0AAAAAAAAwCWEbAAAAAAAAYBLCNgAAAAAAAMAkhG0AAAAAAACASQjbAAAAAAAAAJMQtgEAAAAAAAAmIWwDAAAAAAAATELYBgAAAAAAAJiEsA0AAAAAAAAwCWEbAAAAAAAAYBLCNgAAAAAAAMAkhG0AAAAAAACASQjbAAAAAAAAAJMQtgEAAAAAAAAmIWwDAAAAAAAATELYBgAAAAAAAJiEsA0AAAAAAAAwCWEbAAAAAAAAYBLCNgAAAAAAAMAkhG0AAAAAAACASQjbAAAAAAAAAJMQtgEAAAAAAAAmIWwDAAAAAAAATELYBgAAAAAAAJiEsA0AAAAAAAAwCWEbAAAAAAAAYBKXC9uOHj2qHj16yNfXV3Xq1NG4ceMUFRX1wPUMw9D06dPVsGFDVapUSR07dtSff/6Z+gUDAAAAAAAA/8+lwrbQ0FB169ZN0dHRCgwM1MCBA7Vw4UKNGTPmgevOmDFDkydPVvfu3fXVV18pT5486tmzp06fPv0IKgcAAAAAAACkjGldQFzz58/XzZs3NWXKFGXPnl2SFBMTo5EjR6pv377Kly9fguvdvn1bX331lXr27Knu3btLkqpWrapnn31WM2fO1IgRIx7NDgAAAAAAAOCJ5lIt2zZu3Ch/f39H0CZJzZo1U2xsrLZs2ZLoen/88Ydu3LihZs2aOaZ5eHioSZMm2rhxY2qWDAAAAAAAADi4VMu2Y8eOqW3btk7TvL29lSdPHh07duy+60lSiRIlnKaXLFlSs2fPVmRkpDw9Pc0vOI3F3omUxc2lXkKXZRiGZMSkdRl4UlgyyGKxpHUV6YYReyetS0jXbkTFyiMD77ekMgxD0bFpXQWeFO5u4nqQRFExRlqXgCeIYRi6fft2WpeRrkRGRib4fzxYpkyZuBY8gVwqqQkLC5O3t3e86T4+PgoNDb3veh4eHsqUKZPTdG9vbxmGodDQ0BSFbYZhKCIiItnrpaZbt245/h9xNCgNKwEA8928eVOxsSQhDxL3WjB59+U0rAQAzMe1AKnJMAwNHz5c//zzT1qXkm517do1rUtIV2w2m0aOHEng9pgwDCNJr6VLhW2uJjo6WiEhIWldhhN+gQHwODt06FC8H04QH9cCAI8zrgVITYZhOP1oBaS2iIgIhYSEELY9Rjw8PB64jEuFbd7e3goPD483PTQ0VD4+PvddLyoqSrdv33a6MIeFhclisdx33ftxd3dXqVKlUrRuajEMQ7NmzVJUVFRal5KuGIbBc4ZHxsPDg4tpCnh4eMjT05PnLgm4FqQc1wM8SlwPko9rAR6F8ePH88NVChjG3e7eHJ/JQzfSx8uRI0eStJxLhW0lSpSINzZbeHi4Ll26FG88tnvXk6Tjx4+rTJkyjunHjh1TgQIFUjxem8VikZeXV4rWTU1ZsmRJ6xIAAGmMawEAACnHdRRASiQ1OHWpu5HWr19fW7duVVhYmGNacHCw3NzcVKdOnUTX8/PzU9asWbVq1SrHtOjoaP3yyy+qX79+qtYMAAAAAAAA2LlUy7ZOnTpp7ty56t+/v/r27asLFy5o3Lhx6tSpk/Lly+dYrlu3bjp37pzWrFkj6W6zzL59+yowMFA5c+aU1WrVDz/8oOvXr6tXr15ptTsAAAAAAAB4wrhU2Obj46PZs2fro48+Uv/+/ZUlSxa1a9dOAwcOdFouNjZWMTExTtNeeeUVGYahb775RlevXlXZsmU1c+ZMFS5c+FHuAgAAAAAAAJ5gFsM+yiGc7Nu3T5JUsWLFNK4EAAAAAAAAaS2pWZFLjdkGAAAAAAAApGeEbQAAAAAAAIBJCNsAAAAAAAAAkxC2AQAAAAAAACYhbAMAAAAAAABMQtgGAAAAAAAAmISwDQAAAAAAADAJYRsAAAAAAABgEsI2AAAAAAAAwCQZ07oAVxUdHS3DMLRv3760LgUAAAAAAABpLCoqShaL5YHLEbYlIilPHgAAAAAAAJ4MFoslSXmRxTAM4xHUAwAAAAAAADz2GLMNAAAAAAAAMAlhGwAAAAAAAGASwjYAAAAAAADAJIRtAAAAAAAAgEkI2wAAAAAAAACTELYBAAAAAAAAJiFsAwAAAAAAAExC2AYAAAAAAACYhLANAAAAAAAAMAlhGwAAAAAAAGASwjYAAAAAAADAJIRtAAAAAAAAgEkI2wATBAYGymazOf7VqlVLL7/8snbv3i1J+vHHH2Wz2XT16tVUr6Vr167q27ev6dsdOnSoWrZs6fh7x44dstls2rdvX7xl7zfPDDabTTNnznT8/eOPP2r58uXxlkut5wIAksN+jahXr55iY2Pjze/UqZNsNpuGDh1q+mOHhIQoMDBQt27dStH6955v770WxHW/eQ/r3utoWFiYAgMDdeTIEaflzpw5I5vNpuDg4FSpAwAelWXLlqldu3aqWrWq/Pz81KxZM73//vu6cuWKY5mAgACNGjUqTeqzf95/0D/7eTnutQR4EmRM6wKAx4Wnp6dmz54tSTp//rymTZum7t2768cff3ykdXz44Ydyc3uycvSffvpJXl5eatWqVVqXAgAJcnd317Vr17Rr1y7VrFnTMf3s2bP6888/5eXllSqPGxISoilTpqhLly7KnDlzqjxGWggLC9OUKVNUunRplSpVKq3LAQBTzZgxQxMmTFD37t01YMAAGYahw4cPa/ny5bp48aJy5cqV1iWqfPnyWrBggePv/fv3a9SoURo9erRKlCjhmJ43b14tWLBABQoUSIsygTRD2AaYxM3NTb6+vo6/K1WqpICAAM2fP18VKlR4ZHXwpQMAXI+7u7v8/f21YsUKp7BtxYoVKl269BP3IwkAIHFz587V888/79TiuUGDBurdu3eCLaTTQtasWZ2++9y+fVuSVLp0aVWsWNFp2bjLAU8KPtkBqaRAgQLKmTOnzpw545h2/vx59e7dW76+vnrmmWe0dOlSx7y5c+eqcuXKunHjhtN2jh49KpvNpg0bNkiSfv/9d3Xp0kVVq1ZVlSpV1KpVK/3000+O5RPqOnn06FG9/vrrqlGjhipXrqzWrVsrKCjIMf+bb75R27ZtVbVqVfn7+6tv3746fvy4mU+HpLvdgFq1aqWKFSuqXr16mjRpkmJiYhzzL168qGHDhunpp59WpUqV9Mwzz2jixImKiopKdJtdu3bVzp079dtvvzmaqwcGBjotExwcrKZNm6pKlSp6+eWXderUKdP3DQAepGXLllq9erWio6Md04KCghLsenn06FH169dPVatWla+vr/r06RPv3GWz2TRjxgwFBgaqdu3aqlmzpoYNG6aIiAhJd8+5w4YNkyT5+/vLZrMpICBAUsrOtykRFhamESNGqG7duqpQoYJeeOEFbd682WmZ3377TT169JC/v7/8/PzUvn17bdy4MdFtnjlzRk8//bQk6c0333TqqmR3+/ZtjRo1StWrV1fdunU1duxY3blzx9R9A4DUEhYWprx58yY470E/zuzZs0cvv/yyfH19VbVqVQ0ePNip66kkRUVFaeLEiWrUqJEqVKigZs2axRuSxT40wIYNG9SyZUtVrFhRL7zwgv78889k78+93Ujt31eCgoL0zDPPqHLlynr11VcVGhqqs2fPqlevXqpSpYpatGihHTt2xNveg75TAK6AsA1IJTdu3ND169edLpRDhgxR3bp1NXXqVJUtW1ZDhw7V0aNHJUmtW7eWYRhOIZgkLV68WPny5VPdunV148YN9e3bV1mzZtXEiRM1bdo0dejQQWFhYYnWceLECXXs2FEnT57U+++/ry+++EIvvPCCzp0751jm/PnzeumllzRt2jR9/PHHio2NVadOnXT9+vUH7mdsbKzu3Lnj9C+hX9y+/fZbffDBB6pbt66+/PJLvfLKK5ozZ44mTZrkWObatWvKnj27hg0bpq+//lq9e/fWTz/9pA8//DDRx//www9Vrlw5+fn5acGCBVqwYIHat2/vmB8SEqKZM2dqyJAhGj16tE6dOqW33377gfsFAGZr1KiRoqKitGXLFknSkSNHdOjQITVv3txpudOnT6tTp04KDQ3VmDFj9Omnn+rq1avq3r17vDDs+++/14kTJzRmzBj1799fy5cv17Rp0yRJDRs2VL9+/SRJX3/9tRYsWKApU6ZIStn5Nq57z/t37tyRYRhOy0RFRalHjx767bff9NZbb+mLL75QyZIl1bdvXx06dMix3JkzZ9SoUSONGzdOgYGB8vPzU58+fRL8giXd7ZJk349BgwY5zv1xr7efffaZ3Nzc9Nlnn6lTp0765ptvtGjRoiTtGwCktfLly2v+/PlatGiRLl26lOT19uzZo65duypbtmyaNGmSPvroI+3bt0+vvfaa03JvvvmmFixYoB49euirr75SvXr19Pbbbzt+3Le7dOmSRo4cqV69eumzzz6Th4eHevXqFS+8S4kDBw5ozpw5eueddzRy5Ejt3r1b//nPfzRgwAA1bNhQgYGBypkzp9544w3dvHnTsV5SvlMAroBupICJ7L+anz9/XmPHjlVMTIyaNm3quEh26dJFXbp0kSRVqVJFGzZs0OrVq/Xaa6/Jx8dHTZs21ZIlS9SpUyfH9uyDo2bIkEHHjx9XeHi4Bg0aJJvNJulua4X7CQwMlLu7u3744QdlzZpVklS7dm2nZd577z3H/2NiYlSnTh35+/tr9erV6tix432336FDhwc+Lzdu3NDkyZPVu3dvDRo0SJJUp04dubu7a8yYMerVq5dy5Mghm82md99917Gen5+fMmfOrKFDh2r48OEJjjdUqlQpZc2aVV5eXgk2UQ8PD9fSpUuVM2dOSVJERISGDRum8+fPK3/+/A+sHQDMkjlzZgUEBGjFihVq2LChgoKCVKVKFRUuXNhpuSlTpsjHx0fffvutMmXKJOnu+fDpp5/WokWLHNcRScqTJ48mTJggSapfv74OHDig1atXa8iQIcqZM6eKFCki6e4XN/t5UFKKzrd2hw8fVvny5ROcV7p0acf/ly9froMHD+rnn392DHFQr149nTx5UtOmTdPnn38uSXrppZcc68TGxqpmzZo6cuSIFi5c6NTl1s7Dw0Nly5aVJBUtWjTBc3+lSpX0wQcfSLp7vdmxY4dWr16tF198MdH9AgBX8eGHH+r11193nMcKFSqkRo0aqXv37ipUqFCi602YMEEVKlTQlClTZLFYJElWq9XRQq1Bgwbavn271q1bp5kzZ6pu3bqS7p4nL126pMDAQDVo0MCxvevXr+uzzz5zfN+oUaOGGjRooFmzZmnw4MEPtY83btzQl19+6bg2HTp0SN98841GjBjhOFfnzZtXrVq10rZt29S4ceMkf6cAXAFhG2CSiIgIpy8fPj4+Gj58uOrVq+e4SYL9giZJXl5eKlCggM6fP++Y1qFDB7300ks6fPiwSpcurQ0bNujKlStq27atJKlIkSLKmjWrRowYoa5du6pWrVpOX54Ssn37djVt2tQRtCXkzz//1Oeff64DBw44tWY7ceLEA/d77NixKlmypNO0/fv3O7WO2LNnjyIiIvTss886deOpXbu2IiMjdfjwYdWoUUOGYWj27NlauHChzpw54xj7Qbrb0sNqtT6wnnuVKVPG6Tmyf+EjbAOQFlq2bKnBgwcrMjJSK1euVNeuXeMts2XLFjVv3lwZMmRwnDO9vb1Vrlw5/f33307L3vvjScmSJbVixYoH1vEw59siRYpo4sSJ8aZPnTrVqSvnli1bZLVaVaxYsXjn/mXLljn+Pn/+vCZNmqStW7fq0qVLjhZyiQV6SRH3eivdfV62b9+e4u0BwKNktVoVFBSkbdu2afPmzdq1a5fmzp2rH3/8Ud9//73jB4e4bt26pT/++EPvvPOOU5fKYsWK6amnntK+ffvUoEEDbdmyRdmzZ1etWrXinZtHjBihmJgYZciQQZKULVs2px/2s2XLptq1a+uvv/566H289zN6sWLFHHXcO83+fSmp3ykAV0DYBpjE09NT3333nSwWi3LkyKGnnnoq3pgK2bJlc/rb3d3dqUtQ9erVVbx4cS1evFjDhg3TkiVLVL16dUfLBHtLh8mTJzsupNWqVdMHH3zgaOl2r3u7st7r3Llz6tmzpypUqKCRI0cqb968cnd3V9++fZ2+fCWmZMmS8QZBtY8XZHft2jVJ0vPPP5/gNv79919J0uzZszV27Fj17t1bNWvWlLe3t/bt26dRo0YlqZaEeHt7O/3t7u4uSSneHgA8jLp168rd3V2ff/65zpw5o2bNmsVb5tq1a5o9e7bjDtdx2c9hdgmd45Iy7trDnG8zZcoU77wvSdmzZ3cK265du6YDBw4kGJrZv8jFxsaqX79+Cg8P14ABA1S0aFFlzpxZkydPdlwbUuJB11sAcHUeHh5q0KCBo6XZpk2b1LdvX02dOtXRlT6usLAwxcTEaPTo0Ro9enS8+fZz6rVr13T9+vVEf9C4dOmS4wfphH7Uz5Url2MYnIeR2Gf0uOdvDw8PSf/73J7U7xSAKyBsA0zi5uaW4JeP5Grfvr2+/vpr9ejRQxs2bNAnn3ziNL9SpUr6+uuvFRkZqR07dmjs2LHq37+/1q5dm+D2smfProsXLyb6eJs2bVJERISmTJniuOjduXNHoaGhD70vdj4+PpLudo1KqDWZvTl8cHCwAgICnJqlm3ExBwBX4e7urmeeeUazZs2Sv7+/cufOHW8ZHx8fNWjQQJ07d443L0uWLKbU8SjOtz4+PrLZbPGuY3GdPHlSBw4c0NSpU9W4cWPH9MjISFNrAYD0rl69eipTpkyi5+ps2bLJYrGob9++TudTO3v3Sh8fH+XMmVPTp09PcDtxA7arV6/Gm3/lyhXlyZMnJbvw0JL6nQJwBYRtgIt5/vnnNWnSJA0ZMkSenp569tlnE1zO09NTDRo00KlTp/TJJ5/o9u3bjrF94rKPvTZkyJAEu5JGRkbKYrEoY8b/nQ5WrVpl6l3bqlSposyZM+v8+fNq0qRJostFRkbGa7Vx752REuLu7k5LNQDpRvv27XXlypVEx7z09/fX4cOHVa5cOUcLsJSyn1PvbdWV0vNtctSuXVsbNmxQ3rx5lS9fvgSXsZ+749Zy9uxZ7dmzx9F9KCG0UgbwOLt8+XK8H2MiIyP177//OoZEuZd9/OJjx47dtwFA7dq19fXXX8vd3V1lypS5bx3h4eHatm2boytpeHi4tm7d6jR26KOU1O8UgCsgbANcTM6cOfX0008rODhYHTt2lKenp2Peb7/9psWLF6tx48YqUKCALl++rO+++05+fn4JBm2S9Prrr+u3335T586d1bt3b+XJk0dHjx7VrVu39Morr6hWrVqSpGHDhqlTp046fPiwvv3223hNux+Gt7e3BgwYoPHjx+v8+fOqUaOGMmTIoNOnT+vXX39VYGCgMmfOrNq1a2vOnDn67rvvVKxYMS1btkwnT5584PZLlCihpUuXat26dcqTJ899v9gBQFqrVKmS446hCRkwYIDatWunXr16qUOHDsqdO7cuX76snTt3qlq1amrZsmWSH8s+pub333+vxo0by9PTUzabLcXn2+R47rnnNH/+fL388svq2bOnihUrpvDwcB04cEDR0dEaPHiwSpQoofz582vChAmKjY1VRESEJk+efN/hD6S7N4bw9vbWihUrVKhQIXl4eCQ6nAIApDetWrVSo0aNVLduXeXNm1cXLlzQd999p2vXrqlbt26JrvfOO++oW7dueuutt9SiRQt5e3vr/Pnz2rp1q1544QXVrFlTderUUaNGjdS7d2/17t1bNptNt27d0pEjR3Ty5Emn1sjZs2fX+++/rwEDBihbtmyaMWOGDMO4bw2pKanfKQBXQNgGuKAmTZooODhY7dq1c5pepEgRubm56bPPPtOVK1eUPXt21a1b13E3noQUK1ZM8+fP14QJEzRy5EjFxMSoWLFi6tOnj6S7d6QbPXq0pkyZor59+6ps2bL6/PPP9dZbb5m6Tz179lS+fPn07bff6rvvvlPGjBlVpEgRNWzY0NFCoX///rp27ZomT54sSWratKk++OADvfrqq/fd9iuvvKJTp07p3XffVVhYmF5//XW98cYbptYPAI9K0aJFtWjRIn322WcaOXKkIiIilCdPHlWvXj3ZgVK5cuX0xhtvaNGiRfr666/11FNPad26dSk+3yaHh4eH5syZo8DAQH355Ze6dOmSsmfPrnLlyjm6yHp4eCgwMFCjRo3Sm2++qaeeekr9+vXT9u3b490MIi43NzeNHj1aEydOVPfu3RUVFaVff/3VtNoBIC29/vrrWr9+vcaMGaOrV68qR44cstlsmjVrluOH8oT4+flp3rx5CgwM1LBhwxQdHa38+fOrVq1aKlq0qGO5yZMna/r06frhhx909uxZZcuWTaVLl9YLL7zgtL08efJoyJAhGjdunE6dOqXSpUtr5syZCQ6B8Kgk5TsF4Aoshv2WTwBcxjvvvKOQkBDTu/QAAAAAwIMMHTpUf//9t4KCgtK6FCBdomUb4EIOHTqkkJAQrVy5Uh9++GFalwMAAAAAAJKJsA1wIf369dPVq1f13HPPqW3btmldDgAAAAAASCa6kQIAAAAAAAAmcUvrAgAAAAAAAIDHBWEbAAAAAAAAYBLCNgAAAAAAAMAkhG0AAAAAAACASQjbAAAA0hmbzabAwMBU2faZM2dks9n0448/psr2zbBjxw7ZbDbt2LHDMa1r165q2bJlGlYFAABwF2EbAAB4rPz444+y2WyqWLGiLly4EG8+oYz5NmzYIJvNprp16yo2Njbe/AsXLigwMFAhISHx5i1fvlyzZs16BFUmnyvXBgAAXBdhGwAAeCxFRUVp+vTpaV1Gqti7d6/69euX1mU4LFu2TAULFtSlS5e0ffv2ePMvXryoKVOmJBi2BQUFac6cOcl6vOrVq2vv3r2qXr16imtOipTUBgAAQNgGAAAeS2XLltXChQsTbN2WHsXGxur27duSpEyZMiljxoxpXNFdERERWrdunXr06KFy5cpp+fLlqfZYt2/fVmxsrNzc3JQpUya5ufFRFgAAuB4+oQAAgMdS3759FRsbqxkzZtx3ufuNUXbv2GiBgYGy2Ww6fvy4hgwZoqpVq6pWrVr67LPPZBiG/v33X/Xr109+fn6qU6eOvvnmm3jbjIqK0uTJk9WkSRNVqFBBDRo00Lhx4xQVFRXvsUeNGqVly5apRYsWqlixojZt2pRgXdLdrprvvfee6tatqwoVKiggIEAffvihY7vXr1/X2LFj1apVK1WpUkV+fn7q3bu3Dh48mLQnNBFr1qxRZGSknn32WTVv3ly//PKLIxSU7o6v1q5dO0nSsGHDZLPZHM93165d9dtvv+ns2bOO6QEBAY71bDabVqxYoUmTJqlevXqqXLmybty4keCYbXZ///23OnXqpEqVKikgIEA//PCD03x7N+MzZ844Tb93m/erTUr667hlyxa9+OKLqlatmqpUqaKmTZtq4sSJD/GMAwAAV+caP4kCAACYrFChQmrTpo0WLlyoV155Rfny5TNt2wMHDlTJkiU1ePBgbdiwQV988YWyZ8+u+fPnq1atWhoyZIiWL1+usWPHqmLFio7ujrGxserXr59+//13dejQQSVLltQ///yj2bNn68SJE5o2bZrT42zfvl2rVq1Sly5dlCNHDhUsWDDBei5cuKB27dopPDxcHTp0UIkSJXThwgWtXr1akZGR8vDw0OnTp7V27Vo9++yzKlSokC5fvqwFCxbopZde0ooVK1L8/Cxfvlw1a9ZUnjx51KJFC02YMEHr1q1Ts2bNJEklS5bUgAEDNHnyZHXs2FFVq1aVJPn5+SlfvnwKDw/X+fPnNWzYMElSlixZnLY/bdo0ubu7q1evXoqKipK7u3uitYSGhqpPnz5q1qyZWrRooVWrVmnEiBFyd3d3BH5J9eqrryZaW1Jfx8OHD6tv376y2WwaMGCAPDw8dPLkSf3xxx/JqgUAAKQvhG0AAOCx1a9fP/3888+aMWOGPvjgA9O2W6lSJY0aNUqS1LFjRwUEBGjMmDEaNGiQ+vTpI0lq2bKl6tWrpyVLljjCtuXLl2vr1q2aO3euqlWr5the6dKl9eGHH+qPP/6Qn5+fY/rx48e1fPlylSpV6r71TJw4UZcvX9bChQtVsWJFx/Q333xThmFIutsabvXq1U5dL9u0aaNmzZpp8eLF6t+/f7KfhytXrmjbtm0aMWKEJKlAgQLy9fXV8uXLHWFb7ty5Vb9+fU2ePFm+vr5q06aNY/3ChQtrzpw5CgsLc5oe1+3bt7VkyRJ5eno+sJ6LFy9q6NCh6tGjh6S7r02HDh00ceJEtWnT5r5B3b3q1KmTaG1JfR23bNmi6OhozZgxQzlz5kzyYwMAgPSNbqQAAOCxVbhwYbVu3VoLFy7UxYsXTdtu3FZSGTJkUIUKFWQYhtN0b29vFS9eXKdPn3ZMCw4OVsmSJVWiRAldvXrV8a9WrVqSFK9bZPXq1R8YtMXGxmrt2rVq1KiRU9BmZ7FYJEkeHh6OoC0mJkbXrl2Tl5eXihcvrgMHDiTzGbhrxYoVslgseuaZZxzTWrZsqY0bNyo0NDRF27zXc889l6SgTZIyZsyojh07Ov728PBQx44ddeXKFe3fv9+UeqSkv47e3t6SpF9//TXBu7QCAIDHEy3bAADAY+21117TsmXLNH36dNNatxUoUMDp72zZsilTpkzxWi9ly5ZN169fd/x98uRJHT16VP7+/glu98qVK05/FypU6IG1XL16VTdu3FDp0qXvu1xsbKzmzJmjefPm6cyZM4qJiXHMy549+wMfJyHLli1TpUqVdP36dcd+li1bVtHR0QoODnYKvlIqKc+BXd68eeXl5eU0rVixYpKks2fPytfX96HrkZL+OjZv3lyLFi3SBx98oAkTJsjf319NmjTRs88+y80dAAB4jBG2AQCAx1rc1m32Lp5x2Vt+3StuGHWvhIKSDBkyJLisvRundDfwslqtjjHA7pU/f36nv5PaoispvvzyS33++edq27at3nzzTfn4+MjNzU3//e9/nWpMqhMnTmjfvn2S5NSyzW758uWmhG1mPgdS4q93clqeJfV19PT01Pfff68dO3bot99+06ZNm7Ry5UotWLBA33zzTaLvGQAAkL4RtgEAgMdev379tGzZsgTvTOrj4yNJCgsLc5p+7tw50+soUqSIDh48KH9//0RDn+TKmTOnsmbNqsOHD993udWrV6tmzZr673//6zQ9LCxMOXLkSPbjLl++XO7u7ho3bly88PH333/X3Llzde7cORUoUOC++2rW8yDdHbMtIiLCqXXbiRMnJMlxcwl7187w8HCndc+ePZvk2pLzOrq5ucnf31/+/v4aNmyYvvzyS02aNEk7duxQ7dq1k7xvAAAg/aD9OgAAeOwVKVJErVu31oIFC3Tp0iWneVmzZlWOHDm0e/dup+nz5s0zvY5mzZrpwoULWrhwYbx5kZGRioiISPY23dzc1LhxY61fv97R0iwue6u1DBkyxGvBtmrVKl24cCHZjyndDduqVq2q5s2b69lnn3X617t3b0lSUFCQJClz5syS4gea9nn3Bl8pdefOHS1YsMDxd1RUlBYsWKCcOXOqfPnyku6+FyRp165djuViYmISfE0Sqy2pr2PcLsR2ZcuWddQGAAAeT7RsAwAAT4RXX31VP//8s44fPx5vfLP27dtr+vTpev/991WhQgXt3r1bx48fN72GNm3aaNWqVfrwww+1Y8cO+fn5KSYmRseOHVNwcLC+/vrrBG9y8CCDBg3Sli1b1LVrV3Xo0EElS5bUpUuXFBwcrHnz5snb21sNGzbU1KlTNWzYMFWpUkX//POPli9frsKFCyf78f766y+dPHlSXbp0SXB+vnz5VK5cOS1fvlx9+vRRkSJF5O3trfnz5ytLlizy8vJSpUqVVLhwYZUvX14rV67U6NGjVbFiRXl5eSkgICDZNUl3x2ybMWOGzp49q2LFimnlypUKCQnRRx995LgTaenSpeXr66uJEycqNDRUPj4+Wrlype7cuRNve4nVltTXcerUqdq9e7caNGigggUL6sqVK5o3b57y58+vqlWrpmgfAQCA6yNsAwAAT4SiRYuqdevW+umnn+LN69+/v65evarVq1dr1apVql+/vr7++utEB8BPKTc3N02dOlWzZs3Szz//rDVr1ihz5swqVKiQunbtquLFi6dou/ny5dPChQv1+eefa/ny5bpx44by5cun+vXrO8Y8e/XVV3Xr1i0tX75cK1euVLly5fTVV19pwoQJyX685cuXS9J9Q7GAgAAFBgbq4MGDKlOmjMaMGaOJEydqxIgRunPnjkaPHq3ChQurc+fOCgkJ0Y8//qhZs2apYMGCKQ7bfHx8NGbMGH388cdauHChcufOreHDh6tDhw5Oy3366acaPny4pk+fLm9vb7Vr1041a9ZUjx49nJZLrLakvo4BAQE6e/aslixZomvXrilHjhyqUaOG3njjDWXLli1F+wgAAFyfxUjJiLgAAAAAAAAA4mHMNgAAAAAAAMAkhG0AAAAAAACASQjbAAAAAAAAAJMQtgEAAAAAAAAmIWwDAAAAAAAATELYBgAAAAAAAJiEsA0AAAAAAAAwCWEbAAAAAAAAYBLCNgAAAAAAAMAkhG0AAAAAAACASQjbAAAAAAAAAJMQtgEAAAAAAAAmIWwDAAAAAAAATPJ/zThObz/5MAYAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
],
"source": [
"plt.figure(figsize=(15,5))\n",
"sns.set_theme(style=\"whitegrid\")\n",
"sns.boxplot(data=df[numerical_feats[:-1]]) # outliers are ignore to be plotted\n",
"plt.xlabel(\"Numerical Attributes\", fontsize= 12)\n",
"plt.ylabel(\"Values\", fontsize= 12)\n",
"plt.title(\"Numerical Attributes Boxplot after removing outliers and normalized\", fontsize= 15)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "683dc25d",
"metadata": {
"id": "683dc25d"
},
"source": [
"#### Normalization: \n",
"Normalization brings down all the features scales to [0 to 1] as it uses minimum and maximum value in each feature.\n",
"\n",
"Normalization = (X - Xmin) / (Xmax - Xmin).\n",
"\n",
"#### Standardization:\n",
"Standardizatoin distributes the data around 1 standard devitaion from its mean of feature, so here all the features will not be in same scale as each features mean will not be same"
]
},
{
"cell_type": "markdown",
"id": "d3b53922",
"metadata": {
"id": "d3b53922"
},
"source": [
"### Do the ranges of the predictor variables make sense?\n",
"\n",
"* It was very hard to visualize the numerical features with Raw Data when I plotted the Boxplots, as they have extreme otliers and each feature has different scale.\n",
"* After Transforming the Data by Handling outliers and normalizing the features to bring down all the features to same scale, the data distribution of the features makes sense except the BMI_value feature.\n",
"* While the boxplots of BMI_value show there are no significant differences between adults with and without heart disease in BMI. so, BMI is not making sense as even though the BMI is very extreme, few people are not diagonosed with Heart Disease. so I have create a BMI class depending on the BMI values and the BMI class distribution is more realastic than BMI_values. [please refer to BMI class Distirbution chart]\n",
"\n",
"* Defined BMI function:\n",
"* `def BMI_Classification(BMI):\n",
" if(BMI < 18.5): return 'UnderWeight'\n",
" elif(18.5 <= BMI <= 25): return 'NormalWeight'\n",
" elif(25 <= BMI <= 30): return 'OverWeight'\n",
" elif(30 <= BMI <= 35): return 'Obesity Class I'\n",
" elif(35 <= BMI <= 40): return 'Obesity Class II'\n",
" elif(40 <= BMI): return 'Obesity Class III'\n",
" else: return None`"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "891c71b8",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 556
},
"id": "891c71b8",
"outputId": "a78ab081-ffde-496e-fd0c-05314dce5093"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
""
]
},
"metadata": {},
"execution_count": 28
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAIJCAYAAADzm9rPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACGXElEQVR4nO3ddVhUaRsG8HvokkFSTAQVEQNRVMDEVmzcxbVjRddaY9f47M41wE7sTlTsxO5CRTBQpFNa4PtjdHQcQFBkOHD/rovrct7zvmeecxB45q0jysjIyAARERERCYKSogMgIiIiopxj8kZEREQkIEzeiIiIiASEyRsRERGRgDB5IyIiIhIQJm9EREREAsLkjYiIiEhAmLwRERERCQiTNyIiIiIBYfJGRERElAuvX7/G5MmT0aFDB1SpUgXOzs45apeRkYE1a9agcePGqF69On7//Xfcu3cv1+/P5I2IiIgoF/z8/HDhwgWUK1cOFhYWOW63du1aLFu2DH369MHq1athZGSEfv36ITAwMFfvL+KzTYmIiIhyLj09HUpKkv6vcePG4dGjR/Dy8sq2TXJyMhwcHNC9e3eMGjUKAJCSkoJWrVqhYcOGmDp1ao7fnz1vRERERLnwOXHLjTt37uDDhw9o3bq1tExNTQ3NmzfHxYsXc/f+uX53IiIiIsqVgIAAAIC5ublMuYWFBYKCgpCUlJTjc6nkaWREREREAtC0adNsj585cyZP3y82NhZqampQV1eXKdfV1UVGRgZiYmKgoaGRo3MxeaNspYYHKDoE+mRWrUmKDoE+WRh2RdEh0CftjWwUHQJ9sv31gV/+HvybJMHkjYiIiIQhPS3PTpXXPWvfo6uri5SUFCQnJ8v0vsXGxkIkEkEsFuf4XJzzRkRERPSLfZ7r9vLlS5nygIAAlCxZMsdDpgCTNyIiIhKKjPS8+8pntra20NHRwfHjx6VlqampOHnyJBo2bJirc3HYlIiIiIQhPf+TrswkJibiwoULAIB3797hw4cP8Pb2BgDUqVMH+vr66N27N4KCgnDq1CkAgLq6Otzc3ODu7g59fX1UqlQJO3bsQHR0NPr375+r92fyRkRERIKQoYAes8xERERgxIgRMmWfX2/evBl169ZFeno60tJk5+j9+eefyMjIwIYNGxAZGQkrKyusX78eZcqUydX78wkLlC2u7Ck4uNq04OBq04KDq00LjvxYbZoS9DjPzqVW0jrPzpXf2PNGREREwlBAhk0VjckbERERCUMBGTZVNK42JSIiIhIQ9rwRERGRMOThJr1CxuSNiIiIhIHDpgA4bEpEREQkKOx5IyIiImHgalMATN6IiIhIIArKJr2KxmFTIiIiIgFhzxsREREJA4dNATB5IyIiIqHgsCkAJm9EREQkFNznDQDnvBEREREJCnveiIiISBg4bAqAyRsREREJBRcsAOCwKREREZGgsOeNiIiIhIHDpgCYvBEREZFQcNgUAIdNiYiIiASFPW9EREQkCBkZ3OcNYPJGREREQsE5bwA4bEpEREQkKOx5IyIiImHgggUATN6IiIhIKDhsCoDJGxEREQkFH0wPgHPeiIiIiASFPW9EREQkDBw2BcDkjYiIiISCCxYAcNiUiIiISFDY80ZERETCwGFTAEzeiIiISCg4bAqAyRsVUgkJidiwfS8ePnmGh0+eITbuA2ZOGIWObZsrOjRBU1ZTQZNRLqjRuT40xNoI8X2Dswv3IODyo2zbWbWqDWtne5SqYQ4dIzFigiLw/Ow9XFx2AEmxCVm2K17WGENOzYOKhhrWOE9E0MOXeX1JgiMWF8PMWePRrl0LaGpp4vat+xg/fhbu33uco/aWlhaYO38S7O1rIyUlFSe8z2H8uJkID4+UqWduXg7TZ4xFo8YOUFdXw717jzBz+n+4ePGatI5IJMIf3TujfYdWqFGjCooX18PrV4HYu9cLS5esQXJySp5ee0GmoqYCl1Hd0KBzY2iLtfHG9zV2L9yOR5fvZ9vO1LwkmnZviQo1K8HM2hxqGmoY7jgQ4W/Dsm1nXLYE5p9aCjUNNfzPeQxePvTPy8uhAi7Xc97c3d1haWkp/apXrx569eqFW7duAQD2798PS0tLREZGfudMP69nz55wc3PL8/OOGzcOzs7O0tfXr1+HpaUlHj58KFc3u2N5wdLSEuvXr5e+3r9/P44cOSJX71fdC6GKionFqo3bEfAqEJYVzBUdTqHRcaEb7Ae0xoODPvCeuhkZ6enovukflK1dKdt27eYMgFGFknhw4DKOT92MFxceoE6v5uh/YCpU1FWzbNdqcg+kp/GT9mcikQh7929A19/aY/XqzZg0cS6MjAxw3HsHLCzMvtu+ZKkSOHFyF8zNy2HalIVYtnQtWrZqgsNeW6Cq+uX7UKqUKc6e2wd7h9pYumQNpk6eDx0dbRw6shmOjnWk9bS0NLF6zUIYGupj/brtGPvvDNy6fR//m/g3Dhzc9AvuQME1aOFwtBnQHj4HL2Lz1PVIT0/Hv5smwrK2VbbtKtpaolXfttDQ1kSQ/9scv1/PyX2RnlYE9zxLT8+7LwH7oZ43DQ0NeHp6AgCCg4OxYsUK9OnTB/v378/T4L5nypQpUFIqWmsuDhw4AC0tLbRr107RoRRoRgbFcf7wNhga6OOR73O4Dhih6JAEr1QNc1Tr4ICTs7bhyppjAID7+y/jr5Nz0XxCN6zvPC3LtrsHL8Wra74yZe8fvkSnxYNRvZMj7uw8L9fGomE1WDSsDp/VXmg0vFOeXotQderUBvb2tdHjj79w8OBxAMD+fUdx9/5Z/G/i3+jX9+9s2//zz1/Q0tZCfcf2ePs2CABw69Z9eB3dih49XbBxww4AwOgxgyHW00Wd2q3g5xcAANi4cSfu3DuNufMnooFjewBASkoqmjbpguvX70jfY9PGnXjz+i0mThqFxk0ccf6cT17fhgLHokZFOHRogG2zNuHomkMAgEv7z2PeyaXoNqEXpnYen2Xb26duYkC1HkiKT0LbgR1gZv39D5vVG9qgesOa8Fp9AJ2G/5Zn1yEEGRlFMGHNxA9lPkpKSrCxsYGNjQ1atWqFVatW4ePHj9i5c2dex5etChUqwNycvSokT01NDYYG+ooOo1Cp0qYu0j+m4fb2c9Kyj8mpuLPrAsrUqgRd06zv97eJGwD4npD01htWKCV3TElFGa2n9ML1jScQ9To0D6IvHDp2ao2QkDAcOuQtLQsPj8SB/UfR1rk51NTUsm3foUNreB8/K03cAOD8OR88fx6Azp3bSMscHOxw//4TaeIGAImJSTh29Axq1qwm7eVLTU2VSdw+O3L4JACgsmWFH7pOoanTxh5pH9NwdvtJaVlqcirO7zqNSrUqQ9/UIMu28TEfkBSflOP3UlZRRq8p/eG90Qshr4N/Km4SrjzptipZsiT09fXx9u2XLt/g4GAMGDAANjY2aNGiBQ4ePCg9tmXLFtSoUQMfPnyQOY+/vz8sLS1x4cIFAMDt27fRvXt31KpVCzVr1kS7du1w4MABaf3Mhgr9/f0xdOhQ1KlTBzVq1ED79u3h5eUlPb5hwwZ06dIFtWrVgr29Pdzc3PDyZd7Po9m/fz/atWuHatWqoUGDBli8eDHSvuriDg0Nxfjx49G0aVNUr14dLVq0wH///YeUlKzniPTs2RM3btzA+fPnpcPW7u7uMnW8vb3RsmVL1KxZE7169cKbN2/y/NqoaCphXQ4RL4OR/CFRpvzdfclcmxJVyuXqfDpGYgBAQmSc3LF6/VtBQ6yNi+4HfyzYQqp6jSq4d+8RMjIyZMpv3boPbW0tVKxYPsu2piVNYGxiiDt35Kd43L51H9VrWEtfq6mrISlRPqFISJB872vWrJptnMYmRgCAiIhfP32mIDCzLo/3L4OQ+M3Phv99P8nxKll/X3Krdf920Bbr4KD7njw7p6Bw2BRAHi1Y+PDhA6Kjo2FsbCwtGzNmDH777Tf07dsXu3fvxrhx41CtWjVYWFigffv2WLBgAby8vODq6ipts3fvXpiYmKB+/fr48OED3NzcUKtWLfz3339QU1PDixcvEBsbm2Ucr169wu+//w5TU1P873//g5GREZ4/f46goC+fMoODg9GjRw+ULFkSHz58wM6dO+Hq6ooTJ05AT08v2+tMT0/Hx48f5cq+tXHjRixYsAC9e/fGuHHj4O/vL03exowZAwCIioqCnp4exo8fD11dXbx69Qru7u4ICwvDnDlzMn3/KVOm4J9//oGGhgbGjh0LAChRooT0uK+vLyIjIzFmzBikpaVh7ty5+Oeff7Br165sr4soJ4oZ6yEuNEqu/ENotOS4SfFcna/+4HZI/5iGJ8euy5TrGInRaFgnnJy1TS5RLOpKlDCGj88NufLgYEnvZAlTEzx+/CzLtl/X/ba9gUFxqKmpISUlBX5+AXBwsIOOjjY+fIiX1rN3qA0AMC1ZQu4cXxs50g0xMbE4efJ8jq5L6PSM9RGdyc/G5zI9k7wZBRAb6aHjsK7YPmuTXKJYZHCrEAA/kbx9TmKCg4Mxb948pKWloWXLlggLk6yQ6d69O7p37w4AqFmzJi5cuIATJ07gr7/+glgsRsuWLbFv3z5p8vbx40ccPnwYLi4uUFZWxsuXLxEXF4dRo0bB0tISAGBvb59tTO7u7lBVVcWOHTugo6MDAHBwcJCpM2HCBOm/09LS4OjoCHt7e5w4cQK///57tuf/7bfvzy348OEDli1bhgEDBmDUqFEAAEdHR6iqqmLu3Lno378/ihcvDktLS2kCBgC2trbQ1NTEuHHjMHnyZGhqasqdu0KFCtDR0YGWlhZsbGzkjsfFxeHgwYPQ15f8okhISMD48eMRHBwsk+QR/QgVDTWkpXyUK/+YJOktVtXIfsjua9U6OMDWtQkurzyCyFchMseajXNF1JvQTOfBFXWamhpIyWQFZ3JS8qfj6lm31dAAgMzbJ39pn5KSgnVrt6Jt22bw3OKOaVMXIiE+EX8O7AFb22rSOLIy5p+/4NS0Pv4eMRExMfK9qoWRmoYaPqakypWnJqVKj+eFbuN6IfRNCM7tPJ0n5xMkgfeY5ZUfSt4SEhJgbf2li10sFmPy5Mlo0KCBdNFC/fr1pce1tLRQsmRJBAd/GZ//7bff0KNHD/j5+aFixYq4cOECIiIi0KVLFwBA2bJloaOjg6lTp6Jnz56oV6+eNCnJyrVr19CyZUtp4paZe/fuYenSpXjy5Amio6Ol5a9evfrudc+bNw8WFhYyZY8fP8aUKVOkr+/evYuEhAS0atVKppfOwcEBSUlJ8PPzQ506dZCRkQFPT0/s3r0bb9++lf7yBIDAwEBUqpT96r3MVK5cWeYeVaggmW/C5I3ywsekFCiryf/KUPn0hyk1KWfbQpS1s0T7+X/ixfn7OLtgt8yx0jUroEbn+vD8Y47c0GBRoqqqiuL6Ypmy8LBIJCYmQU1dPhFQ15AkbYmJyXLHPktMkgyDZtpeXbb9qZMXMHrUFEyb/i+uXD0KAHjx4iWmTV2EWbPHy/TGfa1Ll7aYPGU0Nm3ahXVrt33vMguNlKQUqKjJr5pW1VCVHv9ZFWpWQv3OjTD7jylF+meDJH54tenWrVshEolQvHhxmJqayq36LFasmMxrVVVVmflcdnZ2KF++PPbu3Yvx48dj3759sLOzQ9myZQFIEsKNGzdi2bJl+Pfff5GWlobatWtj4sSJ0p64b307dPutoKAg9OvXD1WrVsW0adNgbGwMVVVVuLm5ySRPWbGwsEC1atVkyhISZPeoioqSdJN36pT56rj3798DADw9PTFv3jwMGDAAdevWha6uLh4+fIjp06fnKJbM6Orqyrz+vPT/R89H9LW40GjolpD/AKVjrCc5HiI/bPQtE6uy6LZ+NEKfBWL34KVy24A0H98Nr288Q3RgKPRKGwIAtPR1pO8jLmmAmKCIn7ySgq9ePVscPyG7AKxK5foIDg6VDn9+TTok+j5E7thn0qHVLNpHRETJ/I5evWoztmzeg6pVKyMlNRUP7j9B7z6S0YkXL+TnCTdxqo816xbB2/scRgz7Xw6usvCIDo1E8RLyixL0jCVTCaJDfn7uX7fxvfDshi9CA0NgWFoyp7CYvuR3fnHj4ogtaYiIoPCffp8Cj8OmAH4weVNSUpJLYn5E165dsW7dOvTt2xcXLlzArFmzZI5Xr14d69atQ1JSEq5fv4558+ZhyJAhOH068y5jPT09hIZmvTLt0qVLSEhIgIeHhzTR+fjxI2JiYn76Wj4TiyWflj08PDLt7SpdujQAycICJycnjB49WnrM35+bLFLBFfzkNcrbV4G6jqbMXLTSNhbS49kpXtYYPTb/i/jwGGzrswApCfIfKsQlDaBXxgh/+yyVO/bHhjFIionH3OoDf/JKCr6HD33h3LaHTFlISBgePvCFg6MdRCKRTO+LnZ0N4uMT4OeX9eKr90EhCAsNlw59fq1W7Rp4+OCJXHlCQiJu3Lgrfd2kiSMSEhJx7eptmXq17WywY+cq3LnzEL16DJFZnFUUvH7yClXsq0FTR1NmLloFG8kIyqsnP78ozrCkEYzKGGOZzxq5Y2M2/A/xMfH4s3qPTFoWMhw2BaDgJyx06tQJixcvxpgxY6ChoYFWrVplWk9DQwONGjXCmzdvMGvWLCQnJ0u7+b/2ee7amDFjMh06TUpKgkgkgorKl8s+fvy43CKEn1GzZk1oamoiODgYzZtnvZt/UlKSzKaYADLdfPdbqqqq7EkjhXhy7AYc3ZxR648m0n3elNVUYNO1Ed7eeYHY95LeBXFJA6hqqiHc/720rY6RGD23jkNGega29pqX6QpTADgyfj1UNWWH9co7WKNu35Y4MXMbwv2DMm1X2ERHx2a6P9rBA8fQqXMbdOjQSrrPm4FBcXTs1AbHj52R6TkrX14yivHy5ZcV54cOeeOP7l1QqpQp3r2TfH8aN3ZApUrmWO6xHtmpW9cW7Tu0xLq12xAb++X7Z2lpgX371uPN67fo2qU/kpKK3u+n68euwNmtI5z+aCHd501FTQWNujrB784zRL6X9BYblDSEuqY6gvzf5fo91o1fAfVv5jRWcaiGVn2dsXXmxh86JwmXQpM3fX19NG3aFN7e3vj999+hofFlEuz58+exd+9eNGvWDCVLlkR4eDi2bt0KW1vbTBM3ABg6dCjOnz+PP/74AwMGDICRkRH8/f2RmJiIP//8E/Xq1QMAjB8/Hq6urvDz88PGjRvlhht/hq6uLoYPH44FCxYgODgYderUgbKyMgIDA3HmzBm4u7tDU1MTDg4O2Lx5M7Zu3QozMzMcPnwYr19n33MBAObm5jh48CDOnj0LIyMjGBsbw8TEJM/iL0y27z2MuA/xCA2X/OI873MdIWGSYYU/XNqjmI62IsMTnHf3/PHY6xqa/vs7tA3EiHwVjBouDaFX2hCH/10rrdfpv0Ews6+CqeW6S8t6eI6FfjkTXF55BGXtLFHW7svUhw9hMdLHa/lfkt/GQkNX8n16fc23yD8e68CB4/jr+h2sXD0fla0qICIiCn/+2QPKykqYNXOJTF2vY5I5Z9ZWDaRlC+avQKdObXDMeztWLt8EbR0tjPh7IB49fIotm/dK65UpUwqbt3rg2NHTCAkJg5VVRfQf0B2PHj3F1CkLpPV0dLRx8LAn9IqLsWTJGrRs5SQTw8uA1zI9d4WV/z0/XPPywe//9oCugRghr96jgUsTGJY2xpp/l0vrDf5vBKrYV8Uf5b5Mq9EspoWWfSR77FX69DSGFr3bICE2Hgmx8TjpKUnSH16Sf8yW1qefDd9rj4vO47E4bAqgADzbtHnz5vD29oaLi4tMedmyZaGkpIQlS5YgIiICenp6qF+/vnQFZ2bMzMywc+dOLFq0CNOmTUNaWhrMzMwwcKBkmMXS0hJz5syBh4cH3NzcYGVlhaVLl+Lvv//O02vq168fTExMsHHjRmzduhUqKiooW7YsGjduLO1tGzJkCKKiorBs2TIAQMuWLTFx4kQMGjQo23P/+eefePPmDcaOHYvY2FgMHToUw4YNy9P4C4tNO/Yh6KttEU5f8MHpC5LeDOeWTkzefsCBUavQZLQLqnd2hKauNkKeBmJ7v4V4feNptu1KWEv2gKs/WP7JIK+uPvnus1FJIj09HV069cXM2RMweHAfaGhq4M7tB3Bz+0dmQ92svHv3Hq1aumLO3ImYNuNf6bNNJ4yfJdNrFxcXh+DgULgN6oXixcUICgrByhWbsGD+cpnFCvr6eihTRrLJ8oyZ4+Teb+uWvUUieQOAlaOWouvoP1C/cyNo6+og8OlrLOw3C09vyA9Hf01brI3fxnSXKXMe2BEAEBYYKk3e6BMOmwIARBkKXrby77//wtfXN0dDhpT/UsO//weB8sesWpMUHQJ9sjDsiqJDoE/aG9koOgT6ZPvrA9+v9JMSjy/Ls3Npth6eZ+fKbwrreXv27Bl8fX1x7Ngxma02iIiIiDLFnjcACkzeBg8ejMjISHTs2FG6txsRERFRljjnDYACk7ezZ88q6q2JiIiIBEvhCxaIiIiIcoTDpgCYvBEREZFQcNgUAJM3IiIiEgr2vAEAlL5fhYiIiIgKCva8ERERkTBw2BQAe96IiIhIKNLT8+7rJ/j7+6Nv376wsbGBo6Mj5s+fL/OUkqxERUVh8uTJaNy4MWxsbODs7IwdO3bk+v3Z80ZERESUQzExMejduzfMzMzg7u6OkJAQzJ07F0lJSZg8eXK2bUeMGIGAgACMGjUKpqamuHjxIqZOnQplZWX89ttvOY6ByRsREREJQwFYsLBz507Ex8fDw8MDenp6AIC0tDRMmzYNbm5uMDExybRdWFgYrl+/jjlz5qBz584AAHt7ezx8+BBHjx7NVfLGYVMiIiIShoyMvPv6QRcvXoS9vb00cQOA1q1bIz09HT4+Plm2+/jxIwCgWLFiMuU6OjrI7WPm2fNGRERERU7Tpk2zPX7mzJlMywMCAuQe66mrqwsjIyMEBARkeT5TU1PUr18fq1atQvny5VGiRAlcvHgRPj4+WLhwYa5iZ/JGREREwlAAhk1jY2Ohq6srVy4WixETE5NtW3d3d4wcORJt27YFACgrK2PixIlo2bJlrmJg8kZERETCkIfJW1Y9a79KRkYGxo8fj1evXmHRokUwMjLClStXMHv2bIjFYmlClxNM3oiIiIhySFdXF3FxcXLlMTExEIvFWbY7f/48vL29cfjwYVhaWgIA6tati4iICMydOzdXyRsXLBAREZEwZKTn3dcPMjc3l5vbFhcXh7CwMJibm2fZ7sWLF1BWVkalSpVkyq2srBAaGorExMQcx8DkjYiIiIShAGzS27BhQ1y5cgWxsbHSMm9vbygpKcHR0THLdqVKlUJaWhqePXsmU/748WMYGBhAU1MzxzEweSMiIiJhKABbhbi6ukJbWxtDhgzB5cuXsW/fPsyfPx+urq4ye7z17t0bzZs3l75u2LAhSpYsieHDh+PQoUO4evUqFixYgAMHDqBHjx65ioFz3oiIiIhySCwWw9PTEzNmzMCQIUOgra0NFxcXjBw5UqZeeno60tLSpK91dHSwadMmLF68GAsXLkRcXBxKly6NcePGMXkjIiKiQqoAbBUCABYWFti0aVO2dbZs2SJXVq5cOSxZsuSn35/JGxEREQlDAUneFI1z3oiIiIgEhD1vREREJAw/scVHYcLkjYiIiAQhI/3HV4kWJhw2JSIiIhIQ9rwRERGRMHDBAgAmb0RERCQUnPMGgMOmRERERILCnjciIiISBi5YAMDkjYiIiISCc94AMHkjIiIioWDyBoBz3oiIiIgEhT1vREREJAwZnPMGMHkjIiIioeCwKQAOmxIREREJCnveiIiISBi4VQgAJm9EREQkFHzCAgAOmxIREREJCnveiIiISBg4bAqAyRt9x6xakxQdAn3yv9szFB0CfTKzZANFh0Cf3EoIVHQIlI8yuNoUAIdNiYiIiASFPW9EREQkDBw2BcDkjYiIiISCq00BMHkjIiIioWDPGwDOeSMiIiISFPa8ERERkTBwtSkAJm9EREQkFBw2BcBhUyIiIiJBYc8bERERCQNXmwJg8kZERERCwWFTABw2JSIiIhIU9rwRERGRIPDZphJM3oiIiEgYOGwKgMOmRERERILCnjciIiISBva8AWDyRkRERELBrUIAMHkjIiIioWDPGwDOeSMiIiISFPa8ERERkSBksOcNAJM3IiIiEgombwA4bEpEREQkKOx5IyIiImHgExYAMHkjIiIioeCwKQAOmxIREREJCnveiIiISBjY8waAyRsREREJREYGkzeAw6ZEREREgsKeNyIiIhIGDpsCYPJGREREQsHkDQCTNyIiIhIIPh5LgnPeiIiIiASEPW9EREQkDOx5A8CeNyIiIhKK9Dz8+gn+/v7o27cvbGxs4OjoiPnz5yMlJSVHbUNCQjB27FjUq1cP1atXR+vWrXH48OFcvT973oiIiIhyKCYmBr1794aZmRnc3d0REhKCuXPnIikpCZMnT862bWhoKH7//XeUL18eM2bMgI6ODvz8/HKc+H3G5I2IiIgEoSAsWNi5cyfi4+Ph4eEBPT09AEBaWhqmTZsGNzc3mJiYZNl2wYIFKFGiBNatWwdlZWUAgL29fa5j4LApERERCUN6Rt59/aCLFy/C3t5emrgBQOvWrZGeng4fH58s23348AHHjx/HH3/8IU3cfhSTNyIiIqIcCggIgLm5uUyZrq4ujIyMEBAQkGW7x48fIzU1FSoqKujRowesra3h6OiIBQsWIDU1NVcxcNiUiIiIhOEnFxp8rWnTptkeP3PmTKblsbGx0NXVlSsXi8WIiYnJ8nzh4eEAgIkTJ+K3337D0KFD8eDBAyxbtgxKSkoYPXp0jmP/ZT1v7u7usLS0RIMGDZCeLn+3XV1dYWlpiXHjxuX5e/v6+sLd3R2JiYk/1N7S0hLr16+Xvh43bhycnZ0zrZvdsZ+1f/9+WFpaIjIyEoDkP4y7uztevHghU+/t27ewtLSEt7f3L4lD0ZTVVNBsnCtG3/DA/55txICD02Bev+p321m1qg0Xj2EYcWkx/vd0A4aeXYAWE7tDQ1cr23bFyxpj4rONmPp6G0pWK59Xl1FkJSQkwmPdFriNmgiHVl1R1bE1Dh49peiwChWxWBcrV8zD+3cPEBPlh9Mn96Cmzfd/RgDArrYN3JfNxvVrx5EY/wofU95lWq906ZKYNHEkrvp4ISzkMYKDHuLMqT1o6tQgLy9FUIrp6mDGogm45nsK915dwuYDq1ClumWO21tUNMO6Xctw99VF3Hh+BguWT0dxAz25eoNG9sPKLf/hyuMTeB52C8P+GZjp+cpblMP4GaOw8+h6PAz0wfOwWyhVxvRHL69AykjPyLOv/PY5F3JwcMC4ceNQr149DBw4EP3798emTZuQlJSU43P90mFTVVVVREVF4ebNmzLl7969w71796Cllf0f0R/l6+sLDw+PH07eCqrY2Fh4eHjIJW+FXceFbrAf0BoPDvrAe+pmZKSno/umf1C2dqVs27WbMwBGFUriwYHLOD51M15ceIA6vZqj/4GpUFFXzbJdq8k9kJ6Whx/viriomFis2rgdAa8CYVnB/PsNKFdEIhGOHNqMbq6dsGLlRowbPxNGxgY4c3ovKlT4/oeP1q2d0L9fN2RkZCDg5Zss67Vv1wL/jBmCF/6vMHnKfMyavQQ6xXRwwnsnevf6LS8vSRBEIhHW7FgK5y6tsHX9biyYvgwGhsWx9eBqlDMv8932JqbG2HZ4LcqVL4P/Zi3HhhVb0ai5IzbtXQ5VVdlBsVET/kK1mlXw5NGzbM9pY1cNvf78Hdo62vD3e/Uzl1cknDlzJtuvrOjq6iIuLk6uPCYmBmKxONt2AFCvXj2Zcnt7e6SkpOD169c5jv2XDpuqqqrC3t4eR48eRd26daXlR48eRcWKFaGkxCl3lL1SNcxRrYMDTs7ahitrjgEA7u+/jL9OzkXzCd2wvvO0LNvuHrwUr675ypS9f/gSnRYPRvVOjriz87xcG4uG1WDRsDp8Vnuh0fBOeXotRZWRQXGcP7wNhgb6eOT7HK4DRig6pEKlSxdnODjY4TfXgdi//ygAYM/eI/B9fAlTJo9Gz15Ds22/avVmzF+wAklJSVi6ZCYsK1lkWu/8hSsob2GHiIgoadnqNVtw+9ZJTJ3yDzw37867ixKAVu2boladGhjWbyxOHJH8oT926BROXtuP4f+6YfSgidm2H/R3X2hqaaJTsx54/y4EAPDgzmNs2rcCnV3bYdeWA9K6TWzb4V3gexTXF+P6s6yTirPeF1Hbogni4xPQ768eqFIt572AglEAPlebm5vLzW2Li4tDWFiY3Fy4r1WoUCHb8yYnJ+c4hl+ePTk7O+PEiRMyk/G8vLwyHWr09/fH4MGDUatWLdjY2GDgwIF480b2k6ClpSXWrl0Ld3d3ODg4oG7duhg/fjwSEhIASIYax48fD0CSzVpaWsLJyQmAZH+V8ePHo2nTpqhevTpatGiB//77L9f7q3xPbGwspk6divr166Nq1aro3LkzLl++LFPn/Pnz6Nu3L+zt7WFra4uuXbvi4sWLWZ7z7du30vH5ESNGwNLSEpaWlnj79q20TnJyMqZPnw47OzvUr18f8+bNw8ePH/P02vJblTZ1kf4xDbe3n5OWfUxOxZ1dF1CmViXomupn2fbbxA0AfE/cAgAYVigld0xJRRmtp/TC9Y0nEPU6NA+iJwBQU1ODoUHW3yf6OV06t0VwcCgOHDgmLQsPj8SevV5o364l1NTUsm0fGhqeo+GaJ0+eyyRuAJCSkgLv42dRpkxJ6Oho/9gFCFTLdk0RFhqOk15npWVREdE4fug0mrZqBFW1rHv3AaClsxPOnbokTdwA4MrFGwh48RqtOzSTqfsu8H2OYoqJjkV8fEIurkJ4CsKwacOGDXHlyhXExsZKy7y9vaGkpARHR8cs25UqVQqVKlXClStXZMqvXLkCDQ2N7yZ3X/vlyVuTJk2QkpIiXT774sULPHv2DG3atJGpFxgYCFdXV8TExGDu3LlYuHAhIiMj0adPH7nkatu2bXj16hXmzp2LIUOG4MiRI1ixYgUAoHHjxhg8eDAAYN26ddi1axc8PDwAAFFRUdDT08P48eOxbt06DBgwAAcOHMCUKVNydC0fP36U+8rIkP0PkJKSgr59++L8+fP4+++/sXLlSlhYWMDNzQ3Pnn3p8n779i2aNGmC+fPnw93dHba2thg4cCCuX7+e6XsbGxtLr2PUqFHYtWsXdu3aBWNjY2mdJUuWQElJCUuWLIGrqys2bNiAPXv25OjaCqoS1uUQ8TIYyR9kh8Df3feXHK9SLlfn0zGSdGknRMp3edfr3woaYm1cdD/4Y8ESKYBNjaq4e/eh3O+imzfvQltbC5Uq/dqhapMSRoiPT0BCQuGapvI9VapZ4smDZ3L3/cHdx9DS1kR5i7JZtjUpYQRDYwM8uif/AfPhncewKow9ZnmlADxhwdXVFdra2hgyZAguX76Mffv2Yf78+XB1dZXZ4613795o3ry5TNuRI0fi7NmzmDVrFnx8fLBq1Sps2LABffr0ydVUsl++2lRTUxNOTk44evQoGjduDC8vL9SsWRNlysjOCfDw8IBYLMbGjRuhrq4OALC1tUXTpk2xZ88edO/eXVrXyMgIixYtAiDJgJ88eYITJ05gzJgx0NfXR9mykh8aa2tr6Ot/+cRvaWmJsWPHSl/b2tpCU1MT48aNw+TJk6GpqZnldfj5+cHa2jrTYxUrVpT++8iRI3j69CkOHTokzaIbNGiA169fY8WKFVi6dCkAoEePHtI26enpqFu3Ll68eIHdu3fLDDF/pqamBisrKwBAuXLlYGNjI1enevXqmDhR0lXv6OiI69ev48SJE+jWrVuW11XQFTPWQ1xolFz5h9BoyXGT4rk6X/3B7ZD+MQ1PjskmyTpGYjQa1gknZ22TSxSJCjJTU2NcunxNrjw4WNJ7XNLUBI8ePf0l721hYYZOHVtj776jmS5MK8yMTAxx8+pdufKwEMmKQuMSRnju659l26/rfi00JBzF9fWgqqaK1JTcbR9B+UMsFsPT0xMzZszAkCFDoK2tDRcXF4wcOVKmXnp6OtLS0mTKnJyc8N9//2HFihXYsWMHjI2NMWzYMAwcmPkilKzky1Yhzs7OGD16NJKSknDs2DH07NlTro6Pjw/atGkDZWVl6VCfrq4uqlSpgkePHsnUdXBwkHltYWGBo0ePfjeOjIwMeHp6Yvfu3Xj79q3M+HJgYCAqVcp6AnzZsmXx33//yZUvX75cZujSx8cHlSpVgpmZmcyQpYODg8yzy4KDg7F48WJcuXIFYWFh0k9vWSWIOVG/fn2Z1xYWFrh2Tf6XupCoaKghLUV+6PdjkqQ3VlUj+yGhr1Xr4ABb1ya4vPIIIl+FyBxrNs4VUW9CM50HR1SQaWpqIDlZfupHUpLk95uGpsYve9+dO1YjMTEJE/43+5e8R0GmoaGOlEzue/Ln+66hnnVbTcmxzKbsfP67pKGhzuQtExkF5DOChYUFNm3alG2dLVu2ZFrepk0budHH3MqX5K1+/fpQVVXF0qVL8fbtW7Ru3VquTlRUFDw9PeHp6Sl3TFVVdu7At/urqKqq5mjemqenJ+bNm4cBAwagbt260NXVxcOHDzF9+vTvThRUV1dHtWrV5Mr19PRkkreoqCg8efIk0yTs847K6enpGDx4MOLi4jB8+HCUK1cOmpqaWLZsGd6/z9nchswUK1ZM5nVO70tB9jEpBcpq8v9NVT4lbalJObu+snaWaD//T7w4fx9nF8hOrC5dswJqdK4Pzz/myA2BEBUUqqqq0NfXkykLC4tAYmIS1NXlP8R8Th6SEnO+/UBOKSkpYfu2lahiVRHO7Xri/fuQ7zcSKFVVFYiLy64gjAyPQlJSMtQyue/qn+97UtZ/U5ISJccym4/4eeQpu/ZFWgFJ3hQtX5I3VVVVtGjRAps2bYK9vT0MDQ3l6ojFYjRq1Ah//PGH3DFt7byZCOvt7Q0nJyeZjfD8/TPv1v5RYrEYlpaWmDVrVpZ1Xr9+jSdPnmD58uVo1uzLxNTc7PFSVMSFRkO3hPxkdx1jPcnxEPkh1W+ZWJVFt/WjEfosELsHL5XbBqT5+G54feMZogNDoVda8n9TS19H+j7ikgaICYr4ySsh+jkO9rVx5vRemTKLinXx/n0oTEsYy9Uv8aks6BckVqtXLUDbNs3Qs/dQnDuf9eOACoOadjWw9dBqmbImtu0QFhIOYxP5v2Wfh0RDg8OyPOfn4VKjTNobmxgiKjKavW6UrXx7wkLXrl0RERGB337LfD8ge3t7+Pn5oUqVKj/9zK/PPXXf9jolJSXJ9eIdOXLkp97rWw4ODrhw4QKMjY2zfDjt516+r2N59+4d7t69CzMzsyzP/bl+bpYTC13wk9cob18F6jqaMnPRSttYSI9np3hZY/TY/C/iw2Owrc8CpCTI3ztxSQPolTHC3z5L5Y79sWEMkmLiMbd67uYjEOW1+w+eoGUrV5my4OAw3H/wGPUd60AkEsn0HNepUxPx8Ql4/jzrx/X8iHlzJqJvH1eMHDUZu3YdytNzF0RPHz9Hny5/yZSFhUbA99Fz1K5nI3ffa9haIyE+ES/9s94zLyQ4DBFhkahqYyV3rJqtNZ4+ep53F1DIFJRhU0XLt+StevXq0hWhmRk+fDhcXFzQv39//PbbbzA0NER4eDhu3LiB2rVr5+opBhYWkj/s27ZtQ7NmzaChoQFLS0s4ODhg8+bN2Lp1K8zMzHD48OFcbYqXEx07dsTOnTvRq1cv9OvXD2ZmZoiLi8OTJ0+QmpqK0aNHw9zcHCVKlMCiRYuQnp6OhIQELFu2TGblaGaMjIygq6uLo0ePonTp0lBTU4OlZeFelfTk2A04ujmj1h9NpPu8KaupwKZrI7y98wKx7yVPnxCXNICqphrC/b8MO+sYidFz6zhkpGdga695ma4wBYAj49dDVVN2+KK8gzXq9m2JEzO3Idw/6BddHVHORUfH4MzZS3Ll+/YfhUsXZ3Tq1Ea6z5uBQXG4dHGG19FTMh9izc0lq7MDAn7s997oUYMwevRgzJm7DO4e67/foBCIjYnDlYs35MpPHDmD1u2boYWzk3Sft+L6YrRq3wznTl6S6TkrYybZmijw1ZenV5zwOotOvzujREkTBAdJekftG9jBvEI5bFq1/VdekrAxeQNQgJ5tWq5cOezZswdLlizBtGnTkJCQACMjI9jZ2eU6QalSpQqGDRuGPXv2YN26dTA1NcXZs2cxZMgQREVFYdmyZQCAli1bYuLEiRg0aFCeXYeamho2b94Md3d3rFq1CmFhYdDT00OVKlWkQ8Jqampwd3fH9OnTMWLECJiammLw4MG4du2a3OKMrykpKWHOnDn477//pFuoZLcLdGHw7p4/HntdQ9N/f4e2gRiRr4JRw6Uh9Eob4vC/a6X1Ov03CGb2VTC13JdVyT08x0K/nAkurzyCsnaWKGv35f/Rh7AYBFyW3Gv/Sw/l3ldDVzJU//qaL4IevvxVl1dkbN97GHEf4hEaLhl+Pu9zHSFhkqGjP1zao1gR2yMsL+3b54VrwwZg/dr/UMWqIsLDozBoUC8oKytj2vRFMnVPeu8CAFSo9GWH97JlS6FHdxcAQO1aNQAAE8ZLNlJ+/eYttm3bBwDo0KEV5s2dhOd+AfB96oc//ugsc+7Tpy8iNFR+9WRh5X34DO4OfIA5yyajQqXyiIqMxh99u0JZWQnL5skOs3ruWwkAcKrVXlq2aslGtG7fDFsOrsLmNTuhpa2J/kN64uljP+zbcVimfYeubVCyjCk0Py10qG1fE4NH9QcAHNp9FEFvgwEAOsW00fNPSe9srTrVAQA9+v+G2NgPiIuJw9b1RWsj5cJMlMEZ2pSNr5MhRVFRV0WT0S6o3skRmrraCHkaiLOL9sD/4pekq8/O/8klb1Nfb8vynK+uPsEm16znJdq4NETHRW5Y4zyxwCRv/7s9Q9Eh/LAWXXojKDjzjY9P7N2EUqaZTzEoqDRLFqzneerpiTFv7kR0aN8KmpoauHXrHv4dOwO37zyQqffiuWT1+dfJW6OG9nJz6T67cOEKmjbvCgCYPGkUJk/K+sHZTZu54MLFqz97KblmLlbcszt1xcUwduoINGvdGOoa6nh47wnmTVmCR/dl9287e1uSjH2dvAFABUtzjJ8xErXq2CA1NRXnT13G3ClLEBEWKVNvy8HVqOtYK9MYenRww40rtwEApcqY4tydzKcCvX0TJPf+ee152K1fen4ACGveKM/OZXTqQp6dK78xeaNsFYTkjSSEnLwVNgUteSvKFJm8kaz8SN5Cm+Zd8mZ8RrjJGx8uSkRERCQgBWbOGxEREVF2uNpUgskbERERCUOGSNERFAhM3oiIiEgQ2PMmwTlvRERERALCnjciIiIShIx0DpsCTN6IiIhIIDhsKsFhUyIiIiIBYc8bERERCUIGV5sCYPJGREREAsFhUwkOmxIREREJCHveiIiISBC42lSCyRsREREJQkaGoiMoGDhsSkRERCQg7HkjIiIiQeCwqQSTNyIiIhIEJm8STN6IiIhIEDjnTYJz3oiIiIgEhD1vREREJAgcNpVg8kZERESCwMdjSXDYlIiIiEhA2PNGREREgsBnm0oweSMiIiJBSOewKQAOmxIREREJCnveiIiISBC4YEGCyRsREREJArcKkeCwKREREZGAsOeNiIiIBIGPx5Jg8kZERESCwGFTCSZvREREJAjcKkSCc96IiIiIBIQ9b0RERCQI3CpEgskbERERCQIXLEhw2JSIiIhIQNjzRkRERILABQsSTN6IiIhIEDjnTYLDpkREREQCwp43IiIiEgQuWJBg8kZERESCwDlvEhw2JSIiIhIQ9rxRthaGXVF0CPTJzJINFB0CfZIYdEnRIdAn1au4KjoEykdcsCDB5I2IiIgEgcOmEkzeiIiISBC4XkGCc96IiIiIBIQ9b0RERCQIHDaVYPJGREREgsAFCxIcNiUiIiLKBX9/f/Tt2xc2NjZwdHTE/PnzkZKSkqtzbNq0CZaWlnBzc8v1+7PnjYiIiAQhXdEBAIiJiUHv3r1hZmYGd3d3hISEYO7cuUhKSsLkyZNzdI6wsDAsX74cBgYGPxQDkzciIiIShAwofth0586diI+Ph4eHB/T09AAAaWlpmDZtGtzc3GBiYvLdcyxYsABOTk4ICgr6oRg4bEpERESUQxcvXoS9vb00cQOA1q1bIz09HT4+Pt9tf+vWLZw+fRqjR4/+4RiYvBEREZEgpGfk3dePCggIgLm5uUyZrq4ujIyMEBAQkG3btLQ0zJgxA4MGDYKxsfEPx8BhUyIiIhKE9DwcNm3atGm2x8+cOZNpeWxsLHR1deXKxWIxYmJisj3n9u3bkZiYiD59+uQ4zswweSMiIiJBKAhz3n5UREQEli1bhnnz5kFNTe2nzsXkjYiIiIqcrHrWvkdXVxdxcXFy5TExMRCLxVm2W7p0KSwtLVG7dm3ExsYCAD5+/IiPHz8iNjYWWlpaUFHJWVrG5I2IiIgEoSBsFWJubi43ty0uLg5hYWFyc+G+9vLlS9y8eRN2dnZyx+zs7LB27Vo0bNgwRzEweSMiIiJBKAjDpg0bNsSqVatk5r55e3tDSUkJjo6OWbabMGGCtMfts9mzZ0NDQwOjRo2CpaVljmNg8kZERESUQ66urtiyZQuGDBkCNzc3hISEYP78+XB1dZXZ4613794ICgrCqVOnAABWVlZy59LV1YWWlhbq1q2bqxiYvBEREZEgFIRhU7FYDE9PT8yYMQNDhgyBtrY2XFxcMHLkSJl66enpSEtL+yUxiDIyMn5itxMq7HS0yis6BPok6WPunptHv05i0CVFh0CfVK/iqugQ6BPf0Bu//D2OmeTd97tNyM48O1d+4ya9RERERALCYVMiIiIShIKwYKEgYPJGREREgpDO3A0Ah02JiIiIBIU9b0RERCQIeflsUyFj8kZERESCwO0xJJi8ERERkSAUhH3eCgLOeSMiIiISEPa8ERERkSCkizjnDWDyRkRERALBOW8SHDYlIiIiEhD2vBEREZEgcMGCBJM3IiIiEgQ+YUGCw6ZEREREAsKeNyIiIhIEPmFBgskbERERCQJXm0pw2JSIiIhIQNjzRkRERILABQsSTN6IiIhIELhViITghk0PHz4MFxcX1KpVC7a2tmjdujX+97//ISIiQlrHyckJ06dPV0h8169fh6Wl5Xe/3r59C0tLS6xfv14hcRZ0YnExuHvMxqvXtxAS9hjHjm9HDRvrHLe3tLTAgUObEBz6CG/e3sXadf/B0FBfrp65eTls3bYCge/uITT8CU6e3o2GDevJ1BGJROjeowt27VmLp899EBL2GDdueuPfsUOhrq7209cqVGKxLlaumIf37x4gJsoPp0/uQU2bqjlqa1fbBu7LZuP6teNIjH+FjynvMq1XunRJTJo4Eld9vBAW8hjBQQ9x5tQeNHVqkJeXUmQkJCTCY90WuI2aCIdWXVHVsTUOHj2l6LAEoZiuDqYtHA+fJydw++UFbNq/AlWqWea4vXlFM6zZuRS3Xp7H1WenMG/5VBQ30JOrJxKJ0H9oT5y6eRD33lzCwfPb0KZTC7l6XXt0wOaDq3Dp8XHcD7yMUzcPYtbSSShZxlSurk4xbYyZPAze1/bi7uuLOHP7EGYungjTUia5ugcFQUYefgmZoHre1q5di0WLFqFPnz4YPnw4MjIy4OfnhyNHjiA0NBQGBgaKDhHW1tbYtWuX9PXjx48xffp0zJkzB+bm5tJyY2Nj7Nq1CyVLllREmAWaSCTC3v0bUK2aFZYuWYOIiCj8+WcPHPfegQaO7eHv/yrb9iVLlcCJk7sQExuHaVMWQltHC8NH/AnrqpZo1KAjUlNTAQClSpni7Ll9SEtPx9Ila5AQn4Aevbri0JHNcG7TAz4+NwAAWlqaWL1mIa5fv4P167YjLCwCderWxP8m/o3GjR3QpvUfv/qWFDgikQhHDm1G9epVsOi/lQgPj8SgQb1x5vRe1KnXGi9evMy2fevWTujfrxsePPRFwMs3sKxkkWm99u1a4J8xQ3DosDc2b9kDFRUV9OjhghPeO9F/wEh4bt79Ky6v0IqKicWqjdthamIMywrmuHn3gaJDEgSRSIRV2xfD0roiNizfiujIaHTr4wLPgyvh0qw3Xr8MzLa9iakxthxajbi4D1gyawW0tLXQ96/uqGhVAb+37IPU1I/Sun9PGIyBI/pg9+YDeHTvCZxaNcKi1TOBjAwcO/gl0baqZom3b4Jw9sRFxEbHoXTZknDp2RGNm9dHxybdERYSLo19/R4PWFiWx86N+/DK/w3Kli+Nbn27wLFJXbR1/B0J8Qm/5sbRLyPKyMgQTALasGFDODo6Ys6cOXLH0tPToaQk6Uh0cnJC48aNMXny5PwOUc7169fRq1cv7N27F9WqVVN0OLmmo1U+39+zc+e22LzVAz3++AsHDx4HABga6uPu/bM4dfI8+vX9O9v2i5dMR/ceLrC1aYa3b4MAAI2bOMLr6FYMGzoBGzfsAAD8t3g6+vZzRZ3areDnFwAA0NTUwJ17pxEeHokGju0BAKqqqrC1rYbr1+/IvM+48cMwcdIoOLftgfPnfPLyFmQq6WPKL3+PnHJxaYed21fhN9eB2L//KADJ98j38SV4nziHnr2GZtve2NgQsbEfkJSUhKVLZmLIX32holZKrl6VKpUQEhKGiIgoaZmamhpu3zoJHW1tlLewy9sLy6HEoEsKed+flZKSgti4DzA00Mcj3+dwHTACMyeMQse2zRUd2g+rXsX1l79Hq/bNsHjdbIzoNw4nvc4CAIob6OH41b24dOYq/hk8Kdv2k+f9i46/O6OtY1e8fxcCALBvaIcNe5dj8ujZ2LPlIADAuIQRTt06iD1bDmDm+IXS9lsOrUapsiXRrFYHpKdnPXBYpXpl7Du9GYtmeGCd+2YAgI1dNew4uh4zxs3H9g17pXU7uTpj9rLJGNbnX5w+dv5Hbosc39AbeXKe7Kwv3SPPztX/7dY8O1d+E9SwaWxsLIyNjTM99jlxy8rdu3fRq1cv2NjYoFatWhg9erTMUCsg+cX233//oUmTJqhatSpat26NI0eOyNQZN24cnJ2dceHCBTg7O6NatWro3Lkz7t27l+vr+XbYtGfPnnBzc4OXlxdatGiBGjVqYNCgQYiJicG7d+/Qv39/1KxZE23btsX169flzrd//360a9cO1apVQ4MGDbB48WKkpaXlOi5F69ipNUJCwnDokLe0LDw8Egf2H0Vb5+ZQU8t+qLJDh9bwPn5WmrgBwPlzPnj+PACdO7eRljk42OH+/SfSxA0AEhOTcOzoGdSsWQ0WFmYAgNTUVLnEDQCOHD4JAKhsWeGHrlPIunRui+DgUBw4cExaFh4eiT17vdC+Xcvvfo9CQ8ORlJT03fd58uS5TOIGSH5OvY+fRZkyJaGjo/1jF1BEqampwdBAfvoAZa9FOyeEhUbg1NFz0rKoiGh4Hz4Np1YNoaqmmm375s5NcP7UZWniBgBXL97Eyxev0bpDM2lZ09YNoaamih0b98m037FpH0xLmcDGLvsOgKDA9wAAXXExadnnn5Hw0EiZup975pISv/9zWJCk5+GXkAkqebO2tsbOnTuxZ88ehIWF5bjd3bt30bNnTxQrVgyLFy/GjBkz8PDhQ/z1118y9UaMGIFdu3ahb9++WL16NRo0aIB//vkHFy5ckKkXFhaGadOmoX///liyZAnU1NTQv39/uWTwRzx58gSbN2/Gv//+i2nTpuHWrVuYNGkShg8fjsaNG8Pd3R36+voYNmwY4uPjpe02btyIiRMnon79+li1ahX+/PNPbN68GYsXL/7pmPJb9RpVcO/eI3zbKXzr1n1oa2uhYsWsewNNS5rA2MQQd+48lDt2+9Z9VK/xZd6cmrpapr+4EhISAQA1a2Y/f8vYxAgAEBERmW29wsimRlXcvftQ7nt08+ZdaGtroVIl8yxa5g2TEkaIj0+Qfq+IfqUq1SrB98FTuf/vD+88gZa2JswsymbZ1riEEQyNDPD4vq/csYd3H8Oq6pd5c1ZVLREfnwD/5y/l6n0+/i294mLoGxaHdQ0rzFoq6QG8dumm9Pij+76Ij0/A8HFuqFu/NoxLGMHOvibGTBmGB3ce4+rFm3LnpIJPUHPepkyZgqFDh2LixIkAgNKlS6NJkybo06cPSpcunWW7RYsWoWrVqvDw8IBIJFlnXKlSJWkPWqNGjXDt2jWcPXsW69evR/369QEAjo6OCAsLg7u7Oxo1aiQ9X3R0NJYsWQJ7e3sAQJ06ddCoUSNs2rQJo0eP/qlr/PDhA1atWgV9fcmn42fPnmHDhg2YOnUqunXrBkAyX65du3a4evUqmjVrhg8fPmDZsmUYMGAARo0aJY1dVVUVc+fORf/+/VG8ePGfiis/lShhLJ1v9rXg4FDJcVMTPH78LMu2X9f9tr2BQXGoqakhJSUFfn4BcHCwg46ONj58+JII2zvUBgCYliyRbZwjR7ohJiYWJ0+ez9F1FSampsa4dPmaXPnn+17S1ASPHj39Je9tYWGGTh1bY+++o9kOIRHlFUMTQ9y6ek+u/HPvlXEJI/j5+mfa1sjEUKaubPsI6OmLoaqmitSUVBiZGCIiTP7D4Jf3MZQ7dv6+F9Q11AFIegNnjl+IKxe+/P6MjozB6D//h+n/TcCm/Suk5ZfOXsXf/ccJbnSGP/ESgup5q1SpEry8vLBmzRr06tULxYoVw5YtW9C+fXv4+sp/qgGAxMRE3LlzB61atUJaWho+fvyIjx8/wszMDKampnj4UNJD4+PjAz09PdSrV09a5+PHj3BwcICvr6/Mf/BixYpJE7fPrx0cHHD//v2fvsbKlStLEzcAMDMzAwA4ODjIlQUHBwOQ9CwmJCSgVatWcrEnJSXBz8/vp+PKT5qaGkhJlp/flZyU/Om4etZtNTQAIPP2ybLt163diuLFxfDc4o7qNaqgQoXymDd/Emxtq0njyMqYf/6CU9P6mDJ5PmJi4nJ4ZYWHpqYGkjO5x0mfvkca2dy7n33fnTtWIzExCRP+N/uXvAfRtzQ01JGSktnvlBTp8ezaAkBKcmom7ZNl6qhrqGfxuy/r9xnY7W8MdB2BuZOX4P27YGhqyf/sRUZEwffhMyyetQJDeo2B+/w1qFXXBrOWKn5eeG5liPLuS8gE1fMGSOZsNGrUSNoTdunSJbi5uWH58uXw8PCQqx8bG4u0tDTMmTMn04UO799L5ghERUUhOjoa1taZb0cRFhaGEiUkPTFfJ1efGRgYwN8/809euaGrqyvzWlVVMpeiWLEvcxg+zyf6/IMfFSWZE9SpU6dMz/n5GgsaVVVVFNcXy5SFh0UiMTEJaplswfH502ViYnKW50z8NI8q0/bqsu1PnbyA0aOmYNr0f3HlqmTS/YsXLzFt6iLMmj1epjfua126tMXkKaOxadMurFu77XuXKWiqqqrQ19eTKQsLi0BiYlKm26R8/uPyK+bRKCkpYfu2lahiVRHO7Xri/fuQ7zciygVVVRWIi8v+TooMj0JSUnKm8zg//wx8/tCSmc/H1NTl58V9/p30uU5yUnIWv/uyfp8bPrcBSHrSznpfwOELO5AQn4jtG/YAAEqXK4lN+1di3LCpOOUlmbN31vsi3gW+x1z3KdjvZI9LZ69mGT8VTIJL3r7VoEEDVK5cOcvEqVixYhCJRHBzc0OzZs3kjn8eThSLxdDX18eaNWsyPc/XCVtkpHy3dkREBIyMjH7kEn6aWCz5ZePh4SFNML+W3ZCyItWrZ4vjJ3bKlFWpXB/BwaHS4c+vSYdEs/mjLR1azaJ9RESUzCfo1as2Y8vmPahatTJSUlPx4P4T9O7zOwBkut1FE6f6WLNuEby9z2HEsP/l4CqFzcG+Ns6c3itTZlGxLt6/D4VpNt+joF+QWK1etQBt2zRDz95Dce78r1/dS0WPjV11bD64Sqasaa0OCA8Jh5GJ/FZUn4dEQ4OznoP9ecjzc13Z9gaIjoxBakqqtG4dx1rZvI/80OvXAl+9g++j52jn0kqavHVydYa6hhrOn7wsU/ec90UAgG2dGoJK3jhsKiGo5C08PByGhrI/AElJSXj//j0qVMh8xZ+WlhZsbGwQEBCQ7VYdDg4OWLduHVRVVVG5cuVs44iLi8PVq1elQ6dxcXG4cuUKunfvnssryhs1a9aEpqYmgoOD0by5cJb8P3zoC+e2ssu+Q0LC8PCBLxwc7SASiWQmCNvZ2SA+PgF+flnvIfY+KARhoeHSoc+v1apdAw8fPJErT0hIxI0bd6WvmzRxREJCIq5dvS1Tr7adDXbsXIU7dx6iV48hgpsr8iPuP3iClq1kt2IIDg7D/QePUd+xjtz3qE6dmoiPT8Dz5wHfnuqnzJszEX37uGLkqMnYtetQnp6b6LNnj/3Qz2WITFl4aAR8H/mhVj0buf/v1W2tkRCfiFf+b7I8Z2hwGCLCImFdw0ruWLWa1vB99Fz6+unj5+jasyMsKpWXWbRQ3VayeOrpV3Wzoq6hDrWvVr8aGOlDJBJBWVkJXw/cqqhK/vwrqyh/95wFCZM3CUElb+3atUOTJk1Qv359GBsbIyQkBFu3bkVUVBR69+6dZbt///0XvXv3xt9//422bdtCV1cXwcHBuHLlCjp37oy6devC0dERTZo0wYABAzBgwABYWloiMTERL168wOvXrzFr1izp+fT09PC///0Pw4cPR7FixbB27VpkZGRkG8OvpKuri+HDh2PBggUIDg5GnTp1oKysjMDAQJw5cwbu7u7Q1NRUSGzZiY6OzXR/tIMHjqFT5zbo0KGVdJ83A4Pi6NipDY4fOyPTc1a+vGSV18uXX355HjrkjT+6d0GpUqZ4904yZNy4sQMqVTLHco/sn2hRt64t2ndoiXVrtyE29stcNktLC+zbtx5vXr9F1y79sx0mKUyio2Nw5qz8nmb79h+FSxdndOrURrrPm4FBcbh0cYbX0VMy3yNz83IAgICA1z8Uw+hRgzB69GDMmbsM7t/5/hH9jNiYuExXX548cgat2jdF87ZNpPu86emL0bJ9U5w/eUnacwYAZcwk+xUGvvry1JBTR8+hw29tUaKkMYKDJKMD9RrYoXyFcvBcvUNa78zxixg7fSS69e0is8+ba+/OCA4Kwd2bkk2VlZWVoa2jhdhv5ttWq1kFlawscHT/SWnZK/83UFJSQqv2zXBw11FpedtPT23wfZj54i8q2ASVvA0dOhTnzp3D3LlzERkZieLFi8PS0hKbNm1CvXr1smxna2uL7du3w93dHePHj0dqaipKlCiBevXqoVy5ctJ6y5Ytw5o1a7Bjxw68e/cOxYoVQ8WKFdG5c2eZ8xkZGWHMmDGYP38+3rx5g4oVK2L9+vVyvYL5qV+/fjAxMcHGjRuxdetWqKiooGzZsmjcuLF03pxQHDhwHH9dv4OVq+ejslUF6RMWlJWVMGvmEpm6Xsckc86srb48LmnB/BXo1KkNjnlvx8rlm6Cto4URfw/Eo4dPsWXzlyHAMmVKYfNWDxw7ehohIWGwsqqI/gO649Gjp5g6ZYG0no6ONg4e9oRecTGWLFmDlq2cZGJ4GfBapueuKNi3zwvXhg3A+rX/oYpVRYSHR2HQoF5QVlbGtOmLZOqe9JY8caRCpS8/o2XLlkKP7i4AgNq1agAAJowfAQB4/eYttm2T7HPVoUMrzJs7Cc/9AuD71A9//CH7s3j69EWEhmY/lESytu89jLgP8QgNl2xtdN7nOkLCJPfwD5f2KMa98+ScOHIW9249xOxlk1DBsjyiPj1hQVlZCe7zZafabNy7HADQrHZHadnqJRvRsl1TbDqwElvW7IKWtib6DemBZ0/8sH/Hl71EQ96HYsuaneg/tCdUVFXw6K4vmrZuhNr2NTFm0CTp6motbU2cvXcE3gdPw+9ZABITElHJygKdXNvhQ2w8Vi768iHn4M6j6PdXD0xbOB5W1Szx4lkAqlSvDJfu7eHn659nG/TmF8E8VeAXE9QTFgqCcePG4dGjR/Dy8lJ0KPlCEU9YAAA9PV3MnD0B7ZybQ0NTA3duP8CECbNx95v92x77SnqFvk7eAMDKqiLmzJ0Ie4faSElJxQnvc5gwfpbMH3o9PV2sXL0AdnY2KF5cjKCgEOzfdxQL5i+XWaxQtmwpPHkqO1/ka1u37MUgt3/y4rKzVZCesAAAenpizJs7ER3at4KmpgZu3bqHf8fOwO07so9cevFcsqXI18lbo4b2cnPpPrtw4QqaNu8KAJg8aRQmT8p6+52mzVxw4WL+z9cR6hMWAKBFl94IymQrHQA4sXcTSpkK63mX+fGEBUCy8e0/U4ajaetGUNdQx6N7TzB/6jK5/dtO3zoIQDZ5A4AKluYYO/1v2NapgdTUVFw47YP5U5bKbQ0iEokwYFgv/N6rE4xMDPE6IBBrlm2C174T0jqqqioYM3kY6tSvjVJlTKGuoY6w4DBcvXgTKxdvkG7W+5lxCSMMH+uGOvVrwaSEEaKjYnD+5GUsnr0C0ZExeXaP8uMJC0vL5t0TFka8Ee4TFpi85RKTN1KUgpa8FWVCTt4Km/xK3uj78iN5W5yHydtIASdvgtrnjYiIiKioE9Sct4Jg7ty5ig6BiIioSOJqUwkmb0RERCQInOclwWFTIiIiIgFhzxsREREJQrrAn0maV5i8ERERkSBwzpsEh02JiIiIBIQ9b0RERCQIXLAgweSNiIiIBCGd6RsADpsSERERCQp73oiIiEgQuGBBgskbERERCQIHTSWYvBEREZEgsOdNgnPeiIiIiASEPW9EREQkCHzCggSTNyIiIhIEbhUiwWFTIiIiIgFhzxsREREJAvvdJJi8ERERkSBwtakEh02JiIiIBIQ9b0RERCQIBWXBgr+/P2bOnIm7d+9CW1sbHTp0wN9//w01NbUs24SGhmLTpk3w8fHBmzdvUKxYMdjZ2WHUqFEoVapUrt6fyRsREREJQkFI3WJiYtC7d2+YmZnB3d0dISEhmDt3LpKSkjB58uQs2z1+/BinTp1Cly5dUKNGDURFRWHlypXo2rUrvLy8oK+vn+MYmLwRERER5dDOnTsRHx8PDw8P6OnpAQDS0tIwbdo0uLm5wcTEJNN2tWrVwvHjx6Gi8iX1srW1RePGjXHw4EH069cvxzFwzhsREREJQnoefv2oixcvwt7eXpq4AUDr1q2Rnp4OHx+fLNvp6urKJG4AUKJECejr6yM0NDRXMTB5IyIiIkFIR0aeff2ogIAAmJuby5Tp6urCyMgIAQEBuTrXy5cvERERAQsLi1y147ApERERCUJeznlr2rRptsfPnDmTaXlsbCx0dXXlysViMWJiYnL8/hkZGZg5cyaMjY3Rtm3bHLcDmLwRERER5Tt3d3dcu3YN69atg5aWVq7aMnkjIiIiQcjLTXqz6ln7Hl1dXcTFxcmVx8TEQCwW5+gcu3fvxvLlyzFr1izY29vnOgYmb0RERCQIGQVgsxBzc3O5uW1xcXEICwuTmwuXmVOnTmHq1KkYPnw4XFxcfigGLlggIiIiyqGGDRviypUriI2NlZZ5e3tDSUkJjo6O2ba9fv06Ro0aha5du2LIkCE/HAOTNyIiIhKEgrBViKurK7S1tTFkyBBcvnwZ+/btw/z58+Hq6iqzx1vv3r3RvHlz6Wt/f38MGTIEZmZm6NChA+7duyf9evPmTa5i4LApERERCUJBeDyWWCyGp6cnZsyYgSFDhkBbWxsuLi4YOXKkTL309HSkpaVJX9+/fx9xcXGIi4tDt27dZOp26tQJc+fOzXEMooyMDMXfCSqwdLTKKzoE+iTpY4qiQ6BPEoMuKToE+qR6FVdFh0Cf+Ibe+OXv8ZfZb3l2rhWvdufZufIbe96IiIhIENjbJMHkjYiIiAShIAybFgRcsEBEREQkIOx5IyIiIkHIy016hYzJGxEREQlCQdiktyBg8kZERESCwJ43Cc55IyIiIhIQ9rxRttob2Sg6BPrkVkKgokOgT7i3WMHx4MlORYdA+YjDphJM3oiIiEgQOGwqwWFTIiIiIgFhzxsREREJQjqf6AmAyRsREREJBFM3CQ6bEhEREQkIe96IiIhIEPhsUwkmb0RERCQI3CpEgsOmRERERALCnjciIiISBO7zJsHkjYiIiASBc94kmLwRERGRIHDOmwTnvBEREREJCHveiIiISBA4502CyRsREREJQgYfjwWAw6ZEREREgsKeNyIiIhIErjaVYPJGREREgsA5bxIcNiUiIiISEPa8ERERkSBwnzcJJm9EREQkCJzzJsFhUyIiIiIBYc8bERERCQL3eZNg8kZERESCwNWmEkzeiIiISBC4YEGCc96IiIiIBIQ9b0RERCQIXG0qweSNiIiIBIELFiQ4bEpEREQkIOx5IyIiIkHgsKkEkzciIiISBK42leCwKREREZGAsOeNiIiIBCGdCxYAMHkjIiIigWDqJsFhUyIiIiIBYc8bERERCQJXm0oweSMiIiJBYPImweSNiIiIBIFPWJBg8kYFnoqaClxGdUODzo2hLdbGG9/X2L1wOx5dvp9tO1PzkmjavSUq1KwEM2tzqGmoYbjjQIS/Dcu2nXHZEph/ainUNNTwP+cxePnQPy8vR5CK6erg3ynD0bxNE2hoauDB3ceYO2Uxnjx4lqP2FhXNMH7mKNSqa4PUlFRcOOWD2ZP/Q1REtEy9QSP7oYZtVdSwtYahsQHc56+B+4I1cucrb1EOrn26oIatNayrV4a6hjqa2LbDu8D3eXG5BUYxXR2MmTwMzdo0hoamBh7efYz5U5biycOc3XfzimYYN2MkbOvWQGpKKi6e9sHcyUvk7rtIJEK/IT3g2rsLjEwM8CrgDdYs9cSxAydl6nXt0QHtXFqjfMVy0NUthtDgcNy4chvLF65D0Df3XqeYNgaN7IdmbRrBxNQYkeFRuHrxJpYvXIv370J+6r4UBgkJidiwfS8ePnmGh0+eITbuA2ZOGIWObZsrOjQSACZvuWBpafndOnPmzEHnzp3zIZrsubu7w9HREba2tooO5acNWjgcddrYw3uDF4JfBqFhVyf8u2kiZrlOxrNbvlm2q2hriVZ92+Kt31sE+b+FmbV5jt6v5+S+SE9Ly6vwBU8kEmHNjqWobF0R6z22ICoyGn/0dcHWg6vRqVlPvA4IzLa9iakxth1ei7i4D/hv1nJoa2uh3189UKmKBVxa9EZq6kdp3VET/kJoSDiePHqGhk4OWZ7Txq4aev35O148ewl/v1eoUu37P5tCIxKJsGr7YlhaV8SG5VsRHRmNbn1c4HlwJVya9cbrl9+/71sOrUZc3AcsmbUCWtpa6PtXd1S0qoDfW/aRue9/TxiMgSP6YPfmA3h07wmcWjXCotUzgYwMHDt4SlrPqpol3r4JwtkTFxEbHYfSZUvCpWdHNG5eHx2bdEdYSLg09vV7PGBhWR47N+7DK/83KFu+NLr17QLHJnXR1vF3JMQn/JobJxBRMbFYtXE7TE2MYVnBHDfvPlB0SILAYVMJJm+5sGvXLpnXv//+O3r27AlnZ2dpWdmyZfM7rEx5eHhAS0tL8MmbRY2KcOjQANtmbcLRNYcAAJf2n8e8k0vRbUIvTO08Psu2t0/dxIBqPZAUn4S2AzvkKHmr3tAG1RvWhNfqA+g0/Lc8uw4ha9W+KWrVqYFh/cbixJEzAIBjh07h5LX9GP6vG0YPmpht+0F/94WmliY6Nesh7XF5cOcxNu1bgc6u7bBrywFp3c+9Z8X1xbj+7EyW5zzrfRG1LZogPj4B/f7qUSiTt5btmsK2Tg2M6DcOJ73OAgCOHzqN41f3Yui/A/HP4EnZtnf7uw80tTTh0ryX9L4/vPsYG/YuR0dXZ+zZchAAYFzCCH0Gd8e29bsxc/xCAMCerYew5dBqjJkyHN6HzyA9PR0AMH3sfLn3OX38Avad3owOv7XBOvfNAIAatauiuq01Zoybj+0b9krrvnzxGrOXTYZDozo4fez8T90foTMyKI7zh7fB0EAfj3yfw3XACEWHJAh8woIEtwrJBRsbG5kvADA1NZUp09fXz/V5k5KS8jjSwqNOG3ukfUzD2e1fhm9Sk1NxftdpVKpVGfqmBlm2jY/5gKT4nN9bZRVl9JrSH94bvRDyOvin4i5MWrZrirDQcGkCAQBREdE4fug0mrZqBFU11ezbOzvh3KlLMkNlVy7eQMCL12jdoZlM3ZwOe8ZExyK+kPfctGjnhLDQCJw6ek5aFhURDe/Dp+HUquF373tz5yY4f+qyzH2/evEmXn5z35u2bgg1NVXs2LhPpv2OTftgWsoENnbVsn2fz8OluuJi0jIdHW0AQHhopEzdzz1zSYn8naempgZDg9z/vSACmLzlqfPnz6Nv376wt7eHra0tunbtiosXL8rU2b9/PywtLXH37l307dsXNjY2mD9f8mnWz88P3bt3R7Vq1dCiRQscPnwYf/31F3r27ClzDn9/fwwePBi1atWCjY0NBg4ciDdv3kiPfx7enT9/PiwtLWFpaYnr16//4qv/Ncysy+P9yyAkfkiUKfe/7yc5XqV8nr1X6/7toC3WwUH3PXl2zsKgSjVLPHnwTG6i8IO7j6GlrYnyFln3NpuUMIKhsQEe3ZMf3n545zGsCmGPWV6pUq0SfB88lbvvD+88gZa2Jsyyue/GJYxgaGSAx/czue93H8Oq6pf7blXVEvHxCfB//lKu3ufj39IrLoa+YXFY17DCrKWSHsBrl25Kjz+674v4+AQMH+eGuvVrw7iEEezsa2LMlGF4cOcxrl68KXdOopzIyMjIsy8h47BpHnr79i2aNGmCfv36QUlJCRcvXsTAgQPh6emJunXrytQdPXo0fv/9d7i5uUFTUxNJSUno168fdHV1sWDBAgDA8uXLERsbKzMUGxgYCFdXV1SsWBFz586VzItZtQp9+vSBt7c31NTUsGvXLrkh3QoVKuTfjchDesb6iA6Nkiv/XKZnkjefXMVGeug4rCu2z9oklygWdUYmhrh59a5c+edeFOMSRnjum/miDiMTQ5m6XwsNCUdxfT2oqqkiNSU1DyMuHAxNDHHr6j258q/vu98P3PewkAjo6Yul993IxBARYZGZ1Pv8PoZyx87f94K6hjoASW/gzPELceXCDenx6MgYjP7zf5j+3wRs2r9CWn7p7FX83X8c0jinlH4Q57xJMHnLQz169JD+Oz09HXXr1sWLFy+we/duueTN1dUVAwcOlL7etm0bIiIisGPHDpQuXRoAULVqVbRo0UImefPw8IBYLMbGjRuhri755Wlra4umTZtiz5496N69u9yQrpCpaajhYyZ/2FOTUqXH80K3cb0Q+iYE53aezpPzFSYaGupISU6RK09OSpYez7KtpuRYSkom7ZO/tGfyJk9DQz2L+5YiPZ5dWwBISZa/r9/ed/Usv79Zv8/Abn9DXV0N5pXKo71LK2hqacjViYyIgu/DZ9i2fg9ePAtA5aqV0H9IT8xaOhkjB2Q9V5WIvo/JWx4KDg7G4sWLceXKFYSFhUm7Za2treXqNm7cWOb1o0ePUKlSJWniBgClS5dG5cqVZer5+PigTZs2UFZWxsePktViurq6qFKlCh49epTHV6R4KUkpUMlkbo+qhqr0+M+qULMS6nduhNl/TBF8V/rPUFVVgbi4WKYsMjwKSUnJUFOXT5I/97wkfUriMpOUKDmmppZJe/Xvty8Ksr3vmd43SVm29/3TMTV1+Z+db+97cpbf36zf54bPbQCSnrSz3hdw+MIOJMQnYvsGyZSD0uVKYtP+lRg3bCpOeUnm7J31voh3ge8x130K9jvZ49LZq1nGT5SVovw7+mtM3vJIeno6Bg8ejLi4OAwfPhzlypWDpqYmli1bhvfv5SdhGxrKDkWEhoZmuthBX19f+kkZAKKiouDp6QlPT0+5uqqq2U9gFqLo0EgULyG/KEHPuLjkeIj8cE9udRvfC89u+CI0MASGpY0AAMX0dQEAxY2LI7akISKC5IefCpuadjWw9dBqmbImtu0QFhIOYxP5obPPQ3OhwVnvm/d56M0ok/bGJoaIiowu8r1uNnbVsfngKpmyprU6IDwkHEYm8v/3f/a+G5kYIDoyRnrfw0LCUcexVjbvk/3//cBX7+D76DnaubSSJm+dXJ2hrqGG8ycvy9Q95y2ZA2xbpwaTN/ohBWXY1N/fHzNnzsTdu3ehra2NDh064O+//870A9fXMjIysHbtWmzfvh2RkZGwsrLC+PHjcz1KxuQtj7x+/RpPnjzB8uXL0azZl5VcOV1JamxsDF9f+cnFkZGR0NbWlr4Wi8Vo1KgR/vjjD7m6X9crLF4/eYUq9tWgqaMpMxetgk0lAMCrJy+zappjhiWNYFTGGMt85DeDHbPhf4iPicef1Xtk0rJwefr4Ofp0+UumLCw0Ar6PnqN2PRuIRCKZT701bK2REJ+Il/5vvj2VVEhwGCLCIlHVxkruWDVbazx99DzvLkCgnj32Qz+XITJl4aER8H3kh1qZ3Pfqn+77q2zue+in+25dI5P7XtMavl/d96ePn6Nrz46wqFReZtFCdduqkuM5+B6pa6hD7asecgMjfYhEIigrK+Hr1FxFVfInR1lF+bvnJCqoYmJi0Lt3b5iZmcHd3R0hISGYO3cukpKSMHny5Gzbrl27FsuWLcOYMWNgaWmJbdu2oV+/fjh06BDKlCmT4xiYvOWRz71jX/d+vXv3Dnfv3oWZmdl321etWhUHDx5EYGCg9Bv49u1bPH36FLVqfflUbG9vDz8/P1SpUgXKyln/AlRVVZXpsROq68euwNmtI5z+aCHd501FTQWNujrB784zRL6PAAAYlDSEuqY6gvzf5fo91o1fAXVN2Xk9VRyqoVVfZ2ydufGHzilEsTFxuHLxhlz5iSNn0Lp9M7RwdpLu81ZcX4xW7Zvh3MlLMj1nZcxKAZD0xkjbe51Fp9+dUaKkCYKDJNtW2Dewg3mFcti0avuvvCRBiI2Jy3T15ckjZ9CqfVM0b9tEuk2Lnr4YLds3xfkc3PdTR8+hw29tUaKkMYKDQgEA9RrYoXyFcvBcvUNa78zxixg7fSS69e0i3ecNAFx7d0ZwUAju3pRsHqusrAxtHS3ExsTJxFmtZhVUsrLA0f1ftvN55f8GSkpKaNW+GQ7uOiotb9upBQDAN4dPiCD6VkHY523nzp2Ij4+Hh4cH9PT0AABpaWmYNm0a3NzcYGJikmm75ORkrF69Gv369UOfPn0AALVq1UKrVq2wfv16TJ06NccxMHnLI+bm5ihRogQWLVqE9PR0JCQkYNmyZTA2Ns5R+y5dumDVqlUYNGgQhg0bBkCyOMHQ0BAikUhab/jw4XBxcUH//v3x22+/wdDQEOHh4bhx4wZq164tXV1qbm6OM2fOoHbt2tDU1ET58uWho6OT9xf+i/nf88M1Lx/8/m8P6BqIEfLqPRq4NIFhaWOs+Xe5tN7g/0agin1V/FGuk7RMs5gWWvZpAwCoVFvSA9GidxskxMYjITYeJz2PAwAeXpJ/zJaWrqQX0/fa4yL/eCzvw2dwd+ADzFk2GRUqlf/0hIWuUFZWwrJ5ssOsnvtWAgCcarWXlq1ashGt2zfDloOrsHnNTmhpa6L/kJ54+tgP+3YclmnfoWsblCxjCs1PyXRt+5oYPKo/AODQ7qMIeivZf0+nmDZ6/ukKAKhVpzoAoEf/3xAb+wFxMXHYun73L7gT+evEkbO4d+shZi+bhAqWkvverY8LlJWV4D5ftpd4417Jz0Kz2h2lZauXbETLdk2x6cBKbFmzC1ramug3pAeePfHD/h1HpPVC3odiy5qd6D+0J1RUVfDori+atm6E2vY1MWbQJOkGvVramjh77wi8D56G37MAJCYkopKVBTq5tsOH2HisXLRees6DO4+i3189MG3heFhVs8SLZwGoUr0yXLq3h5+vf5HfoPez7XsPI+5DPELDJR9Cz/tcR0iYZJj6D5f2KKZT+EZTflZ6AZjzdvHiRdjb20sTNwBo3bo1pkyZAh8fnyyfsnTnzh18+PABrVu3lpapqamhefPmOHXqVKZtssLkLY+oqanB3d0d06dPx4gRI2BqaorBgwfj2rVrOVpIoKGhgQ0bNmDKlCkYM2YMTExM8Ndff+HgwYMoVuzL5pflypXDnj17sGTJEkybNg0JCQkwMjKCnZ2dzOO7Jk+ejNmzZ+PPP/9EUlISNm/eLLfiVShWjlqKrqP/QP3OjaCtq4PAp6+xsN8sPL3xJNt22mJt/Damu0yZ88COAICwwFBp8kbZS09Px5/dRmDs1BHo9acr1DXU8fDeE4wbNhUv/V9/t31wUAi6dxiI8TNGYvTEoUhNTcX5U5cxd8oSufluLt07oO5X86/sG9jBvoEdAOD2tXvS5E2sp4uR4wfLtO0/RLIf4ts3QYUieUtPT4dbt7/xz5Th6DHgd6hrqOPRvScYP3x6tkOmnwUHhaJXx0EYO/1vjJo4BKmpqbhw2gfzpyyVu++LZnggJjoWv/fqhE6/O+N1QCD+GTwJR/efkNZJSkzCvq2HUKd+bbRo5wR1DXWEBYfh2IGTWLl4g8yzTaOjYuDSvDeGj3VDk5YN4Nq7M6KjYrB/+xEsnr1C5tFcRdmmHfsQFBwqfX36gg9OX/ABADi3dGLylom87Hlr2rRptsfPnMn8KS8BAQHo0qWLTJmuri6MjIwQEBCQ5fk+HzM3l33aj4WFBTw9PZGUlAQNDfmV25kRZXDpRoEVHR2NZs2aoU+fPhg6dKhCYvi6J4sU61ZC9s+ypPyjLOL+5gXFgyc7FR0CfaJqmLPnR/8Ma5O864QoUTX70aiskjdra2uMGDFCZrsvAHB2dkbNmjUxY8aMTNutXLkSK1aswMOHD2XKvb29MWLECFy8eDHLIddvseetAFmzZg0MDQ1RqlQphIWFYcOGDUhLS5PL8ImIiIqivBw2zSo5EwImbwWIkpISVq5ciZCQECgrK6NGjRrw9PSEqampokMjIiJSuIKwYEFXVxdxcXFy5TExMRCLxZm0+NIuJSUFycnJ0v0WASA2NhYikSjbtt9i8laADBgwAAMGDFB0GERERJQFc3NzubltcXFxCAsLk5vP9m07AHj58qXMBvwBAQEoWbJkjue7AXwwPREREQlEekZGnn39qIYNG+LKlSuIjY2Vlnl7e0NJSQmOjo5ZtrO1tYWOjg6OH/+yWC41NRUnT55Ew4YNcxUDe96IiIhIEArCsKmrqyu2bNmCIUOGwM3NDSEhIZg/fz5cXV1lFhz07t0bQUFB0m1A1NXV4ebmBnd3d+jr66NSpUrYsWMHoqOj0b9//1zFwOSNiIiIKIfEYjE8PT0xY8YMDBkyBNra2nBxccHIkSNl6qWnpyMtLU2m7M8//0RGRgY2bNggfTzW+vXrc/V0BYBbhdB3cKuQgoNbhRQc3Cqk4OBWIQVHfmwVYmFom2fn8g+/k2fnym/seSMiIiJBKAjDpgUBPz4SERERCQh73oiIiEgQMjLSFR1CgcDkjYiIiAQhncOmAJi8ERERkUBwjaUE57wRERERCQh73oiIiEgQOGwqweSNiIiIBIHDphIcNiUiIiISEPa8ERERkSD8zAPlCxMmb0RERCQIfMKCBIdNiYiIiASEPW9EREQkCFywIMHkjYiIiASBW4VIcNiUiIiISEDY80ZERESCwGFTCSZvREREJAjcKkSCyRsREREJAnveJDjnjYiIiEhA2PNGREREgsDVphJM3oiIiEgQOGwqwWFTIiIiIgFhzxsREREJAlebSjB5IyIiIkHgg+klOGxKREREJCDseSMiIiJB4LCpBJM3IiIiEgSuNpXgsCkRERGRgLDnjYiIiASBCxYkmLwRERGRIHDYVILJGxEREQkCkzcJznkjIiIiEhD2vBEREZEgsN9NQpTBPkgiIiIiweCwKREREZGAMHkjIiIiEhAmb0REREQCwuSNiIiISECYvBEREREJCJM3IiIiIgFh8kZEREQkIEzeiIiIiASEyRsRERGRgDB5IyIiIhIQJm9EREREAsLkjYiIiEhAmLwRERERCQiTNyIionxy8+ZNxMfHZ3osPj4eN2/ezOeISIiYvBEREeWTXr16wd/fP9NjL1++RK9evfI5IhIiJm9EREVITEwMbt26hSNHjiAmJgYAkJycjPT0dAVHVjRkZGRkeSwxMREaGhr5GA0JlYqiAyD6VUJCQhASEoLk5GS5Y3Z2dgqIiEhxMjIysHjxYmzZsgWJiYkQiUTYu3cvxGIxhg4diho1amDo0KGKDrNQunfvHu7evSt9feTIEdy+fVumTnJyMs6cOQNzc/P8Do8EiMkbFTqBgYH4559/cP/+fQDyn3RFIhF8fX0VEVqRk56ejj179uDEiRMIDg6WS6RFIhFOnz6toOiKliVLlmDr1q0YO3Ys7O3t0bJlS+kxJycn7Nmzh8nbL3L58mV4eHgAkPyf37Jli1wdFRUVWFhYYMqUKfkdHgkQkzcqdCZOnIiQkBDMnj0bFhYWUFNTU3RIRdaCBQuwceNG2NnZoW7dulBVVVV0SEXWgQMHMGrUKLi6uiItLU3mWNmyZREYGKigyAq/oUOHShPjypUrY/fu3ahevbqCoyIhY/JGhc6DBw8wb948tGjRQtGhFHlHjhzBsGHDMGTIEEWHUuRFR0fDwsIi02NpaWn4+PFjPkdUND19+lTRIVAhwAULVOiYmJhASYn/tQuClJQU2NraKjoMAmBmZgYfH59Mj924cQMVK1bM54iKrtTUVOzYsQMTJkxAv3798OrVKwDAsWPHslyJSvQ1/oWjQmfkyJFYu3YtoqOjFR1KkdeuXTucPXtW0WEQgD59+mDjxo1YsmQJ/Pz8AADBwcHYtm0btmzZgj59+ig2wCIiMDAQrVq1woIFC/DmzRtcvXpVuu/bzZs3sW7dOgVHSEIgyshu3TKRQAwaNEjmta+vL+Li4mBlZYVixYrJHBOJRFi5cmV+hleknDx5Uvrv5ORkLF68GDY2NnBwcICurq5cfQ5v55+NGzfC3d0diYmJ0oU8mpqaGD58OPr27avg6IoGNzc3REZGYvXq1dDV1UXVqlWxb98+WFtb49ixY/jvv/+4iIe+i3PeqFD4dsfysmXLZnmMfq3hw4fLlQUFBeHYsWNy5Vz5m7/69u2L3377DXfu3EF0dDTEYjFq1qwp9wGHfp0bN25g0aJF0NfXl1s4YmRkhLCwMAVFRkLC5I0KhcyW3pNinDlzRtEhUDa0tbXRoEEDRYdRZCkrK2e5UW94eDi0tLTyOSISIiZvVOh4eHiga9euMDExkTsWGhqK3bt3cz+rX6hUqVLSfwcFBcHIyCjTLUI+fvyI0NDQ/AytyEtMTMTVq1fx/v17pKSkyBwTiUSc95YP7OzssHHjRjRs2FC6sEokEiEjIwO7d++Gvb29giMkIeCcNyp0rKyssGvXrkz3UXr06BG6du3Kobp8wu9FwXHjxg0MGzZM+kisb3EIO3/4+/ujW7du0NPTg5OTEzw9PdG5c2f4+fnh9evX2LNnj8y0D6LMsOeNCp3sPo+EhYVlOmmefo3svhcpKSncQDkfTZ8+HZaWlpg0aRLMzMy4YbKCWFhYYN++ffDw8ICXlxeUlZVx/vx52NvbY+HChUzcKEeYvFGh4OXlBS8vLwCSHoR58+bJTcJOSUnBo0ePuO/YL+bv7y+zV9X169cRHBwsUyc5ORlHjx5FmTJl8ju8Iuvdu3eYMGEC93MrAMqUKYN58+YpOgwSMCZvVCikpqZKV5VmZGQgMTFRbqNeNTU1dOjQAQMGDFBEiEXG8ePHZZ7juGjRokzr6erqYs6cOfkZWpFma2uLly9fwsHBQdGhENFP4pw3KnR69uyJqVOnZvkoIPq14uLiEBsbi4yMDDRr1gweHh6wsrKSqaOqqgojIyOIRCIFRVn0vHv3DiNGjMBvv/0Ge3v7TLcH0dPTy//AiphevXpleUxJSQnFihWDlZUVunTpkumiKyKAyRsR/ULv3r2DkZER57YVAHFxcfjf//6HkydPZpk0c8HCrzdkyBA8fvwYYWFhsLS0hIGBASIiIvDs2TMYGRmhbNmy8PX1RXp6OjZv3gxra2tFh0wFEJM3KhQ2btyY47rcEuHXyu1jydjbkz8GDRqEO3fuoEuXLihfvnymCxY6deqkgMiKliNHjmDNmjVYtWqVzLY6b9++xeDBg9GvXz84OTmhb9++KF68ONavX6/AaKmgYvJGhULlypVzXJdbIvxalStXztVwKL8X+cPGxgbTpk1Dhw4dFB1KkdayZUuMHj0608fCeXt7Y9GiRTh16hS8vLwwZcoU3L59WwFRUkHHBQtUKDx9+lTRIdAns2fP5ly2AsjExISPwSoA3r9/n+XPh0gkQkhICADA2NhY7vFZRJ8xeSOiPNW5c2dFh0CZGD58ONasWYNatWpBLBYrOpwiq1q1ali2bBmqVq0KU1NTafm7d+/g7u4u3dD63bt3XLBAWeKwKRVaycnJCAwMRHJystwxTgKmombQoEF48uQJPnz4ACsrK7leOJFIhJUrVyoouqLDz88P/fr1Q1RUFCpVqoTixYsjKioKz549g4GBATZu3AgLCwusXbsWSkpK6N+/v6JDpgKIyRsVOikpKZg6dSoOHz6c5bAD51nln5s3b2LXrl149epVpon0kSNHFBBV0dOzZ8/v1tmyZUs+RELJycnYu3cvHj16hLCwMBgZGaFatWro0qUL1NXVFR0eCQCHTanQWb58OXx8fDB37lyMGTMGkydPhpaWFg4fPow3b95g0qRJig6xyLh06RLc3Nxgb2+PR48eoWHDhkhKSsKdO3dQokQJ2NnZKTrEIoOJmeIlJydjwYIFaN++Pbp3767ocEjAlL5fhUhYvL29MXToULRu3RoAUL16dXTs2BEbNmxArVq1cPbsWQVHWHS4u7ujd+/eWLNmDQBgxIgR2Lx5M06cOAEVFRXUq1dPwRES5R91dXXs27cPSUlJig6FBI49b1ToBAcHo3z58lBWVoa6ujpiY2Olx9q3b49Ro0Zh2rRpCoyw6PD398fIkSOhpKQEkUiExMREAECpUqUwbNgwuLu7c+uKX2jjxo1o164dDA0Nv7sXIvc/zB81a9bEvXv3UKdOHUWHQgLG5I0KHSMjI2nCVrp0aVy/fl36PMdXr14pMLKiR11dHenp6RCJRDAyMsKbN29Qu3ZtAIC2trbcA+spb82bNw+1atWCoaHhdx+EzuQtfwwfPhxjxoyBsrIyGjVqBAMDA7mtQ7hxNX0PkzcqdOrUqYNbt27ByckJXbt2xfz58xEQEABVVVWcPn0azs7Oig6xyKhcuTJevnwJR0dH2NvbY9WqVShevDhUVFSwZMkSVKpUSdEhFmpnzpyBsbExAO6FWFC4uroCABYsWICFCxdmWocLquh7uNqUCp2wsDDpMnwA2LRpE7y9vZGcnAwHBwcMGTIEWlpaCo6yaLhw4QLevn2L7t27IyQkBIMGDZL+YSpRogQ8PDxQtWpVBUdZeFlZWWHXrl3SvcNI8fbv3//dTaz5mDL6HiZvRJRvMjIy8Pr1ayQlJcHc3JwPrP/FKleujN27dzN5IypkOGxKhVZMTAz8/Pzw/v17NGzYEGKxGMnJyVBVVYWSEhdaK4JIJIKZmZmiwyAiEjQmb1TopKenY8mSJdiyZQsSExMhEomwd+9eiMViDB06FDVq1MDQoUMVHWaR4efnhxUrVuDhw4cIDg7Grl27YG1tjcWLF8PW1haNGjVSdIiFWkBAAJSVlXNUl08eyR/cuJp+FpM3KnSWLl2KrVu3YuzYsbC3t0fLli2lx5ycnLBnzx4mb/nEx8cHbm5usLa2Rrt27WQev6SiooIdO3YwefvFxo8f/906GRkZEIlEnCifD7hxNeUFJm9U6Bw4cACjRo2Cq6ur3OOxypYti8DAQAVFVvQsWrQIbdq0wfz58/Hx40eZ5M3Kygp79uxRYHRFw6RJk1ChQgVFh0GffN64esyYMbC2tsaIESNgbW2Nd+/eoX///ty4mnKEyRsVOtHR0bCwsMj0WFpaGj5+/JjPERVdfn5+GD16NADIrbDT1dVFVFSUIsIqUqpWrcoFCwUIN66mvMBZ21TomJmZwcfHJ9NjN27cQMWKFfM5oqJLLBYjNDQ002OvXr2CkZFRPkdEpFiZbVz9GTeuppxizxsVOn369MGkSZOgoqKCVq1aAZA8MuvevXvYsmUL5syZo+AIi45mzZrB3d0dNWrUQLly5QBIeuDCwsKwfv16mfmIRIXVwYMH0ahRIxQvXpwbV1Oe4D5vVCht3LgR7u7uSExMxOf/4pqamhg+fDj69u2r4OiKjri4OPTp0wfPnj1DpUqV8OTJE1SuXBmBgYEoX748PD09oa2tregwC60bN27A2tqa91jBvt4smRtXU15g8kaFVnx8PO7evYuoqCiIxWLUrFkTxYoVU3RYRU5qaioOHz6MK1euSL8XDg4O6NChAzfpzWeRkZHw9PTE/fv3ERYWBiMjI9SoUQO9e/eGvr6+osMrtLLbLJkbV9OPYPJGRFQE3L9/HwMGDEB6ejocHBxgYGCAiIgIXLlyBQCwYcMG1KhRQ8FRFk580gXlNSZvVCg8fvw4V/W5GSkVNZ07d4a6ujrWrl0LHR0daXlcXBz+/PNPpKamYt++fQqMsPCqXLkyevXqBVNT0+/WFYlE6NOnz68PigSNyRsVCpUrV/7uw54BbkaaH9q1a5fjuiKRCIcPH/6F0dBn1atXx9KlS9GkSRO5Y2fOnMHIkSPx4MEDBURW+FWuXDnHdfn7iXKCq02pUNi8ebPM67S0NPTt2xfTpk1D+fLlFRRV0WRtbS2TSGdkZODgwYNo3LgxihcvrsDIirZy5cohNjY202NxcXEoU6ZMPkdUtHDYlPISkzcqFOrUqSPz+vOTFapWrcoh0nw2d+5cmdcfP37EwYMHMWzYMH4vFOiff/7B9OnTYWpqKvPzcv36dXh4eGDSpEkKjI6IcoPJGxH9UjkZzqZfb8GCBYiLi0Pv3r1RrFgxFC9eHFFRUYiLi4Ouri4WLlyIhQsXAuBwNlFBx+SNiKgIsLa25v5hRIUEkzcioiLg2+Fsyj9Pnz5VdAhUyDB5o0Lh261CPs95CwgIyLQ+517lPw6fFhwZGRkIDQ2FgYEBVFT4Z4BIaLhVCBUKmW0V8vm/9rcrH7kU/9fKbKsQPz8/lCtXTm73eM6tyl+XLl2Cu7s7njx5grS0NOzduxfW1taYNGkS7Ozs0L59e0WHSEQ5wI9cVCh8u1UIKc63W4UA4FyrAsDLywv//PMPWrduja5du8qsLi1Tpgz279/P5I1IINjzRkRUBLRp0wYNGzbEuHHjkJaWBmtra+zbtw/W1tY4d+4cJk6cCB8fH0WHSUQ5oKToAIiI6NcLDAxEo0aNMj2mqamJuLi4fI6IiH4Uh02pUOAjmQqOjRs35rgun+OYf4yMjBAQEAB7e3u5Y8+ePUPJkiUVEBUR/Qgmb1QoZDbPihRj3rx5Oa7L5C3/ODs7w93dHebm5tInLIhEIjx//hzr1q1Dt27dFBwhEeUU57wRERUBKSkpGDFiBM6dOwc9PT1ER0fDwMAAkZGRaNy4Mdzd3bltCJFAMHkjIipCrl27hitXriAqKgpisRgODg5wcHBQdFhElAtM3qhQio2NxYkTJ/Dy5UukpKTIHZ84caICoiq6kpOTERgYiOTkZLlj3DCZiCh3mLxRofPq1Su4uroiJSUFiYmJ0NfXR0xMDD5+/AixWAwdHR2cOXNG0WEWCSkpKZg6dSoOHz4sferFt7hhcv66ePEiHj58iODgYAwePBglS5bEzZs3UbZsWZiYmCg6PCLKAW4VQoXO3LlzUaNGDVy5cgUZGRlYs2YN7t+/jwULFkBbWxtLly5VdIhFxvLly+Hj44O5c+ciIyMDkyZNwpw5c2Bvb49SpUph1apVig6xyIiMjISrqyvc3Nywb98+7N27F1FRUQCAffv28XtBJCBM3qjQefDgAVxdXaWPYkpNTYWysjLatWuHPn36YObMmQqOsOjw9vbG0KFD0bp1awBA9erV0bFjR2zYsAG1atXC2bNnFRxh0TFr1ixERUXBy8sLJ0+exNeDLvb29rh69aoCoyOi3GDyRoVOSkoKdHR0oKSkBLFYjNDQUOmxihUr4unTpwqMrmgJDg5G+fLloaysDHV1dcTGxkqPtW/fHt7e3gqMrmi5cOEC/v77b1hYWMhtq2NqaoqQkBAFRUZEucXkjQodMzMzvHv3DgBQpUoVbN++HR8+fEBSUhJ27doFY2NjBUdYdBgZGUkTttKlS+P69evSY69evVJQVEVTWloatLS0Mj0WGxsLVVXVfI6IiH4UN/WhQqdt27bS3rURI0agf//+qFOnDkQiETIyMjB37lwFR1h01KlTB7du3YKTkxO6du2K+fPnIyAgAKqqqjh9+jScnZ0VHWKRUb16dezbty/TR2QdPXoUtra2CoiKiH4EV5tSoff+/XtcunQJSUlJqFevHipVqqTokIqMsLAwREVFSe/5pk2b4O3tjeTkZDg4OGDIkCFZ9gZR3rp79y569eqF6tWro2XLlpgzZw4GDRoEf39/XLhwAdu3b+e2LUQCweSNiKiIuHv3LhYtWoS7d+8iLS0NIpEINjY2+Pfff1GzZk1Fh0dEOcTkjQqdY8eOISgoCAMGDJA7tn79epQsWVK6+pF+raZNm2L58uWoXLmy3LHnz59j8ODB3HNPAZKSkhATEwNdXV1oamoqOhwiyiUuWKBCZ82aNdJtQr6loaGBtWvX5nNERde7d+8yfcIFIEkggoOD8zkiAiQ/ByYmJkzciASKCxao0Hn16hUqVqyY6TELCwu8fPkynyMqWpKTk5GYmCjdR+zDhw+Ijo6Wq3P69Gmu/P3FcrunIR8bRyQMTN6o0FFXV0dERESmx8LCwqCiwv/2v9LatWuxfPlyAIBIJEL//v2zrDt06ND8CqtIys0myCKRiMkbkUBwzhsVOkOHDsWbN2+wc+dOmZWMCQkJ6NatG0qXLi1NLijvPX36FL6+vsjIyMCECRMwePBglC1bVqaOqqoqLCwsYGVlpaAoiYiEi8kbFTr+/v7Sx2O1bNkSxsbGCA0NxYkTJ5CamoodO3bAwsJC0WEWCQcOHECjRo2gr6+v6FCIiAoNJm9UKL1+/RrLli3D9evXER0dDT09Pdjb22Po0KEoV66cosMjyheRkZEIDQ2VW+379OlTrFixAv7+/jA0NETv3r3h5OSkoCiJKLeYvBHRL5OUlIQVK1bgxIkTCA4OznTlqa+vrwIiKxomTpyIx48f48CBA9Kyd+/eoX379khKSoKlpSWCg4MRHR0NT09P2NnZKTBaIsopztwmol9m2rRp8PLygrOzMywsLPj8zHx2584duLi4yJRt2rQJCQkJWLt2LerXr4+kpCT07dsXa9euZfJGJBBM3qhQGDRoEMaNGwczMzMMGjQo27oikQgrV67Mp8iKtnPnzmHs2LHo0aOHokMpkkJCQuS2zTl37hysrKxQv359AJI933r06IH58+crIkQi+gFM3qhQiI+PR1pamvTfVDAoKyvDzMxM0WEUWSKRCCKRSPo6PDwcb9++Re/evWXqmZiYICoqKr/DI6IfxOSNCoUtW7Zk+m9SrG7duuHQoUPSXh7KX+XLl8eVK1ek9//cuXMQiURwdHSUqRcWFsYVwUQCwuSNioyUlJQsH5tFv4aGhgZu374NV1dX2NvbQ1dXV+a4SCRCnz59FBNcEdCzZ0+MHTsWsbGxMDQ0xI4dO1C2bFk4ODjI1Lt8+TIqVaqkoCiJKLe42pQKnYMHDyIuLg49e/YEIHkA+tChQ/H27VvUqlULS5YsgYGBgYKjLBoyeyD910QiEVeb/mJr167F1q1bERsbC2tra0yZMkVmHlxERATatWuHYcOGoVu3bgqMlIhyiskbFTrt2rWDq6srunfvDkDS+xAZGYlu3bphy5YtqF27NmbNmqXgKImIiH4Mh02p0Hn37p30CQqRkZG4ffs2Vq1ahYYNG0JfXx/z5s1TcIREREQ/TknRARDlNSUlJaSmpgIArl+/DhUVFdSrVw8AYGRkhOjoaAVGV/R8fiTZhAkT0K9fP7x69QoAcOzYMfj7+ys2OCIiAWLPGxU6lStXxvbt21GiRAls2bIF9erVky5UCAoK4ny3fBQYGIg+ffogKioKVapUwe3bt6Vbudy8eROXLl3CnDlzFBwlEZGwsOeNCp2RI0fi1q1baN++PZ4/f45hw4ZJj50+fRrVqlVTYHRFy8yZM6Gvr4/Tp09j06ZN+HqKrZ2dHW7evKnA6IiIhIk9b1To1KpVC+fOncOrV69QtmxZme0pXFxcULZsWQVGV7TcuHEDixYtgr6+vnQT5c+MjIwQFhamoMiIiISLPW9U6Fy8eBHa2tqoWrWq3L5ijRo1Qvny5RUUWdGjrKyMrBa0h4eHQ0tLK58jIiISPiZvVOgMHDgQTZo0wdKlSxEYGKjocIo0Ozs7bNy4UbqABJDs7ZaRkYHdu3fD3t5egdEREQkT93mjQsff3x979+7FkSNHEBkZidq1a6Nr165o2bIln7CQz/z9/dGtWzfo6enByckJnp6e6Ny5M/z8/PD69Wvs2bOHw9hERLnE5I0KrbS0NJw/fx779u3DxYsXoampCWdnZ3Tp0gVVq1ZVdHhFRmBgIDw8PODj44Po6GiIxWLY29tj+PDhTNyIiH4AkzcqEkJCQjBmzBjcvHkTIpEIFStWRO/evdGlSxdFh0ZERJQrTN6oUPs8hHr48GHExsaiadOmaN68OS5cuIBjx46hc+fOmD59uqLDLFTGjx+f47oikQizZ8/+hdEQERU+TN6o0ImPj8fRo0exb98+PHjwAGZmZujatSs6duwIfX19ab2DBw9i2rRpuHv3rgKjLXwqV64MbW1tlC1bNsuVpp+JRCIcOHAgnyIjIiocuM8bFTqOjo4AgBYtWuCff/5B7dq1M61XpUoVFC9ePD9DKxJsbGxw//59pKWlwdnZGW3btkWpUqUUHRYRUaHBnjcqdLZu3Yr27dvL7fFG+ScoKAhHjx6Fl5cXnj9/DhsbGzg7O6N169YyvZ9ERJR7TN6I6Jd68eIFvLy8cPz4cbx79w716tVDz5490ahRI0WHRkQkSEzeqFAKCAjAyZMnERwcjOTkZJljnCSvGMnJyVi6dCk2bdoEJycneHh4KDokIiJB4pw3KnQOHjyICRMmQF1dHSVLloSqqqrMcZFIpKDIip60tDRcvnwZx44dw5kzZ6CsrAwXFxe4uLgoOjQiIsFizxsVOi1btkSVKlUwe/ZsaGpqKjqcIunmzZvw8vKCt7c3UlJS0LRpUzg7O6N+/fpQUeFnRiKin8HfolTohIaGYurUqUzcFKRRo0aIiopCw4YNMXXqVDg5OUFdXV3RYRERFRpM3qjQqV27Np4/f86HnitISEgIVFRU4OPjgytXrmRbVyQS4fbt2/kUGRFR4cDkjQqF6Oho6b9HjRqFf/75B+rq6nB0dESxYsXk6uvp6eVfcEXM0KFDFR0CEVGhxjlvVChUrlxZZiHC5//WWS1O8PX1zZe4iIiI8hp73qhQmD17NleREhFRkcCeNyo0Xrx4gZ07d+Lt27cwNjZGy5YtpY/KIiIiKiyYvFGhcOvWLfTt2xcfP36Evr4+oqOjkZ6ejsmTJ6Nbt26KDo+IiCjPMHmjQqF3796Ijo7GqlWrYGpqig8fPmD8+PG4ceMGrl+/rujwiIiI8oySogMgygvPnz/HkCFDYGpqCgDQ0dHB2LFjERMTg/fv3ys4OiIiorzD5I0KhaioKJQoUUKm7HMiFxUVpYiQiIiIfgkmb0REREQCwjlvVChUrlwZmpqactuFJCQkyJVzV38iIhIy7vNGhQJ39ScioqKCPW9EREREAsI5b0REREQCwuSNiIiISECYvBEREREJCJM3IiIiIgFh8kZEREQkIEzeiIiIiASEyRsRERGRgDB5IyIiIhKQ/wNnTi7yEn7K5QAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
],
"source": [
"numerical_feats\n",
"sns.heatmap(df[numerical_feats].corr(), annot=True)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "53ed09ee",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 743
},
"id": "53ed09ee",
"outputId": "ff0ba15d-3149-4190-844f-9aa3111d1dae"
},
"outputs": [
{
"output_type": "error",
"ename": "KeyboardInterrupt",
"evalue": "ignored",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpairplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnumerical_feats\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdiag_kind\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'kde'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhue\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"Target\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/seaborn/axisgrid.py\u001b[0m in \u001b[0;36mpairplot\u001b[0;34m(data, hue, hue_order, palette, vars, x_vars, y_vars, kind, diag_kind, markers, height, aspect, corner, dropna, plot_kws, diag_kws, grid_kws, size)\u001b[0m\n\u001b[1;32m 2170\u001b[0m \u001b[0;31m# Add a legend\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2171\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhue\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2172\u001b[0;31m \u001b[0mgrid\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_legend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2173\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2174\u001b[0m \u001b[0mgrid\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtight_layout\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/seaborn/axisgrid.py\u001b[0m in \u001b[0;36madd_legend\u001b[0;34m(self, legend_data, title, label_order, adjust_subtitles, **kwargs)\u001b[0m\n\u001b[1;32m 188\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 189\u001b[0m \u001b[0;31m# Draw the plot to set the bounding boxes correctly\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 190\u001b[0;31m \u001b[0m_draw_figure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_figure\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 191\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 192\u001b[0m \u001b[0;31m# Calculate and set the new width of the figure so the legend fits\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/seaborn/utils.py\u001b[0m in \u001b[0;36m_draw_figure\u001b[0;34m(fig)\u001b[0m\n\u001b[1;32m 78\u001b[0m \u001b[0;34m\"\"\"Force draw of a matplotlib figure, accounting for back-compat.\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 79\u001b[0m \u001b[0;31m# See https://github.com/matplotlib/matplotlib/issues/19197 for context\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 80\u001b[0;31m \u001b[0mfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcanvas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 81\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstale\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 82\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/backends/backend_agg.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 398\u001b[0m (self.toolbar._wait_cursor_for_draw_cm() if self.toolbar\n\u001b[1;32m 399\u001b[0m else nullcontext()):\n\u001b[0;32m--> 400\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 401\u001b[0m \u001b[0;31m# A GUI class may be need to update a window using this draw, so\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 402\u001b[0m \u001b[0;31m# don't forget to call the superclass.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 93\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mwraps\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 94\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdraw_wrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 95\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 96\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_rasterizing\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 97\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstop_rasterizing\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer)\u001b[0m\n\u001b[1;32m 70\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 71\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 72\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 73\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 74\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/figure.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 3138\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3139\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpatch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3140\u001b[0;31m mimage._draw_list_compositing_images(\n\u001b[0m\u001b[1;32m 3141\u001b[0m renderer, self, artists, self.suppressComposite)\n\u001b[1;32m 3142\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/image.py\u001b[0m in \u001b[0;36m_draw_list_compositing_images\u001b[0;34m(renderer, parent, artists, suppress_composite)\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnot_composite\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhas_images\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 130\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32min\u001b[0m \u001b[0martists\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 131\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 132\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 133\u001b[0m \u001b[0;31m# Composite any adjacent images together\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer)\u001b[0m\n\u001b[1;32m 70\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 71\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 72\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 73\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 74\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 3062\u001b[0m \u001b[0m_draw_rasterized\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0martists_rasterized\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3063\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3064\u001b[0;31m mimage._draw_list_compositing_images(\n\u001b[0m\u001b[1;32m 3065\u001b[0m renderer, self, artists, self.figure.suppressComposite)\n\u001b[1;32m 3066\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/image.py\u001b[0m in \u001b[0;36m_draw_list_compositing_images\u001b[0;34m(renderer, parent, artists, suppress_composite)\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnot_composite\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhas_images\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 130\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32min\u001b[0m \u001b[0martists\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 131\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 132\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 133\u001b[0m \u001b[0;31m# Composite any adjacent images together\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer)\u001b[0m\n\u001b[1;32m 70\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 71\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 72\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 73\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 74\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/collections.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 970\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 971\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_sizes\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_sizes\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdpi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 972\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 973\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 974\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer)\u001b[0m\n\u001b[1;32m 70\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 71\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 72\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 73\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 74\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/collections.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 407\u001b[0m mpath.Path(offsets), offset_trf, tuple(facecolors[0]))\n\u001b[1;32m 408\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 409\u001b[0;31m renderer.draw_path_collection(\n\u001b[0m\u001b[1;32m 410\u001b[0m \u001b[0mgc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtransform\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfrozen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpaths\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 411\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_transforms\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moffsets\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moffset_trf\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/path.py\u001b[0m in \u001b[0;36mvertices\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 209\u001b[0m )\n\u001b[1;32m 210\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 211\u001b[0;31m \u001b[0;34m@\u001b[0m\u001b[0mproperty\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 212\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mvertices\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 213\u001b[0m \"\"\"\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Error in callback (for post_execute):\n"
]
},
{
"output_type": "error",
"ename": "KeyboardInterrupt",
"evalue": "ignored",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib_inline/backend_inline.py\u001b[0m in \u001b[0;36mflush_figures\u001b[0;34m()\u001b[0m\n\u001b[1;32m 124\u001b[0m \u001b[0;31m# ignore the tracking, just draw and close all figures\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 125\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 126\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 127\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 128\u001b[0m \u001b[0;31m# safely show traceback if in IPython, else raise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib_inline/backend_inline.py\u001b[0m in \u001b[0;36mshow\u001b[0;34m(close, block)\u001b[0m\n\u001b[1;32m 88\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 89\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mfigure_manager\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mGcf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_all_fig_managers\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 90\u001b[0;31m display(\n\u001b[0m\u001b[1;32m 91\u001b[0m \u001b[0mfigure_manager\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcanvas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 92\u001b[0m \u001b[0mmetadata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0m_fetch_figure_metadata\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfigure_manager\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcanvas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/IPython/core/display.py\u001b[0m in \u001b[0;36mdisplay\u001b[0;34m(include, exclude, metadata, transient, display_id, *objs, **kwargs)\u001b[0m\n\u001b[1;32m 318\u001b[0m \u001b[0mpublish_display_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmetadata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmetadata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 319\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 320\u001b[0;31m \u001b[0mformat_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmd_dict\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minclude\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minclude\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexclude\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mexclude\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 321\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mformat_dict\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 322\u001b[0m \u001b[0;31m# nothing to display (e.g. _ipython_display_ took over)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/IPython/core/formatters.py\u001b[0m in \u001b[0;36mformat\u001b[0;34m(self, obj, include, exclude)\u001b[0m\n\u001b[1;32m 178\u001b[0m \u001b[0mmd\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 179\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 180\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mformatter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 181\u001b[0m \u001b[0;32mexcept\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 182\u001b[0m \u001b[0;31m# FIXME: log the exception\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, obj)\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/IPython/core/formatters.py\u001b[0m in \u001b[0;36mcatch_format_error\u001b[0;34m(method, self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 222\u001b[0m \u001b[0;34m\"\"\"show traceback on failed format call\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 223\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 224\u001b[0;31m \u001b[0mr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 225\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mNotImplementedError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 226\u001b[0m \u001b[0;31m# don't warn on NotImplementedErrors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/IPython/core/formatters.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, obj)\u001b[0m\n\u001b[1;32m 339\u001b[0m \u001b[0;32mpass\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 340\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 341\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mprinter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 342\u001b[0m \u001b[0;31m# Finally look for special method names\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 343\u001b[0m \u001b[0mmethod\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_real_method\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprint_method\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/IPython/core/pylabtools.py\u001b[0m in \u001b[0;36mprint_figure\u001b[0;34m(fig, fmt, bbox_inches, base64, **kwargs)\u001b[0m\n\u001b[1;32m 149\u001b[0m \u001b[0mFigureCanvasBase\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfig\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 150\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 151\u001b[0;31m \u001b[0mfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcanvas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprint_figure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbytes_io\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 152\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbytes_io\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetvalue\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 153\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfmt\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'svg'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/backend_bases.py\u001b[0m in \u001b[0;36mprint_figure\u001b[0;34m(self, filename, dpi, facecolor, edgecolor, orientation, format, bbox_inches, pad_inches, bbox_extra_artists, backend, **kwargs)\u001b[0m\n\u001b[1;32m 2364\u001b[0m \u001b[0;31m# force the figure dpi to 72), so we need to set it again here.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2365\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mcbook\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_setattr_cm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdpi\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdpi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2366\u001b[0;31m result = print_method(\n\u001b[0m\u001b[1;32m 2367\u001b[0m \u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2368\u001b[0m \u001b[0mfacecolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mfacecolor\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/backend_bases.py\u001b[0m in \u001b[0;36m\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 2230\u001b[0m \"bbox_inches_restore\"}\n\u001b[1;32m 2231\u001b[0m \u001b[0mskip\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0moptional_kws\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minspect\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msignature\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmeth\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mparameters\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2232\u001b[0;31m print_method = functools.wraps(meth)(lambda *args, **kwargs: meth(\n\u001b[0m\u001b[1;32m 2233\u001b[0m *args, **{k: v for k, v in kwargs.items() if k not in skip}))\n\u001b[1;32m 2234\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# Let third-parties do as they see fit.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/backends/backend_agg.py\u001b[0m in \u001b[0;36mprint_png\u001b[0;34m(self, filename_or_obj, metadata, pil_kwargs)\u001b[0m\n\u001b[1;32m 507\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0mmetadata\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mincluding\u001b[0m \u001b[0mthe\u001b[0m \u001b[0mdefault\u001b[0m \u001b[0;34m'Software'\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 508\u001b[0m \"\"\"\n\u001b[0;32m--> 509\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_print_pil\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename_or_obj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"png\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpil_kwargs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmetadata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 510\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mprint_to_buffer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/backends/backend_agg.py\u001b[0m in \u001b[0;36m_print_pil\u001b[0;34m(self, filename_or_obj, fmt, pil_kwargs, metadata)\u001b[0m\n\u001b[1;32m 455\u001b[0m *pil_kwargs* and *metadata* are forwarded).\n\u001b[1;32m 456\u001b[0m \"\"\"\n\u001b[0;32m--> 457\u001b[0;31m \u001b[0mFigureCanvasAgg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 458\u001b[0m mpl.image.imsave(\n\u001b[1;32m 459\u001b[0m \u001b[0mfilename_or_obj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbuffer_rgba\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mformat\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mfmt\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0morigin\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"upper\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/backends/backend_agg.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 398\u001b[0m (self.toolbar._wait_cursor_for_draw_cm() if self.toolbar\n\u001b[1;32m 399\u001b[0m else nullcontext()):\n\u001b[0;32m--> 400\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 401\u001b[0m \u001b[0;31m# A GUI class may be need to update a window using this draw, so\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 402\u001b[0m \u001b[0;31m# don't forget to call the superclass.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 93\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mwraps\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 94\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdraw_wrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 95\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 96\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_rasterizing\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 97\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstop_rasterizing\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer)\u001b[0m\n\u001b[1;32m 70\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 71\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 72\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 73\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 74\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/figure.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 3138\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3139\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpatch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3140\u001b[0;31m mimage._draw_list_compositing_images(\n\u001b[0m\u001b[1;32m 3141\u001b[0m renderer, self, artists, self.suppressComposite)\n\u001b[1;32m 3142\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/image.py\u001b[0m in \u001b[0;36m_draw_list_compositing_images\u001b[0;34m(renderer, parent, artists, suppress_composite)\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnot_composite\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhas_images\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 130\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32min\u001b[0m \u001b[0martists\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 131\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 132\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 133\u001b[0m \u001b[0;31m# Composite any adjacent images together\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer)\u001b[0m\n\u001b[1;32m 70\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 71\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 72\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 73\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 74\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 3062\u001b[0m \u001b[0m_draw_rasterized\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0martists_rasterized\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3063\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3064\u001b[0;31m mimage._draw_list_compositing_images(\n\u001b[0m\u001b[1;32m 3065\u001b[0m renderer, self, artists, self.figure.suppressComposite)\n\u001b[1;32m 3066\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/image.py\u001b[0m in \u001b[0;36m_draw_list_compositing_images\u001b[0;34m(renderer, parent, artists, suppress_composite)\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnot_composite\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhas_images\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 130\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32min\u001b[0m \u001b[0martists\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 131\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 132\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 133\u001b[0m \u001b[0;31m# Composite any adjacent images together\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer)\u001b[0m\n\u001b[1;32m 70\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 71\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 72\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 73\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 74\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/collections.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 970\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 971\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_sizes\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_sizes\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdpi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 972\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 973\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 974\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer)\u001b[0m\n\u001b[1;32m 70\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 71\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 72\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 73\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 74\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/collections.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 407\u001b[0m mpath.Path(offsets), offset_trf, tuple(facecolors[0]))\n\u001b[1;32m 408\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 409\u001b[0;31m renderer.draw_path_collection(\n\u001b[0m\u001b[1;32m 410\u001b[0m \u001b[0mgc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtransform\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfrozen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpaths\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 411\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_transforms\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moffsets\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moffset_trf\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/matplotlib/path.py\u001b[0m in \u001b[0;36mvertices\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 209\u001b[0m )\n\u001b[1;32m 210\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 211\u001b[0;31m \u001b[0;34m@\u001b[0m\u001b[0mproperty\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 212\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mvertices\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 213\u001b[0m \"\"\"\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
"# sns.pairplot(df[numerical_feats], diag_kind='kde', hue=\"Target\")"
]
},
{
"cell_type": "markdown",
"id": "e598dbbf",
"metadata": {
"id": "e598dbbf"
},
"source": [
"#### Correlation among Numerical Features: \n",
"* Correlation matrix shows that `[PhysicalHealth]` have `positive correlation` with `Target`.\n",
"* We can see that one of our dataset features [PhysicalHealth] have high positive association with other feature [MentalHealth] compare to other numerical features, but it is not that high. \n",
"* It seems like there is no significant positve/negative correlation among the features and also with the Target"
]
},
{
"cell_type": "markdown",
"id": "b68248b5",
"metadata": {
"id": "b68248b5"
},
"source": [
"### What I noticed about Numerical Features so far:\n",
"* `BMI higher than 25 consider as Overweight`, We can observe that few people who are `OVERWEIGHTED and OBESE` have heart disease and few don't, so we created a new BMI class which was showing realistic plots so wil be using BMI class from now.\n",
"* We can also see `Healthy Sleep Hours` can also causes heart disease like the odd cases in BMI (overweighted but don't have heart disease). SleepTime is interesting as whether they follow a `good sleeping habit or not`, `some can and some cannot escape heart disease`.\n",
"* PhysicalHealth has positive correlation with Target and a positive correlation with MentalHealth, seems like we have multicollinearity in the dataset, which we can verify with OLS or VIF factor or using some other methods."
]
},
{
"cell_type": "markdown",
"id": "2598edb9",
"metadata": {
"id": "2598edb9"
},
"source": [
"## 3.2 | Categorical Feature Analysis:\n",
"\n",
"Categorical Features: \n",
"`HeartDisease`, `Smoking`, `AlcoholDrinking`, `Stroke`, `DiffWalking`, `Sex`, `AgeCategory`, `Race`, `Diabetic`, `PhysicalActivity`, `GenHealth`, `Asthma`, `KidneyDisease`, `SkinCancer`"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "db8dc908",
"metadata": {
"scrolled": true,
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "db8dc908",
"outputId": "cd2ed107-013b-4206-fe87-3b971a7e9a51"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Features which has only 2 distinct values: \n",
"['HeartDisease', 'Smoking', 'AlcoholDrinking', 'Stroke', 'DiffWalking', 'Sex', 'PhysicalActivity', 'Asthma', 'KidneyDisease', 'SkinCancer']\n",
"\n",
"Features which has more than 2 distinct values: \n",
"['AgeCategory', 'Race', 'Diabetic', 'GenHealth']\n",
"\n",
"AgeCategory --> ['55-59' '80 or older' '65-69' '75-79' '40-44' '70-74' '60-64' '50-54'\n",
" '45-49' '18-24' '35-39' '30-34' '25-29']\n",
"\n",
"Race --> ['White' 'Black' 'Asian' 'American Indian/Alaskan Native' 'Other'\n",
" 'Hispanic']\n",
"\n",
"Diabetic --> ['Yes' 'No' 'No, borderline diabetes' 'Yes (during pregnancy)']\n",
"\n",
"GenHealth --> ['Very good' 'Fair' 'Good' 'Poor' 'Excellent']\n"
]
}
],
"source": [
"# Listing down features with binary values and multiple values.\n",
"ordinal_feat = []\n",
"binary_feat = []\n",
"\n",
"[ ordinal_feat.append(i) for i in categorical_feats if df[i].nunique()>2]\n",
"[ binary_feat.append(i) for i in categorical_feats if df[i].nunique()<=2]\n",
"binary_feat, ordinal_feat\n",
"print(f\"Features which has only 2 distinct values: \\n{binary_feat}\\n\")\n",
"print(f\"Features which has more than 2 distinct values: \\n{ordinal_feat}\")\n",
"\n",
"for col in ordinal_feat:\n",
" print(f\"\\n{col} --> { df[col].unique()}\")\n",
" \n",
"# Ordering the General Health classes \n",
"list_ordering = [\"Poor\", 'Fair', 'Good', 'Very good', 'Excellent'] \n",
"order_type = CategoricalDtype(categories=list_ordering, ordered=True)\n",
"df[\"GenHealth\"] = df[\"GenHealth\"].astype(order_type) \n",
" \n",
"binary_feat.remove('HeartDisease')"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "5f151bec",
"metadata": {
"scrolled": true,
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "5f151bec",
"outputId": "cb156cb5-ab1c-478f-cfa3-82aea5229066"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/html": [
"\n",
"\n",
"\n",
"
\n",
"\n",
""
]
},
"metadata": {}
}
],
"source": [
"# Distribution of Ordinal Features with Target\n",
"for i in ordinal_feat:\n",
" plot_cat_dist_with_target(df, i)"
]
},
{
"cell_type": "markdown",
"id": "a9daa269",
"metadata": {
"id": "a9daa269"
},
"source": [
"### Observations (so far):\n",
"\n",
"1. Distribution of Smoking demonstrates that `Smokers` are more likely to get `Heart Disease`. The `actual target distribution is around ~8.5%` where as the distribution of `smokers with HeartDisease is around ~12%`, so this feature might play a good role to identify Heart Disease, which we can confirm by calculating feature importance later in this notebook.\n",
" \n",
"2. Gender Distribution - shows there are `More Male` adults that have `Heart Disease` than `Female` peers.\n",
"\n",
"3. There is `no noticeable differences` between adults with and without heart disease in being a `heavy drinker or having asthma`.\n",
"\n",
"4. Nevertheless `people with heart disease` seem to `experience stroke and difficulty while walking more than` those who don’t.\n",
"\n",
"5. People who diagnosed with and without heart disease are `comparably distinct in physical activity` distirbution, which seems like realastic as who are doing physical activity regularly are less prone to HeartDisease.\n",
"\n",
"6. There might be a strong correlation between `increasing age` and the `presence of heart disease`.\n",
"\n",
"7. `Asian and Hispanic` responders seem to have `lower heart disease` than other peers but further analysis is necessary to confirm this statement.\n",
"\n",
"8. `Adults with diabetes` seem to have `high rate of having heart diseases`.\n",
"\n",
"9. Adults who considered `Fair or Poor general health` have `higher chance` of diagnosed with `heart diseases`.\n",
"\n",
"10. Distribution shows that adults with `Kidney Disease or Skin Cancer` are `Highly Prone` to Heart disease"
]
},
{
"cell_type": "markdown",
"id": "c2db68b0",
"metadata": {
"id": "c2db68b0"
},
"source": [
"# 4 | Transforming Data"
]
},
{
"cell_type": "markdown",
"id": "659d4db6",
"metadata": {
"id": "659d4db6"
},
"source": [
"## 4.1 | Data Transformation\n",
"#### Encode Categorical Data using Dumies, and Encoders."
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "9a31f56f",
"metadata": {
"collapsed": true,
"colab": {
"base_uri": "https://localhost:8080/",
"height": 270
},
"id": "9a31f56f",
"outputId": "ea3e2bd0-034b-4a4a-aa56-5bc04d671797"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" HeartDisease Smoking AlcoholDrinking Stroke PhysicalHealth MentalHealth \\\n",
"0 No Yes No No 0.600000 0.556909 \n",
"1 No No No Yes 0.000000 0.000000 \n",
"2 No Yes No No 0.674342 0.556909 \n",
"3 No No No No 0.000000 0.000000 \n",
"4 No No No No 0.674342 0.000000 \n",
"\n",
" DiffWalking Sex AgeCategory Race Diabetic PhysicalActivity \\\n",
"0 No Female 55-59 White Yes Yes \n",
"1 No Female 80 or older White No Yes \n",
"2 No Male 65-69 White Yes Yes \n",
"3 No Female 75-79 White No No \n",
"4 Yes Female 40-44 White No Yes \n",
"\n",
" GenHealth SleepTime Asthma KidneyDisease SkinCancer BMI \n",
"0 Very good 0.250 Yes No Yes UnderWeight \n",
"1 Very good 0.500 No No No NormalWeight \n",
"2 Fair 0.625 Yes No No OverWeight \n",
"3 Good 0.375 No No Yes NormalWeight \n",
"4 Very good 0.625 No No No NormalWeight "
],
"text/html": [
"\n",
"
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
HeartDisease
\n",
"
Smoking
\n",
"
AlcoholDrinking
\n",
"
Stroke
\n",
"
PhysicalHealth
\n",
"
MentalHealth
\n",
"
DiffWalking
\n",
"
Sex
\n",
"
AgeCategory
\n",
"
Race
\n",
"
Diabetic
\n",
"
PhysicalActivity
\n",
"
GenHealth
\n",
"
SleepTime
\n",
"
Asthma
\n",
"
KidneyDisease
\n",
"
SkinCancer
\n",
"
BMI
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
No
\n",
"
Yes
\n",
"
No
\n",
"
No
\n",
"
0.600000
\n",
"
0.556909
\n",
"
No
\n",
"
Female
\n",
"
55-59
\n",
"
White
\n",
"
Yes
\n",
"
Yes
\n",
"
Very good
\n",
"
0.250
\n",
"
Yes
\n",
"
No
\n",
"
Yes
\n",
"
UnderWeight
\n",
"
\n",
"
\n",
"
1
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
Yes
\n",
"
0.000000
\n",
"
0.000000
\n",
"
No
\n",
"
Female
\n",
"
80 or older
\n",
"
White
\n",
"
No
\n",
"
Yes
\n",
"
Very good
\n",
"
0.500
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
NormalWeight
\n",
"
\n",
"
\n",
"
2
\n",
"
No
\n",
"
Yes
\n",
"
No
\n",
"
No
\n",
"
0.674342
\n",
"
0.556909
\n",
"
No
\n",
"
Male
\n",
"
65-69
\n",
"
White
\n",
"
Yes
\n",
"
Yes
\n",
"
Fair
\n",
"
0.625
\n",
"
Yes
\n",
"
No
\n",
"
No
\n",
"
OverWeight
\n",
"
\n",
"
\n",
"
3
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
0.000000
\n",
"
0.000000
\n",
"
No
\n",
"
Female
\n",
"
75-79
\n",
"
White
\n",
"
No
\n",
"
No
\n",
"
Good
\n",
"
0.375
\n",
"
No
\n",
"
No
\n",
"
Yes
\n",
"
NormalWeight
\n",
"
\n",
"
\n",
"
4
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
0.674342
\n",
"
0.000000
\n",
"
Yes
\n",
"
Female
\n",
"
40-44
\n",
"
White
\n",
"
No
\n",
"
Yes
\n",
"
Very good
\n",
"
0.625
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
NormalWeight
\n",
"
\n",
" \n",
"
\n",
"
\n",
" \n",
" \n",
" \n",
"\n",
" \n",
"
\n",
"
\n",
" "
]
},
"metadata": {},
"execution_count": 33
}
],
"source": [
"t_df = df.copy()\n",
"t_df.drop('Target',axis=1, inplace=True)\n",
"t_df.head()"
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "62aa360c",
"metadata": {
"scrolled": true,
"colab": {
"base_uri": "https://localhost:8080/",
"height": 270
},
"id": "62aa360c",
"outputId": "011a6582-4a09-4e1e-a0a9-09be755ee930"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" HeartDisease Smoking AlcoholDrinking Stroke PhysicalHealth MentalHealth \\\n",
"0 No Yes No No 0.600000 0.556909 \n",
"1 No No No Yes 0.000000 0.000000 \n",
"2 No Yes No No 0.674342 0.556909 \n",
"3 No No No No 0.000000 0.000000 \n",
"4 No No No No 0.674342 0.000000 \n",
"\n",
" DiffWalking AgeCategory Race Diabetic PhysicalActivity GenHealth \\\n",
"0 No 55-59 White Yes Yes Very good \n",
"1 No 80 or older White No Yes Very good \n",
"2 No 65-69 White Yes Yes Fair \n",
"3 No 75-79 White No No Good \n",
"4 Yes 40-44 White No Yes Very good \n",
"\n",
" SleepTime Asthma KidneyDisease SkinCancer BMI Is_Male \n",
"0 0.250 Yes No Yes UnderWeight 0 \n",
"1 0.500 No No No NormalWeight 0 \n",
"2 0.625 Yes No No OverWeight 1 \n",
"3 0.375 No No Yes NormalWeight 0 \n",
"4 0.625 No No No NormalWeight 0 "
],
"text/html": [
"\n",
"
\n",
" "
]
},
"metadata": {},
"execution_count": 37
}
],
"source": [
"#Ordinal encoding for order variableslike AgeCategory, GenHealth, BMI\n",
"\n",
"age_encoder= ce.OrdinalEncoder(cols=['AgeCategory'],return_df=True,\n",
" mapping=[{'col':'AgeCategory',\n",
" 'mapping':{'18-24':0, '25-29':1,'30-34':2,'35-39':3,'40-44':4,'45-49':5,'50-54':6,'55-59':7,'60-64':8,'65-69':9,'70-74':10,'75-79':11,'80 or older':12}}])\n",
"\n",
"\n",
"health_encoder = ce.OrdinalEncoder(cols=['GenHealth'], return_df=True, mapping=[{'col':'GenHealth',\n",
" 'mapping':{'Poor':0,'Fair':1,'Good':2,'Very good':3,'Excellent':4}}])\n",
"\n",
"BMI_encoder = ce.OrdinalEncoder(cols=['BMI'], return_df=True, mapping=[{'col':'BMI','mapping':{'UnderWeight':0,'NormalWeight':1,'OverWeight':2,'Obesity Class I':3,'Obesity Class II':4, 'Obesity Class III':5}}])\n",
"\n",
"t_df['AgeCategory'] = age_encoder.fit_transform(t_df['AgeCategory'])\n",
"t_df['GenHealth'] = health_encoder.fit_transform(t_df['GenHealth'])\n",
"t_df['BMI'] = BMI_encoder.fit_transform(t_df['BMI'])\n",
"\n",
"t_df.head()"
]
},
{
"cell_type": "markdown",
"id": "fa3a78c6",
"metadata": {
"id": "fa3a78c6"
},
"source": [
"* Why I have used Ordinal Encoder for Age, Health, BMI? \n",
" * I have categories in each feature which have ordered relationship between each categories, so OrdinalEncoder does that job by using given ordered map\n",
" \n",
"* Why OneHot Encoder for Race and Diabetic?\n",
" * As my feature values do not have any order among each other and few categories have high impact on identifying heart Disease like Diabetic-YES, White Race adults have high rate of HeartDisease... One hot encoder creates new features using feature categories and they have binary values in each feature which helps in identifying direct impact on Target but only issue with oneHotEncoder is it increase the number of features. [OneHotEncoder is not Recommender for High Cardinal Features and Ordinal Features as high cardinality increases Total number of features in the dataset]"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "f6d3d30a",
"metadata": {
"id": "f6d3d30a"
},
"outputs": [],
"source": [
"# # One Hot Encoding for vaiables with multiple values like Race, Diabetic\n",
"\n",
"encoder_race=ce.OneHotEncoder(cols='Race',handle_unknown='return_nan',return_df=True,use_cat_names=True)\n",
"encoder_diabetic = ce.OneHotEncoder(cols='Diabetic', handle_unknown='return_nan', return_df=True, use_cat_names=True)\n",
"\n",
"t_df = encoder_race.fit_transform(t_df)\n",
"t_df = encoder_diabetic.fit_transform(t_df)"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "7728754a",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 305
},
"id": "7728754a",
"outputId": "6674684b-2b69-4552-d6aa-2c3d10704284"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" HeartDisease Smoking AlcoholDrinking Stroke PhysicalHealth \\\n",
"0 0 1 0 0 0.600000 \n",
"1 0 0 0 1 0.000000 \n",
"2 0 1 0 0 0.674342 \n",
"3 0 0 0 0 0.000000 \n",
"4 0 0 0 0 0.674342 \n",
"\n",
" MentalHealth DiffWalking AgeCategory Race_White Race_Black Race_Asian \\\n",
"0 0.556909 0 7 1.0 0.0 0.0 \n",
"1 0.000000 0 12 1.0 0.0 0.0 \n",
"2 0.556909 0 9 1.0 0.0 0.0 \n",
"3 0.000000 0 11 1.0 0.0 0.0 \n",
"4 0.000000 1 4 1.0 0.0 0.0 \n",
"\n",
" Race_American Indian/Alaskan Native Race_Other Race_Hispanic \\\n",
"0 0.0 0.0 0.0 \n",
"1 0.0 0.0 0.0 \n",
"2 0.0 0.0 0.0 \n",
"3 0.0 0.0 0.0 \n",
"4 0.0 0.0 0.0 \n",
"\n",
" Diabetic_Yes Diabetic_No Diabetic_No, borderline diabetes \\\n",
"0 1.0 0.0 0.0 \n",
"1 0.0 1.0 0.0 \n",
"2 1.0 0.0 0.0 \n",
"3 0.0 1.0 0.0 \n",
"4 0.0 1.0 0.0 \n",
"\n",
" Diabetic_Yes (during pregnancy) PhysicalActivity GenHealth SleepTime \\\n",
"0 0.0 1 3 0.250 \n",
"1 0.0 1 3 0.500 \n",
"2 0.0 1 1 0.625 \n",
"3 0.0 0 2 0.375 \n",
"4 0.0 1 3 0.625 \n",
"\n",
" Asthma KidneyDisease SkinCancer BMI Is_Male \n",
"0 1 0 1 0 0 \n",
"1 0 0 0 1 0 \n",
"2 1 0 0 2 1 \n",
"3 0 0 1 1 0 \n",
"4 0 0 0 1 0 "
],
"text/html": [
"\n",
"
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
HeartDisease
\n",
"
Smoking
\n",
"
AlcoholDrinking
\n",
"
Stroke
\n",
"
PhysicalHealth
\n",
"
MentalHealth
\n",
"
DiffWalking
\n",
"
AgeCategory
\n",
"
Race_White
\n",
"
Race_Black
\n",
"
Race_Asian
\n",
"
Race_American Indian/Alaskan Native
\n",
"
Race_Other
\n",
"
Race_Hispanic
\n",
"
Diabetic_Yes
\n",
"
Diabetic_No
\n",
"
Diabetic_No, borderline diabetes
\n",
"
Diabetic_Yes (during pregnancy)
\n",
"
PhysicalActivity
\n",
"
GenHealth
\n",
"
SleepTime
\n",
"
Asthma
\n",
"
KidneyDisease
\n",
"
SkinCancer
\n",
"
BMI
\n",
"
Is_Male
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
0
\n",
"
0
\n",
"
0.600000
\n",
"
0.556909
\n",
"
0
\n",
"
7
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1
\n",
"
3
\n",
"
0.250
\n",
"
1
\n",
"
0
\n",
"
1
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
1
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0
\n",
"
12
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1
\n",
"
3
\n",
"
0.500
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
2
\n",
"
0
\n",
"
1
\n",
"
0
\n",
"
0
\n",
"
0.674342
\n",
"
0.556909
\n",
"
0
\n",
"
9
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1
\n",
"
1
\n",
"
0.625
\n",
"
1
\n",
"
0
\n",
"
0
\n",
"
2
\n",
"
1
\n",
"
\n",
"
\n",
"
3
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0
\n",
"
11
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0
\n",
"
2
\n",
"
0.375
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
1
\n",
"
0
\n",
"
\n",
"
\n",
"
4
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0.674342
\n",
"
0.000000
\n",
"
1
\n",
"
4
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1
\n",
"
3
\n",
"
0.625
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
1
\n",
"
0
\n",
"
\n",
" \n",
"
\n",
"
\n",
" \n",
" \n",
" \n",
"\n",
" \n",
"
\n",
"
\n",
" "
]
},
"metadata": {},
"execution_count": 39
}
],
"source": [
"t_df.head()"
]
},
{
"cell_type": "markdown",
"id": "f6ca15f2",
"metadata": {
"id": "f6ca15f2"
},
"source": [
"## 4.2 | Feature Importance\n",
"#### To find features which have strong correlation with our Target and to remove multicollinearity (if present in the dataset)."
]
},
{
"cell_type": "code",
"execution_count": 40,
"id": "58795650",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 952
},
"id": "58795650",
"outputId": "bd21bde0-6801-4774-b44a-17432e98fcea"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABogAAARlCAYAAACKmkVeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zN1x/H8VdChiCS2HsnIlbsPWJXlRpFjaoValVoUWp10IFWUHvPUlWj1Kb6K6WiVoTWXjGSSCIyyP39Ebl13ZsIEnp5Px+PPLjne875fr7f+0m095NzvjYGg8GAiIiIiIiIiIiIiIiIvDJsX3QAIiIiIiIiIiIiIiIi8nypQCQiIiIiIiIiIiIiIvKKUYFIRERERERERERERETkFaMCkYiIiIiIiIiIiIiIyCtGBSIREREREREREREREZFXjApEIiIiIiIiIiIiIiIirxgViERERERERERERERERF4xKhCJiIiIiIiIiIiIiIi8YlQgEhERERERERERERERecWkf9EBiIiIiIg8zMPD44n6582blx07drB//366dOnCm2++yYQJE9IouuT5+/szdepUkzY7Ozty5sxJtWrV6NmzJwULFnwhsb2MQkNDWbp0Kb/++ivnz58nIiKCTJkyUbx4cerUqUPr1q1xc3N70WE+sWHDhvHjjz+yaNEiqlSpkqbn8vHx4fLlywQFBaXpeZ7U87wHYlnie5Cc7du3ky9fvucUkYiIiIikNhWIREREROQ/5c033zRr+/PPP7lw4QIlSpTA09PT5Jirq+vzCi3FHo4zPDycI0eOsGrVKjZu3MjChQspU6bMC47Q+m3bto2hQ4cSGRmJs7MzZcqUwcXFhbCwMA4fPsyBAweYMWMGK1asoHjx4i863Bfi0qVL1K9fn8qVK7N48eIXHc5/UmJRd/z48bRq1epFh/OfVL58+SQL205OTs8tjv/CLwGIiIiIvGxUIBIRERGR/xRLH/wNGzaMCxcu0KBBA/r37/8Conoyj8Z5584d/Pz82LVrF2PGjGHNmjUvMDrrt3v3bvr374+trS3Dhg2jU6dO2NnZGY/Hxsaybt06Jk+eTEhIyAuM9L9vwYIFxMXFvegw5D+sbdu2Kp6JiIiIvKRUIBIRERERSWMZM2Zk9OjR7Nq1i+PHj3Pt2jVy5cr1osOySlFRUQwbNoz4+Hg+//xziyvO7O3tadOmDbVq1VLx4zEKFCjwokMQEREREZEXxPZFByAiIiIiktrCwsIYPXo0NWvWpFSpUrz++uusXr06yf5Xr15l3LhxNGjQgNKlS1O5cmV8fX05dOhQqsWUJ08eXFxcjOdLdPfuXWbOnEnLli3x9vbG29ubt956K8lnfxw8eJBx48bRvHlzKlWqRJkyZWjSpAlff/014eHhZv3379+Ph4cHw4YN48aNG4wYMYLatWtTsmRJFixYACSsuFm6dCmtW7emSpUqlC1bFh8fH3x9fdm4caPZnKGhoXzxxRc0atTIeL+6d+/O3r17Lcbs4eGBj48P9+/fZ9asWTRu3JhSpUpRp04dvvrqK2JjY1N8H9euXUtISAhly5a1WBx6WM6cOc2ej/K0scfGxjJ16lSaNGlCqVKleO+99wDo3LkzHh4eXLp0ifXr1/PWW2/h7e1NxYoVjXMYDAY2bNhAly5dqFSpEqVLl6Zp06b4+/tz9+7dFF97YGAgX375Ja1ataJq1aqUKlWK+vXrM2bMGIKDg036+vv7U79+fQD++OMPPDw8jF/Dhg0z9vPx8UnyuV8BAQH06dPHeC4fHx+L5wJYs2YNHh4e+Pv7c+XKFQYPHkzVqlUpU6YMrVq1YseOHSm+zkft3r2bDh064O3tTaVKlejXrx///PNPkv3/+usvBgwYYPz+r127NiNGjODKlSsm/Xx8fIzPDBs+fLjJPdq/f7/J987D4uPjqVy5Mh4eHkyePNnkWEREBCVLluT11183i+uff/5h2LBh1KlTh1KlSlG9enUGDRrE6dOnn/laIOE99/DwYM2aNQQFBdG7d28qVapEuXLl6NSpU6r+PLMkLX+WDRs2jC5dugDw448/mrxX/v7+AEm+Xw/PkfjePuxx3+NPc22XL19m9OjRNG7cmLJly1K5cmWaNWvGqFGjOHPmTMpuqIiIiMhzoBVEIiIiIvJSCQ8Pp127dkRFRVGhQgVCQ0M5ePAgI0aMwGAw0LZtW5P+AQEB+Pr6cvv2bQoXLkzdunUJCQlh7969/Prrr3z99de89tprzxxXfHw8UVFRQMIKF4Bbt27x7rvvEhQURPbs2alUqRIGg4GAgACGDRvGsWPH+Pjjj03m+fLLLzl58iQeHh5Uq1aNmJgYjh8/zuzZs9m1axcrV64kY8aMZucPCQmhTZs23L9/n/LlyxMbG0uGDBkAGDJkCL/88gsZM2akYsWKZMqUieDgYP7880+ioqJo1qyZcZ7g4GA6duzIxYsXyZMnDw0aNCAkJITff/+dvXv3Mnz4cLp27WrxHgwePJjdu3dTpUoVChcuzMGDB5kzZw7BwcF8/fXXKbqPu3fvBrD4AfzjPG3s8fHx9O3bl4MHD1KpUiU8PDyMxb5Es2bNYtWqVZQvX5569eoZi4Dx8fF88MEHbNiwAScnJ0qVKkWWLFk4duwYU6dOZc+ePSxevBhHR8fHxj9r1iy2bNmCh4cHFSpUABKKRsuXL2fbtm388MMP5MyZEwBPT08aN27ML7/8QrZs2ahVq5ZxnsSxyfnpp58YPny4MV9y587N8ePHWb58OVu3bmXRokUULVrUbNzly5dp06YNGTNmpFq1aly9epWAgAD69u3L7NmzqVmz5mPP/bDNmzezfPlySpUqRb169QgKCmLr1q3s27ePJUuWUKJECZP+S5cu5dNPPwWgdOnSVKhQgbNnz7J69Wp27NjBkiVLjHE3btyY//3vf5w8edLsOTvZsmUjX7582Nvb88cff5ic4+TJk9y+fRvA7NiBAwe4f/8+lStXNmnftm0bgwYNIjY2Fk9PT8qWLcu1a9fYtGkTO3fuZPbs2VSqVOmpr+Vhx44dY9y4ceTPn5+aNWty5swZDhw4QNeuXVm9ejXu7u4pvv8pldY/yypUqMCNGzfYu3cvBQoUMMnhR59L9zSS+x5/0mu7evUqrVq1IiwsjEKFClGnTh3u37/PlStX+P777ylXrhxFihR55phFREREUoVBREREROQ/bujQoQZ3d3fDlClTkuyzb98+g7u7u8Hd3d0waNAgQ0xMjPHY1q1bDe7u7oa6deuajImIiDDUqFHD4Onpafjpp59Mjh05csRQqVIlQ7ly5Qy3bt1KUZxTpkxJMs49e/YY3N3dDV5eXoaoqCiDwWAw9OzZ0+Du7m749NNPTeK9ceOGoVWrVgZ3d3fD7t27TebZtWuXITw83KQtJibG8PHHHxvc3d0N/v7+Sd6Xvn37GqKjo02OX7hwweDu7m6oV6+eISQkxORYdHS04dChQyZtvr6+Bnd3d4Ofn59JzAcOHDCULVvW4OnpaThx4oTJmMTzN23a1HD9+nWTc1esWNHg7u5uOH/+vNk9s6RWrVoGd3d3w4EDB1LUP7Vib9iwoeHatWtmc3bq1Mng7u5uKF26tGH//v1mx2fPnm1wd3c3dOrUyeTaY2JiDB999JHB3d3d8NVXX5mMScz3ffv2mbT//vvvhhs3bpi03b9/3+Dv729wd3c3DBs2zOTYxYsXjedOSr169Qzu7u4mbVeuXDGUKVPG4Onpadi2bZvJuT777DODu7u7oVWrViZjfvjhB+O9mjBhguH+/fvGY/Pnzze4u7sb3n777STjeFTiPXB3dzesXLnS2B4fH2/46quvDO7u7oYWLVqYjAkICDB4enoaatWqZTh69KjJse+//97g7u5uaNu2rUl74vfsDz/8YDGOjh07Gtzd3Q0XL140u55mzZqZfD8bDAbD+PHjDe7u7oZNmzYZ2y5evGgoV66coVy5cobffvvNZP7du3cbvLy8DHXq1DHJyWe5Fnd3d8PChQtNjiW+bx988IHF67Qk8T1I6t487Hn+LBs6dKjFGB53PKnvq8d9jz/ptX377bcGd3d3w7hx48zmunz5cop/1omIiIg8D9piTkREREReKpkyZeLjjz82rtIBaNCgAe7u7ly5coVLly4Z21evXs2NGzd45513eOONN0zmKV26NO+99x5RUVGsW7fuqeMJDw9n69atDB8+HICWLVuSIUMGAgMD2b17N6VLl2b48OEm8WbLlo1PPvkEgOXLl5vMV6dOHTJnzmzSZm9vz0cffUT69OmT3MrL3t6ejz/+GAcHB5P20NBQIOG38F1dXU2OOTg44O3tbXx98eJFdu7ciZOTk9k9rlixIu3bt+f+/fssXbrUYgwjR44ke/bsxtf58+c33veDBw9aHPOosLAwANzc3FLUP7Vi9/PzM67OsaRNmzZmq0bu3bvHnDlzcHJyYvLkySbXnvh+ZM+ene+//574+PjHXkPVqlXJli2bSZutrS39+vUjZ86cz7SN28NWrVpFdHQ0TZs2NW5Tl3iuIUOGkCNHDo4dO8aff/5pNjZfvnwMGjQIW9t//1ezU6dOZMmShb/++uuJthMEjFt5JbKxsWHgwIHkypWLwMBAk7yZNWsW9+/fZ+zYsZQqVcpknrZt2+Lj48Nff/3FiRMnUnz+xPf04ZVC+/fvJ2PGjLzzzjvExcUREBBgPJbY7+FcWLhwIVFRUQwePJjq1aubzF+7dm3at2/P1atXjavjnvVaypcvb9yOLVGfPn2AlH+fPezR7fce3drtef8sSyuWvsef5tpCQkIAqFatmtk58uTJo+d+iYiIyH+KtpgTERERkZeKl5eXWaEDoFChQpw6dYobN24Yn0vz22+/AdCwYUOLcyVuY3TkyJEnimHq1KnGZ5s8rFatWnz00UcAxmfeNGjQwOTD9EQlS5bEycmJo0ePmh0LDg5mx44dnDlzhsjISAwGAwB2dnacO3fOYkxeXl4WCxxFihTBycmJ3bt3M2fOHJo3b55kISSxIFCrVi2zLdYAWrRowfz58y1+CG1nZ0eVKlXM2gsVKgTAjRs3LJ4ztTxL7DY2Nvj4+CQ7v6XjJ06cIDQ0lBo1apgVdgAcHR3x8vJi165dnDt3LkXbToWGhrJjxw5Onz5NeHi4sbB07949wsLCCAsLs3h9TyLxHjRv3tzsmL29PU2aNGHRokX8+eefZtvVVa5c2eRDdID06dOTL18+jh8/TlhYGDly5EhxLA9vb5jIzs6Oxo0bs3DhQv78808qVqxIfHw8v//+OxkyZEhyG7uKFSuyY8cOjhw5QsmSJVN0/sRt3/744w9atWpFfHy88boTCwD79++nevXqREREEBgYSLFixUwKmI/7OVOxYkUWL17MkSNHaNiw4TNfS40aNcz6u7q64uLiwvXr11N03Q97dPu9RIlbuz3vn2VpIanv8ae5Ni8vLwAmT55MunTpqF69ullhXkREROS/QgUiEREREXmp5MqVy2J74rMsHl7BcPnyZQA6dOiQ7JyJq2xSqkSJEsYPT+3t7cmRIwdVq1alYsWKZueePHmy2YPuH/boiov58+czceJE4uLiniim3LlzW2zPlCkTn3zyCR9//DFfffUVX331FYUKFaJKlSq0aNHCpACQ+OFy3rx5Lc6V2B4cHGx2LFu2bKRLl86s3dL7khwXFxeCg4MJCQl5oud4PEvsWbNmNSt6PMrS/U1crfbbb7/h4eGR7PiU5NiGDRv4+OOPjc+ysuTOnTvPXCB6lnv1JN9/KZEnT55kY0iMNTQ01HhfHl1x86gn+X729vY2eQ5R4vOHqlSpQr58+cibN6/x2IEDB4iPjzdbSZb4vV67du0UxfWs15Lce5C4Au9JtG3bllatWiV5/Hn/LEsLSX2PP821tWrVit9++41NmzbRu3dvHBwcKF26NLVq1aJ169YmKwlFREREXjQViERERETkpWLpt7yTkrj6onHjxjg5OSXZ70kfKN6gQQP69++fonNXqFAhxVsOHT58mAkTJpA5c2Y++eQTKleuTPbs2Y0fbNasWTPJlTjJ/Qb766+/TvXq1dm+fTt79+7lwIEDrFy5kpUrV/Luu+8ybNiwFMVnY2OT5LEneV+S4+npSXBwMCdOnDApuD2r5GJPyW//W+qTuBqiYMGClC9fPtnxjyvqXL582fg+fPTRR9StW5ecOXPi6OgIQPv27QkICDCeMy09j/f5SSV+Pzk5OdG4ceNk+xYvXjzF8zo6OlKmTBkOHjzIpUuXzLaQq1y5Mhs2bODu3bvGY4mrjh6N7c0330z2XGXLlk2Va3ne78Hz/ln2rHFaktT3+NNcW7p06fjmm2/o1asX27dvZ9++ffz1118cPHiQWbNmMWfOnMf+PBARERF5XlQgEhEREZFXVq5cuTh79iy9evV67G/qp8W5IaGY1K1btxSN2bp1KwCDBg0y+7A5OjqamzdvPnU8bm5utG3blrZt22IwGPj1118ZNGgQ8+fPp3Xr1hQvXty4NdiVK1cszpH42/bJPavnWdWpU4ddu3axceNGs+esJOdFxJ44V5EiRZgwYcIzzbV7927i4uLo1q0b77zzjtnxixcvPtP8D8uRIwdnz57lypUrFgsQz+N9TpTU+5XYnvi+urq64uDggK2tLePHj0+2iPWkKlWqxMGDB/njjz/Yv38/mTJlMm4jVrlyZX788UcCAgKMBaJHt1LMlSsXFy5cYOjQoRa3v3xUWl5LWviv/Cyzs7MDSHKF3dWrV594zqe5tkQlS5akZMmS9O/fn8jISPz9/VmwYAGff/45q1evfuJYRERERNLCi/n1LhERERGR/4DEB8Ynflj5PCU+J+RJzh0eHg5Y/mB+8+bNqbZ6xMbGhtq1a1O3bl0ATp8+Dfz7TKZff/3VGMvDfvrpJ4BUXdnzqJYtW+Lm5sbhw4f58ccfk+0bHBxs3ObtRcRepkwZMmfOzB9//PFUW3s9LDFmS9uHHThwwOIH6okfmN+7d++JzpV4DzZs2GB2LDY2ls2bNwOYPX8oLWzatMms7d69e2zZssUkhvTp01O5cmUiIyP5/fffUzx/4j26f/9+kn0SCz779u0zPvMocbvExJVE27dvJzAwkKJFi5I1a1aT8Yk/Z7Zt25aimJ72Wl6U5/Wz7HH5nLh129mzZ82OhYWFceLEiRTHl+hprs2STJkyMXjwYGxsbIw/T0VERET+C1QgEhEREZFXVvv27cmaNStz585l5cqVZlsQ3bt3j19//ZVTp06l+rnLli1LjRo1OHToEGPHjiUyMtKsz8mTJ9mzZ4/xdaFChQBYvXq1yXM7/v77b77++uuniuPEiRNs2bLF7PkgYWFh/PXXX8C/z9fJnz8/devW5c6dO3z22WcmMQQEBLBixQrSpUtHx44dnyqWlHBycmLChAnY2toycuRIFixYYPYMk3v37rF27Vpat25tXO3yImK3t7enR48e3Llzh/79+1tc5RMcHMzatWsfO1fie79u3TqTFRLBwcGMHj3a4hhXV1fs7Oy4ePFisgWQR7Vp0wZHR0d+/vlndu3aZWyPj49n8uTJBAcH4+Xl9VwKRH/++afZagt/f3+uXLmCh4eHSUGvd+/e2NraMnz4cPbv32821507d1i9ejXR0dHGtsQVSGfOnEkyBm9vb+zs7Ni8eTO3b982ecZQ4nOIVq1aRXx8vNn2cgDdunXD0dGRL774wljYelhi0e3atWvPdC0vyvP6WZb4XlkqAEHC93iePHk4deqUSTEuKiqKUaNGWYwrLa5t7dq1Fv/N2LNnDwaDIclnRImIiIi8CNpiTkREREReWc7OzkyfPp3evXszatQovvvuO4oXL46zszM3b97kxIkThIeHM23aNNzd3VP9/F999RU9evRg2bJlbNiwgRIlSpAjRw4iIyMJCgri6tWrdOnSxfhw+1atWjF//nx27txJkyZNKF26NLdv3+bAgQPUr1+fo0ePGgsiKXXlyhX69+9P5syZKVWqFNmyZSMiIoIDBw5w584d6tWrh7e3t7H/uHHjePvtt1m7di0HDhygXLlyhISE8Mcff3D//n2GDRuGp6dnqt6nR9WpU4cpU6YwdOhQxo8fz7Rp0yhbtixZsmQhLCyMI0eOEB4ejrOzs8lqjhcRe69evThz5gw//fQTTZs2pWTJkuTLl4+4uDjOnj3L33//jYeHBy1btkx2Hh8fH4oXL86xY8do1KgR5cuXJyYmhv3791OiRAm8vb0JCAgwGWNvb0/NmjXZuXMnLVq0oGTJktjZ2VG+fHlat26d5Lny5MnD2LFjGT58OL1796Z8+fLkzp2b48ePc/bsWbJly8ZXX32VGrfnsTp06MDIkSNZuXIlBQoUICgoiNOnT5MpUyazbfsqVqzIqFGj+OSTT+jSpQvu7u4UKlSI9OnTc/nyZQIDA4mNjaVRo0bGZzfVqFEDBwcHFi5cyOnTp8mRIwc2NjZ0797d+OwxR0dHSpcuzaFDhwBMCkSJrxNXsz26vRwkPINq4sSJDBkyhP79+1OwYEGKFCmCk5OT8XlaUVFRrF271lg8eJpreZGex8+yfPny4eHhwbFjx2jTpg3FixfH1tYWHx8f6tevD0Dfvn0ZMWIEAwYMoGLFijg5OXH06FEyZcpE/fr12b59e5pf25YtWxg6dCgFChTA3d0dR0dHLl26xF9//YWtrS3vv//+s91sERERkVSkApGIiIiIvNLKlSvH+vXrWbBgAbt37+bAgQNAwnZFlSpVomHDhlSrVi1Nzp01a1ZWrFjB999/z8aNGwkMDCQgIIBs2bKRP39+OnfuTLNmzYz9XV1dWb16NV999RUHDhxgx44d5MuXjwEDBtC9e3caNmz4xDGULVuW999/n3379nH27FkOHjxIlixZ8PDwoE2bNrzxxhsm/XPmzMnq1auZNWsW27ZtY8uWLWTIkIFq1arx7rvvUrNmzWe+LynRsGFDKlSowLJly9izZw9Hjx4lMjKSTJky4eHhQb169WjdujUuLi4vNHZbW1u+/PJLGjduzPfff8/Ro0c5ceIEzs7O5MqVi+7du/Paa689dh57e3uWLl3K5MmT2bNnDzt37iRnzpx06tSJvn370qtXL4vjPvvsM7744gv+97//sWHDBu7fv8/9+/eTLRBBwlZ+BQoUYNasWQQEBHDkyBGyZ89Ohw4d6NOnz3N5/hBA06ZNqVOnDjNnzmT79u2kT5+e+vXr4+fnR7Fixcz6d+jQgXLlyrFw4UL++OMPdu7cSYYMGciZMyfNmzenUaNGZM6c2dg/Z86cTJ8+nWnTpvHnn38aV2e98cYbxgIRJBSBDh06RObMmSlZsqTJOR8uEFlaQQQJz7BZt24d8+fP53//+x//+9//SJ8+PTly5KBevXo0bNiQokWLPtO1vEjP62eZv78/X375JQcPHuT48ePEx8eTK1cuY4GoTZs22NraMn/+fA4dOkSWLFmoV68egwcP5osvvngu1/buu++SK1cuDh06xMGDB7l79y45cuTgtdde491336V06dJPFYeIiIhIWrAxpNZG5SIiIiIiIiIiIiIiImIV9AwiERERERERERERERGRV4wKRCIiIiIiIiIiIiIiIq8YFYhEREREREREREREREReMSoQiYiIiIiIiIiIiIiIvGJUIBIREREREREREREREXnFqEAkIiIiIiIiIiIiIiLyilGBSERERERERERERERE5BWjApGIiIiIiIiIiIiIiMgrRgUiERERERERERERERGRV4wKRCIiIiIiIiIiIiIiIq8YFYhEREREREREREREREQsOH/+PKNGjaJFixaULFmS119/PUXjDAYDs2bNom7dupQpU4Z27dpx+PBhs37BwcH0798fb29vKleuzIgRI4iMjEzlq7BMBSIRERERERERERERERELTp8+ze7duylYsCBFixZN8bjZs2czZcoUunbtysyZM8mePTvdunXj4sWLxj5xcXH06NGDc+fOMXHiRMaMGcPevXsZPHhwWlyKmfTP5SwiIiIiIiIiIiIiIiJWxsfHhwYNGgAwbNgwjh079tgxMTExzJw5k27dutG1a1cAKlSoQJMmTZg7dy5jxowB4JdffuH06dP8/PPPFClSBABnZ2e6d+/OkSNHKFOmTJpcUyKtIBIREREREREREREREbHA1vbJyyiHDh0iMjKSpk2bGtvs7e1p2LAhe/bsMbbt2bMHDw8PY3EIoEaNGri4uLB79+5nCzwFVCASERERERERERERERFJJWfOnAEwKfwAFC1alCtXrhAdHW3s92gfGxsbChcubJwjLWmLOREREREREREREREReanVr18/2ePbt29PtXOFh4djb2+Pg4ODSbuzszMGg4Hbt2/j6OhIeHg4mTNnNhufJUsWbt++nWrxJEUFIhEREREREREREREReWY2tbxfdAhJ8rF3e9Eh/OdoizkRkScUFRXFn3/+SVRU1IsOJcWsMWawzrgV8/NjjXEr5ufHGuNWzM+HNcYM1hm3Yn5+rDFuxfz8WGPcivn5sca4FfPzYY0xg/XGLc/H9u3bk/1KTc7OzsTGxhITE2PSHh4ejo2NDVmyZDH2i4yMNBt/+/ZtY5+0pAKRiIiIiIiIiIiIiIhIKkl8rtDZs2dN2s+cOUOePHlwdHQ09nv0WUMGg4GzZ8+aPZsoLahAJCIiIiIiIiIiIiIiz87W9r/79RyVL1+eTJkysWnTJmNbXFwcW7ZsoXbt2sa22rVrc/LkSc6dO2ds+/333wkLC6NOnTppHqeeQSQiIiIiIiIiIiIiImLB3bt32b17NwCXL18mMjKSzZs3A1C5cmXc3Nx45513uHLlClu3bgXAwcEBX19f/P39cXNzw93dneXLlxMWFkb37t2Nczdu3JiZM2fSv39//Pz8uHv3Ll9++SV169alTJkyaX5tKhCJiIiIiIiIiIiIiIhYcOvWLQYOHGjSlvh60aJFVKlShfj4eO7fv2/Sp2fPnhgMBubNm0dISAienp7MnTuX/PnzG/vY2dkxZ84cPv30U/z8/EifPj0NGzbko48+SvsLQwUiERERERERERERERFJDTYv31Nt8uXLR1BQULJ9Fi9ebNZmY2ODr68vvr6+yY7NmTMn/v7+zxTj03r53i2RVODv74+3t/cTH0srCxYsMC5jfFjnzp3x8PDAw8ODkiVLUqVKFdq3b8+0adMIDQ016Xvp0iU8PDyMyx9FRERERERERERE5NWlFUQiVmDRokXUrVvX4oPJypcvz9ChQ4mPj+f27dsEBASwaNEili9fzpw5cyhRogQAOXLkYOXKlRQqVOg5Ry8iIiIiIiIiIiIi/zUqEIn8h0VHR+Po6JhsH2dnZ8qVK2d8Xa9ePdq3b89bb73F+++/z88//4ytrS329vYm/URERERERERERERSla3Ni45AnoC2mBN5RrGxsUyaNIl69epRqlQpmjZtyvr16036BAQE0Lt3b2rWrEm5cuVo0aIFa9euNemzf/9+PDw82LVrFwMGDKB8+fIMHDgQHx8fLl++zNKlS43bya1ZsybZmPLkyUOfPn04e/Ys//vf/wDLW8xt376dVq1a4e3tTcWKFWnVqpXZVnZr1qyhefPmlC5dmlq1ajF58mSTB65dv36d4cOHU79+fcqUKUOjRo2YNGkSsbGxJvOsXr2aZs2aUaZMGapUqUKHDh04cuSI8bjBYGDu3Lk0btyYUqVKUb9+fRYsWPDY+y8iIiIiIiIiIiIiT04riESSce/ePbO2+Ph4k9cDBw7k0KFD9O3bl6JFi7J7924++OADnJ2djVvCXblyhfLly9OhQwfs7e05dOgQI0eOxGAw8Oabb5rM9/HHH/PGG28wbdo0bG1tyZw5M7169aJ8+fJ069YNgAIFCjw29po1awJw+PBh498fduHCBQYOHEizZs0YPHgw8fHxnDx5ktu3bxv7zJ8/n6+++op33nmHYcOG8c8//xgLREOGDAEgNDQUFxcXhg8fjrOzM+fOncPf358bN24wfvx4AA4cOMCIESPo1q0bderUITo6miNHjhAREWE812effcaqVavo3bs3ZcuW5dChQ3z99dc4ODjQoUOHx16viIiIiIiIiIiIiKScCkQiSYiKisLLy8viMScnJwD27dvHjh07mDt3rrEIU6NGDW7cuIG/v7+xQNSsWTPjWIPBQKVKlQgODmblypVmBSIfHx8++OADkzZ7e3uyZcv2RFvE5c6dG4AbN25YPH7ixAni4uL4+OOPyZQpEwC1atUyHo+MjGTKlCn06NEDPz8/47XZ2dkxYcIEunfvjqurKx4eHgwdOtQ4rnz58mTIkIFhw4YxatQoMmTIwJEjR3BxcTHpV7duXePfL1y4wJIlSxg7dizt2rUDoHr16kRHRzNt2jTatWuHra0WPIqIiIiIiIiIiPyn6TM8q6ICkUgSHB0dWbJkiVn7999/z4YNGwD47bffcHFxoWrVqiarjapXr86YMWO4f/8+6dKl4/bt2/j7+7N9+3aCg4ONW7S5uLiYzf9w4eRZGAwGAGxsLO/76eHhQbp06RgyZAhvvfUWlSpVInPmzMbjAQEBREVF0aRJE7Nri46O5vTp01SuXBmDwcDChQv5/vvvuXTpEjExMca+Fy9exN3dnZIlSxIWFsawYcNo3ry5sYiUKHEbvEaNGpmda/bs2Vy9epW8efM+1X2Iiop6qnHJuXv3rsmfqSmx+JjacVtjzJB2cVtjzKD8eJTyw5Tyw5Tyw5Ty41/WGDMopx+l/DCl/DCl/DCl/DCl/DCl/DCl/PiXNcYMaZ/TIi8bFYhEkmBra0vp0qXN2nft2mX8e2hoKGFhYUmuNLpx4wa5cuVi2LBhBAQE0LdvX4oVK0amTJlYvnw5mzZtMhuTNWvWVIn/2rVrAGTLls3i8cKFCzNjxgxmzpxJv379sLW1pWbNmowaNYo8efIQGhoKYLbCKdHVq1cBWLhwIV988QU9evSgSpUqODs7c/ToUcaNG2csFlWrVo0vv/ySRYsW0b17dxwcHGjcuDEfffQRLi4uhIaGYjAYqFq1apLnetoCUWBg4FONS4lz586l+pwVKlQA0i5ua4wZUj9ua4wZlB9JUX4kUH5YpvxIoPwwZ40xg3I6kfLDMuVHAuWHZcqPBMoPy5QfCZQf5qwxZki7nBZ52ahAJPIMsmTJgpubG7NmzbJ43M3NjZiYGHbt2sWwYcPo3Lmz8diyZcssjklqxc+T2rt3L5Cw5VtSateuTe3atYmMjGTPnj2MHz+e4cOHs3DhQrJkyQLA1KlTyZUrl9nYfPnyAbB582Z8fHwYPHiw8dg///xj1r9Fixa0aNGCkJAQtm/fzvjx40mfPj2ff/45WbJkwcbGhmXLlmFnZ2c2tnDhwk928Q/x9PR86rFJuXv3LufOnaNQoUImK6FSU2rHbY0xQ9rHbY0xg/IjkfLDMuVHAuWHZcoP64wZlNNJUX4kUH5YpvxIoPywTPmRQPlhmfLDOmOG5xO3PIaNtpizJioQiTyD6tWrM2fOHOzs7ChRooTFPhEREcTHx5sUPiIjI9mxY0eKz2NnZ2eyddvjXLlyhenTp1OsWLEkV+U8LFOmTLz22mscOXLEuH2et7c3GTJk4Nq1azRs2DDJsdHR0WZFnfXr1yfZ383NjbZt27Jnzx7OnDkDJKwwAggLC8PHx+ex8T6JtFwCnCFDhjSbP63mtcaYIe3itsaYQfnxKOWHKeWHKeWHKeXHv6wxZlBOP0r5YUr5YUr5YUr5YUr5YUr5YUr58S9rjBnSNm6Rl4kKRCLPoEaNGtSrV48ePXrQo0cPPDw8uHv3Ln///Tfnz5/ns88+I3PmzJQuXZrZs2fj5uZG+vTpmTVrFpkyZSIkJCRF5ylSpAj79u3jt99+w9nZmXz58uHq6gpAeHg4hw8fxmAwcPv2bQICAlixYgV2dnZMnjwZ2yQeDLdixQoOHz5MrVq1yJ49O5cuXWLdunXUqFEDAGdnZwYMGMBXX33FtWvXqFy5MunSpePixYts374df39/MmTIQPXq1Vm0aBFLliyhUKFCrFu3jvPnz5uca8qUKYSFhVG5cmWyZs3KqVOn+PXXX+natSuQsEKoY8eOfPjhh3Tv3p2yZcsSFxfHuXPn2L9/P9OnT3/Kd0hERERERERERERELFGBSOQZTZkyhVmzZrF8+XIuX75M5syZKV68OK1atTL2mThxIqNGjWLYsGG4uLjQuXNnoqKimDdvXorO4efnx5gxY+jfvz937txh/PjxxvkPHTpEu3btsLW1JXPmzBQuXJguXbrw9ttvG4tIlnh4eLBz507Gjx9PWFgY2bNnp1mzZgwcONDYp1u3buTMmZP58+ezZMkS0qdPT4ECBahbt65x1VDfvn0JDQ1lypQpADRu3JiRI0fSu3dv4zylS5dm4cKFbNq0icjISHLlykX37t3p06ePsc/IkSMpXLgwK1euZNq0aWTMmJHChQvTpEmTFN0jERERERERERERecGS+GV1+W9SgUjEgv79+9O/f/8UHbO3t6dfv37069cvyfkKFizIwoULLc6VqEqVKgQFBVkcX7x4cZYuXWrWvnjx4iTP+ah8+fKZzO/t7c3MmTMfO65Zs2Y0a9YsyeMZM2Zk/PjxZu0Pn6tevXrUq1cv2fPY2NjQqVMnOnXq9NiYREREREREREREROTZqJwnIiIiIiIiIiIiIiLyitEKIhEREREREREREREReXbaYs6q6N0SERERERERERERERF5xahAJCIiIiIiIiIiIiIi8orRFnMiIiIiIiIiIiIiIvLsbGxedATyBLSCSERERERERERERERE5BWjApGIiIiIiIiIiIiIiMgrRlvMiYiIiIiIiIiIiIjIs7PVmhRrYmMwGAwvOggREREREREREREREbFuNq/Xe9EhJMmwYeeLDuE/R+U8ERERERERERERERGRV4y2mBORl9qZsJAXHcITKeLilibzRkVFERgYiKenJ05OTmlyjrRgjXEr5ufHGuNWzM+PNcatmJ8Pa4wZrDNuxfz8WGPcivn5sca4FfPzY41xK+bnwxpjBuuN+6ViozUp1kTvloiIiIiIiIiIiIiIyCtGBSIREREREREREREREZFXjLaYExERERERERERERGRZ2erNSnWRO+WiIiIiIiIiIiIiIjIK0YFIhERERERERERERERkVeMtpgTkVdSbGwsi2fNZsemzURGhFO4WDG6+PpSvkrlZMddOn+ejWt+JOj4cf4OOkVcbCwLflxDzjy5zfru3rqN/Xv3EnTsOFcuXaJ0eW++/G56Wl2SiIiIiIiIiIjIi6Ut5qyK3i0RK7Fu3TratGlDhQoVKF++PE2bNmXEiBHcunXrucUwbNgwXn/99WT7dO7cGV9f3+cU0dObNO5Tfly2nHqNG+E7aBC2traMGuTHscN/JTsu8Ogx1n2/irtRUeQvVDDZvhvXrGHfnl/JnjMnmZwzp2b4IiIiIiIiIiIiIs9EK4hErMDs2bOZOHEiXbt2ZcCAARgMBk6fPs369eu5fv06WbNmfdEhGo0ePRrb//hvCgQdP87urVvp3r8fbTp1BKDBa03p/XZH5k2dyqQ5s5McW7VWTVZt24JTxoysXrKUM6dOJ9n3gzGjyZo9O7a2tvTu0DHVr0NERERERERERETkaalAJGIFFi9ezJtvvsmwYcOMbXXq1KFHjx7Ex8e/wMjMFStW7EWH8Fh7d+zENl06mrZsaWyzd3CgcfPmLPhuBjeCg8meM6fFsZmzZEnxeZKaQ0RERERERERE5GVkY2PzokOQJ/Df/jV/EQEgPDycHDlyWDz28GodHx8fxo0bx4IFC6hTpw7e3t4MGzaM2NhYAgMDad++PeXKlaNNmzYEBQWZzBMTE8P48eOpWbMmpUuXpkWLFmzdujXZuOLj4xkxYgRVqlTh6NGjgPkWc/7+/nh7exMUFESHDh0oW7Ysr7/+Or/++qvJXLGxsXz66adUrlyZihUrMmrUKNavX4+HhweXLl16ovv1OP+cOkXe/PnJmCmjSbu7V0njcREREREREREREZGXmQpEIlbAy8uLFStWsGrVKm7cuJFs3+3bt7N3717GjRvH4MGD2bBhA5988gkffvghbdu25dtvvyUmJoaBAwearD4aMmQIK1eupEePHkybNo1ixYrRv39/tm/fbvE89+7dY8iQIezevZvFixdTunTpJGOKi4tjyJAhtGrViqlTp+Lm5saAAQMIDQ019pk4cSIrVqygR48eTJ48mfj4eCZOnPiEdyplQm7ewi2b+bZ8blmzJRy/cTNNzisiIiIiIiIiIiLyX6Et5kSswOjRo+nXrx8jR44EIF++fNSrV4+uXbuSL18+s/7Tp0/H3t4egD/++IPvv/+e2bNnU7t2bSBh5U/v3r05deoUJUqU4OTJk2zZsoWxY8fSvn17AGrXrs3ly5eZNm0a9evXN5k/NjaWgQMHcvLkSZYsWUKhQoWSjT+xQFSnTh0AChcuTP369dmzZw8tWrQgLCyM5cuX06dPH3r16gVArVq16Nq1K1evXn36G5eEmJgY7OzszdrtHeyNx0VEREREREREROQJ/cefTS6mVCASsQLu7u5s2LCB33//nb1793LgwAEWL17MmjVrWLp0KZ6ensa+lSpVMhaHAAoVKoStrS1Vq1Y1aQO4evUqJUqU4M8//wSgSZMmJudt2rQp48ePJyoqCicnJwCio6Px9fXlypUrLF26lDx58jw2fltbW6pVq2Z8nS9fPhwdHQkODgbg1KlTxMTEmBWi6tevz++//56SW/REHBwciIuLNWuPjYk1Hn/RoqKiUnW+u3fvmvyZmhJzI7VjhrSL2xpjhrSL2xpjBuXHo5QfppQfppQf/7LGmEE5/Sjlhynlhynlhynlhynlhynlhynlx7+sMWZI+5wWedmoQCRiJezt7alTp45xFc6vv/6Kr68v06ZNY+rUqcZ+zs7OJuPs7OxwdHQ0KRrZ2dkB/66UuX37NnZ2dri4uJiMzZYtGwaDgYiICOM/hCEhIVy7do233347RcUhwOz8iTEknj9x2zxXV1eTPlmzmm8DlxrcsmXl5nXzrfpCbiVsLeeWPVuanPdJBAYGpsm8586dS/U5K1SoAKRdzJD6cVtjzJD2cVtjzKD8SKT8sEz5kUD5Yc4aYwbldCLlh2XKjwTKD8uUHwmUH5YpPxIoP8xZY8yQdjkt8rJRgUjEStWqVYsSJUrwzz//PPNcWbJkIS4ujtu3b5MlSxZj+82bN7GxsSFz5szGtjx58tCvXz/8/PxwdXWlT58+z3z+7NmzAxAaGkrOnDmN7bdu3XrmuS0pUrw4f/15iDuRd8iYKaOxPej4cQCKurunyXmfxMOrwlLD3bt3OXfuHIUKFSJDhgypOnei1I4Z0j5ua4wZlB+JlB+WKT8SKD8sU35YZ8ygnE6K8iOB8sMy5UcC5Ydlyo8Eyg/LlB/WGTM8n7jlMbTFnFVRgUjECty8eZNs2UxXtURHR3P16lWKFSv2zPMn/hbE5s2badeunbF98+bNlCxZ0mwZbZMmTYiNjWXo0KFkyJCBrl27PtP5ixcvjoODA9u2baNEiRLG9m3btj3TvEmp6ePDD0uXsWntWtp06ggkPFdp6/qNeHh5kf1Bker6tWvEREeT/zHPWEoLabV0OUOGDGk2d1out06ruK0xZlB+PEr5YUr5YUr5YUr58S9rjBmU049SfphSfphSfphSfphSfphSfphSfvzLGmOGtI1b5GWiApGIFWjevDn16tWjZs2a5MiRg+DgYJYsWUJoaCjvvPPOM89fokQJGjVqxIQJE4iOjqZw4cKsW7eOgIAApk+fbnHMG2+8QUxMDKNGjcLR0ZH27ds/9fldXV3p0KEDM2bMwMHBAU9PTzZv3mxcDmybyr95UKKUF7Xq+7Bg+nfcDg0ld758bP/5Z4KvXuX9kR8Z+309dhxHDwWwaf+/z0G6ExnJuu9XAXDiyBEA1q1aRabMmcmYORNvtG1r7Hs0IIBjAYcBuB0aSvTduyyfNx+AUt7lKO3tnarXJSIiIiIiIiIiIpJSKhCJWIF+/fqxc+dOJkyYQEhICK6urnh4eLBgwQKqVq2aKuf46quvmDRpErNnzyYsLIwiRYowZcoUfHx8khzTtm1bYmJiGDt2LI6OjrRs2fKpzz948GDu3bvHrFmziI+Pp2HDhvTq1Ytx48aZbHGXWoaMHsWiXLPYvmkzkRERFC5WlLGTvn5s0SYyPIJFM2eZtK1ZthyAHLlzmRSI/jr4J0vnzDXpmzi2Y4/uKhCJiIiIiIiIiMjLxUZbzFkTFYhErEDHjh3p2LHjY/vt2LHDrK1///7079/fpC1fvnwEBQWZtDk6OvLRRx/x0UcfkZQJEyaYtXXq1IlOnToZXy9evPix5wc4ePCgyWt7e3s+/vhjPv74Y2PbBx98QN68edOkQGTv4ECPAf3pMcA8tkRffme+eipnntwmK4qS06lnDzr17PHUMYqIiIiIiIiIiIikFRWIROQ/4Y8//uDQoUN4eXkRHx/Prl27WL9+PcOGDXvRoYmIiIiIiIiIiIi8dFQgEpH/BCcnJ3bt2sXs2bOJiYkhb968DBs2jK5du77o0ERERERERERERCQlUvlZ4pK2VCASkf+EUqVKsWLFihcdhoiIiIiIiIiIiMgrQeU8ERERERERERERERGRV4xWEImIiIiIiIiIiIiIyLOztXnREcgT0AoiERERERERERERERGRV4wKRCIiIiIiIiIiIiIiIq8YbTEnIiIiIiIiIiIiIiLPzkZrUqyJjcFgMLzoIERERERERERERERExLrZdmr9okNIUvySH150CP85KueJiIiIiIiIiIiIiIi8YrTFnIi81KIib73oEJ6IU6asAPwdZj1xF3PJmmZzR0VFERgYiKenJ05OTml2ntSkmJ8fa4xbMT8/1hi3Yn4+rDFmsM64FfPzY41xK+bnxxrjVszPjzXGrZifD2uMGaw37peKrdakWBO9WyIiIiIiIiIiIiIiIq8YFYhEREREREREREREREReMdpiTkREREREREREREREnp22mLMqerdEREREREREREREREReMSoQiYiIiIiIiIiIiIiIvGK0xZy8tN544w2CgoJYunQpFStWNLbv37+fLl26sHr1akqXLp1q57t06RL169fn22+/pUmTJqk+V+fOnfnjjz8ASJcuHZkzZ6Zw4cLUqlWLt99+G1dX1xTN3blzZ5ycnJg5c+YTxeTj40PdunUZNWpUkn08PDz48MMP6d69+xPN/bxERETwzbfT2LFzD9HR0ZTyKonfoP54enqkaPyZs+eYOPFbAg4fwc4uPbVqVsfPbwBuD9376zdu8O230zh+4iQ3btzE1taWggXz81bb1jR/vSk2NjbGvtt37GLLlu0cPxHIrZu3yJkrJz4+9Xnvvfcsnj8uNpbFs2azc9MvREaEU6hYMbr49sK7SuVk4750/jw/r1lL0PHj/BN0irjYWOb9+AM58+Q267tn6zb2793LqWMnuHLpEqXLezPhu2kpuj8iIiIiIiIiIvKKs9GaFGuiApG8lE6fPk1QUBAA69evNykQWbPy5cszdOhQ4uPjuX37NgEBASxatIjly5czZ84cSpQo8dg5Ro8ejW0a7QW6cuVK8uTJkyZzP6v4+Hj6DxzCqVN/806Xt3FxceH7VWvo6duXpUvmU7BA/mTHBwdfp3uP98icKSP9+vpy9+5dFi1exum/z7Bk0Rzs7OwACAu7TfD1GzSoX5dcuXJx79499u3/g9FjPuX8+Qv079fbOOenn35B9uzZeK1pY3Llysnff//DkiVL2L17N1/Pn4uDo4NJDJPGfcpvO3bSon078uTPx7aNPzN60GDGT5+KV7myScYeePQY679fRf7ChchfqCBnTp1Osu/Pa37k75NBFPcsQXj47ZTcWhEREREREREREbFCKhDJS2n9+vXY2tpSqVIlNm/ezMiRI40f4FszZ2dnypUrZ3xdr1492rdvz1tvvcX777/Pzz//nGTxJzo6GkdHR4oVK5Zm8T0c23/Ntm07+euvo3z5xac0bOADQMOGPrR8sz0zZsxh/Odjkx0/d95Cou/eZdmSeeTOnQsAL6+S9HlvIOvWb6R1q5YAuBcvxpxZpitu2rdrw8D3P2D5ilW816cn6dKlA+CrLz+jYsXyJn3LeVdk6NCh7PrlFxq3eMPYHnT8BHu2bqNb/3607vQ2APVfa8p7b3di3tRpTJwzK8nYq9aqRY1tdXHKmJEflixLtkA0eMwosmbPjq2tLe916JjsPRERERERERERERHrpfVe8tIxGAxs2LCBqlWr8u677xIWFsavv/6a7Jj4+Hjmz59P06ZNKVWqFDVq1GDAgAFEREQY+xw4cID27dtTpkwZqlSpwvDhwwkLCzObKyYmhnHjxlGpUiVq1qzJF198wb1790z6pHSulMiTJw99+vTh7Nmz/O9//wMStqjz8PBgzZo1jBw5kipVqtC2bVsgYYs5X19f43h/f3+8vb0JCgqiQ4cOlC1bltdff/2x9yw0NJTWrVvTqlUrQkJCgIQt5ubOnWvsk3iuzZs307hxY7y9venSpQsXLlwwmevatWv4+vpStmxZ6tSpw4IFC/jss8/w8fF5qntiybbtO8ma1Y36PnWNbW6urjRq6MOu3b8SGxub7PjtO3ZRq1YNY3EIoGqVShQsWIAtW3c89vy58+QmOjqauLh/c+HR4hBAgwYNALh47pxJ+287dmKbLh1NW7Ywttk7ONCoeXNOHj3GjeDgJM+dOYszThkzPjZGgOw5c6bZCjMREREREREREXnJ2dr8d7/EjD4FlJfOoUOHuHz5Mq+//jo1a9bExcWFDRs2JDvmk08+4auvvqJu3brMmDGDUaNGkTFjRqKiogA4duwY7777LhkzZuTbb79lyJAh7Ny5k549e3L//n2Tub755htsbW355ptvaN++PfPmzWPVqlXG408yV0rVrFkTgMOHD5u0T5o0CYPBwMSJE/nggw+SHB8XF8eQIUNo1aoVU6dOxc3NjQEDBhAaGmqx/40bN+jSpQv29vYsXLgQNze3JOcODAxk7ty5DBkyhPHjx3PhwgWTWAwGA++99x6BgYGMHTuWUaNGsWXLFrZu3foEd+DxTgadokQJD7Pih5dXSaKjozl//mKSY69fv0FISCglS5pv4VfKy5OgoFNm7dHRMYSGhnHlylXWrf+Zdes2UqZMKRwf2TbuUTdv3gTAOYuLSfs/p06RN39+nDKZFnrcvUoCJLsqSERERERERERERORR2mJOXjobNmzAwcGBRo0aYWdnR+PGjVm3bh137twho4VVFGfPnmX58uUMGjTIZGVN48aNjX+fMWMG2bNnZ8aMGcat6nLnzk337t3ZvXu3yUqXMmXKMHLkSABq1KjB/v37+eWXX+jQocMTz5VSuXPnBhIKNw8rUaIEn3322WPHJxaI6tSpA0DhwoWpX78+e/bsoUWLFiZ9r1y5QteuXcmbNy/Tpk3Dyckp2bkjIiJYu3atsYgUFRXF8OHDuXbtGrly5WLPnj0cP36cpUuXGp8VVbVqVerUqYOzs3PKbkAK3Lx5i/Lly5m1Z8uWFUi4d8WLF7U49saDok1iX9Px2bh9O5zY2Fjs7e2N7cuWr8R/6gzj68qVKzJ29IjHxjl79mzSpUtHDZ96Ju2hN2/iZuH8blkT2kJu3Hzs3CIiIiIiIiIiIiKJtIJIXir37t1j8+bN1KlTh8yZMwPQvHlz7t69m+SKlH379mEwGGjTpk2S8x48eJD69eubPMeoZs2aODs78+eff5r0TVzNk6ho0aJcu3btqeZKKYPBAICNjelSybp166ZovK2tLdWqVTO+zpcvH46OjgQ/sm3ZhQsX6NixI0WLFmXmzJmPLQ5BQpHq4RVGic9ASrwnR48exdnZ2VgcAsiYMaNJPKkhJiYGewvPoXJ4UNSJiYlJdiyAvZ292TH7JMY3adKQ76Z/y+efjaFpk0aPPQfApk1bWL16Ne+++y55C+Q3i8HOwvntHB4fv4iIiIiIiIiIyHNha/vf/RIzWkEkL5XffvuNkJAQ6tWrR3h4OADu7u5kz56dDRs20LJlS7MxYWFhpE+fnqxZzVdnJAoPD7d4PGvWrNy+fdukLbEwlcjOzs7k+TZPMldKJRZbsmXLZjZnSjg6OpqsfoGEuB8tOhw9epSwsDBGjBhh1j8pj64CSiyMJc59/fp1i1vUJbdtXXJiY2NN7uPdO6G4urrg4OBAbFycWf+YB++Ng0PSW78lHouNM39OUWwS4/Pkzk2eByu7mjZpxCefTqB3n4H8uGaFxW3mDgUcZuwnn1OzZk0GDRrEuUjTXHBwcCDOwvnjYh4f//OSuCVjarp7967Jn6klsbhpTTFD2sVtjTGD8uNRyg9Tyg9Tyo9/WWPMoJx+lPLDlPLDlPLDlPLDlPLDlPLDlPLjX9YYM6R9Tou8bFQgkpfK+vXrARg+fDjDhw83ORYaGsqtW7fMxri4uHDv3j1u3bqVZEElS5YsFsfeunWLLFmyPFGMqTlXor179wJQvnx5k/ZHVxQ9q2bNmpEuXTr8/PyYOXNmqqzyyZEjByEhIWbtltpSIiAggC5dupi0bVz/A9myZeXmTfP7ntiWPXv2JOfM/qDwZnn8TbJkcX5swaxB/Xqs+XEdhw4FUL16VZNjQadO8/6goRQtWoQpU6aQPr35j2bXbNm4df2GWXvIg1xyy57N7NjzFhgYmGZznzt3LlXnq1ChAmBdMUPax22NMYPyI5HywzLlRwLlhzlrjBmU04mUH5YpPxIoPyxTfiRQflim/Eig/DBnjTFD2uW0yMtGBSJ5ady9e5ft27fToEEDswLBzZs38fPz4+eff8bd3d3kWNWqVbGxseGHH36gV69eFueuUKEC27dvZ9iwYcYP73/77TfCw8Of+B+I1JwLEp4JNH36dIoVK0bVqlUfP+AZjRgxgpiYGN577z3mzJnzzP9Ali5dmvDwcA4cOEClSpUAuHPnDr///vtTPYOoRIkSzJ8/3/g6+m44WbO64eFenIDDfxEfH4/tQ0tKjx07jqOjIwUL5rc0HQA5cmTH1dWFEydOmh07djwQD/fij40r+sGKqcjIOybtFy9eol8/P9zcXPGfMtHic7IAihQvzpE/DxEVeQenTP/2CTp+POF4CmJIa56enqk+5927dzl37hyFChUiQ4YMqT6/NcYMqR+3NcYMyo+kKD8SKD8sU35YZ8ygnE6K8iOB8sMy5UcC5Ydlyo8Eyg/LlB/WGTM8n7jlMWy0lZs1UYFIXhrbt28nKiqKzp07U6VKFbPjc+bMYcOGDfj5+Zm0Fy5cmPbt2/Ptt99y+/ZtqlWrRnR0NLt27aJ///7kzJmT3r170759e3x9fencuTM3b95k4sSJlClThjp16jxRnM8yV3h4OIcPH8ZgMHD79m0CAgJYsWIFdnZ2TJ482aTwkZbGjh1LTEwMvXr1Yv78+ZQpU+ap56pduzZeXl4MHjwYPz8/nJ2dmTNnDhkzZnyqFVBZsmShevXqxtdRkQkrbBo0qMe27TvZvmMXDRv4ABAaGsbWbTupXbuGyQqgixcvAZA/fz5jW32femzY8DPXrgWTK1dOAPb/cZDz5y/Q8e12xn4hoaG4ubqaxbX2pw3Y2NhQwtPD2Hbz5i3e6/s+NrY2TJ862eK4RDV86rFm6TI2rf2J1p3eBiAuNpZt6zfi4eVF9pwJMV2/do2Y6GjyFyqUshuWitJyuXWGDBnSZH5rjBnSLm5rjBmUH49SfphSfphSfvzLGmMG5fSjlB+mlB+mlB+mlB+mlB+mlB+mlB//ssaYIW3jFnmZqEAkL40NGzaQJ08ei8UhgJYtW/L5559z4cIFs2OjRo0iX758rFq1ioULF+Li4kKlSpWMqzlKlSrFvHnzmDRpEv3798fJyQkfHx+GDh1KunTpnijOZ5nr0KFDtGvXDltbWzJnzkzhwoXp0qULb7/9Nq7JFBdSm42NDZ9//jmxsbH06NGDRYsWUaJEiaeea/r06YwaNYpRo0bh7OxMly5dOHv2bKouNW5Qvx6lS3sxZuznnDlzDleXLHy/eg3x8ffp49vDpK9vnwEA/LxhjbGte7cubNu2g16+/ejQ4S2iou6yaPFSihcrSos3mhn7zZ27kMN/HaF6tarkzpWT2+HhbN+xi+PHA2nfrg0FHio69e3vx6XLV+j6TkcCDv9FwOG/sHfIBECsoz3eVSob+5Yo5UXN+j4snP4dt0NDyZ0vL9t/3kTw1asMHPnvdoqTxn7C0UMBbNz/P2PbnchI1n+/CoATR44CsH7VajJlzkTGzJlp3raNse+xgACOBRwG4HZoGNF3o1kxL2FFVinvcpTy9n6Kuy8iIiIiIiIiIiL/NSoQyUtjxowZyR5/5513eOeddwBo27atyTFbW1t69OhBjx49LA0FoHLlyqxYsSLJ4/ny5SMoKMisfcSIEYwYMeKZ51q8eHGS/VMai6V5+vfvT//+/c36HTx40OT1jh07TF6nS5eOyZMnm7SlJGZPT0+zfrly5WLWrFnG17GxsTRr1oyKFStavIankS5dOqZOmcjkb6axYsUqomNi8PLyZOyYkRQqVPCx43Plysmc2dOYOGkKU/y/w87Ojlo1q+E3aIDJ6qNaNatz6dJlflq3gdDQMBwc7ClerBhjR4+gefPXTOY8deo0AAsWLjU7X+ny3iYFIoDBoz9mca5c7Ni0mciICAoXK8roSV89tmgTGR7B4pmzTdp+XLYcgBy5c5kUiP46+CfL5swz6Zs49u0e3VQgEhERERERERGRJNk8px2OJHWoQCQiL9zKlSuJj4+ncOHChIeHs3z5ci5fvsykSZNS9TzOzs6MHjWc0aOGJ9vv4ZVDDytatAjTp32T7NiqVStTtWrlZPskCvjzf2ZtTpmyAvB32C2zY/YODnQf0I/uA/olOeeE76aZteXMk9tkRVFyOvbsQceeSRdKRURERERERERE5OWgApGIvHAODg7MmjWLy5cvA1CiRAlmzpxJ6dKlX3BkIiIiIiIiIiIiIi8nFYhE5IVr2bIlLVu2fNFhiIiIiIiIiIiIyDOw1RZzVkXvloiIiIiIiIiIiIiIyCtGBSIREREREREREREREZFXjLaYExERERERERERERGRZ6Yt5qyL3i0REREREREREREREZFXjApEIiIiIiIiIiIiIiIirxgbg8FgeNFBiIiIiIiIiIiIiIiIdcswoNeLDiFJd6fMetEh/OdoBZGIiIiIiIiIiIiIiMgrJv2LDkBEJC3tu3HlRYfwRKpmzwPAtYjbLziSlMuVOQsAUXesJ2anjFnSbO6oqCgCAwPx9PTEyckpzc6TmqwxZrDOuBXz82ONcSvm58MaYwbrjFsxPz/WGLdifn6sMW7F/PxYY9yK+fmwxpjBeuMWeVFUIBIRERERERERERERkWdma/tyblr2zz//8OmnnxIQEEDGjBlp0aIF77//Pvb29kmO2b9/P126dLF4rHDhwmzevDnZfq+99hqTJ09OnQtIggpEIiIiIiIiIiIiIiIiFty+fZt33nmHQoUK4e/vT3BwMBMmTCA6OppRo0YlOc7Ly4uVK1eatEVGRtKzZ09q165t1n/8+PEUKVLE+NrV1TX1LiIJKhCJiIiIiIiIiIiIiIhYsGLFCu7cucPUqVNxcXEB4P79+4wdOxZfX19y5sxpcVymTJkoV66cSduaNWuIj4/n9ddfN+tfvHhxSpcundrhJ+vlXO8lIiIiIiIiIiIiIiLPla2t7X/262nt2bOHatWqGYtDAE2bNiU+Pp7ffvvtiebasGEDhQoVokyZMk8dT2pSgUhERERERERERERERMSCM2fOmGz9BuDs7Ez27Nk5c+ZMiue5efMm+/bts7h6CKBXr154enpSu3ZtvvjiC6Kjo58p7pTQFnMiIg/ExcayZs58/vfLVu5ERJC/aBFa9+pOqUoVkx13cPce9m/fydnAIG6HhOCWIwflqlflja5dyJg501PFEhsby7wZM9ny8yYiIiIoWqwY3fv0plLVKo8de+P6daZOmszBffuJNxjwrlCBfn6DyJMvr1nfkFu3mDdjFr/v3Uv47du4Zc1K+UoVGTrqY2OfC+fOs+6HHzhx/DinTwYRGxvLinVryZ0nzxNdU0REBN9848+OnbuIjo6mVCkv/AYNxNOzRIrGnzlzlokTJxNw+C/s7OyoVbMGfoPfx+2h/VjPnj3HTz+t4/d9+7l06TJOThkoUaIEvXv3xKtkySeKV0REREREREREXh7169dP9vj27dsttoeHh+Ps7GzWniVLFm7fvp3i8//888/cv3/frECUOXNmevToQaVKlXBwcGDfvn3MmzePM2fOMHPmzBTP/zRUIBJ5haxbt45FixZx9uxZDAYDOXPmpHz58vj5+ZE1a1YAFixYQOHChalTp06qndff35958+YREBCQanOmhdmffcHBXbtp9FYbcubLy95NvzBpyDCGTZmMe9mk9/+c/+VEXLJlo3rjBrjlzMmlf86wbc1a/tq3n3HzZmHv4PDEsYwfM47d27fT9u0O5M2fn80bNjB04Pt8M/M7yjyyd+nDoqKieL93H+5E3qHju11Jnz49q5YtZ4CvL3OXLiHLQ0thr18Lpm/3HgC80boV2bJn59aNGwQeP2Ey5/GjR/lh5fcULFyYAoUK8fepU098PfHx8fQfMIhTp07zTpdOuLi48P2q1fTs1YelSxdSsECBZMcHBwfTvYcvmTNlol+/97gbFcWixUs5/fffLFm8ADs7OwB+XPsTa9euo379erzVtg2RkZH88MOPvPNOd6ZO/ZaqVSo/cewiIiIiIiIiIpIytjY2LzqE/6z169fj5eVF4cKFTdpLlixJyYd+sblatWrkyJGDcePGceTIkTTdjk4FIpFXxOzZs5k4cSJdu3ZlwIABGAwGTp8+zfr167l+/bqxQLRo0SLq1q2bqgUia/DPiUD2b99Bu/d689rb7QCo0aQxI7q8y8rvZvLxjKlJju33yVg8y5czaSvk4c7szybwvy3bqNu82RPFcuTIEXZs2UKfgQNo37kTAI2bvca77TowY4o/0+fNTXLs2lWruXThIjMWLsDTK+Eflio1qvNuuw6sXLqMXn3fM/b9+vPxpEufjpkLF5gUjh5Vo3YtNu7cjlPGjKxYvOSpCkTbtm3nr7+O8OWX42nYIOG3NRo2akDLlm2YMWMW4z//NNnxc+ctIDr6LsuWLiJ37lwAeJXyok+ffqxbt4HWrd8EoEnjRvT27YmTk5NxbIsWzWnVuh0zZ85WgUhERERERERE5BWV1Aqhx3F2diYiIsKs/fbt22TJkiVFc1y4cIEjR44wfPjwFPVv2rQp48aN49ixY2laINIziEReEYsXL+bNN99k2LBh1K5dmzp16tCjRw9++uknPDw8nni+2NhY4uPj0yDSF+Pgrt3YprOlXot/l3jaO9hT+/XX+PvYcW4FX09y7KPFIYAKdWoBcPXc+SeOZfPmzaRLl47mb7Y0tjk4OPBaizc4fuQo168FJzl29/YdlChZ0lgcAihYqBDlK1Vk19Ztxrbz586x/3//o33nTmRxcSEmJoZ79+5ZnNM5SxacMmZ84ut42LbtO8ia1Y36PvWMbW6urjRq2IBdu/YQGxub7Pjt23dSq1ZNY3EIoGqVyhQsWIAtD11XyZKeJsUhABcXF7y9y3H27NlnugYREREREREREXn1FClSxOxZQxEREdy4ccPs2URJWb9+Pba2trz22mtpEeJTU4FI5BURHh5Ojhw5LB6ztU34UeDj48Ply5dZunQpHh4eeHh4sGbNGuOxcePGMXv2bOrVq0eZMmUICwsjPj6e6dOn4+PjQ6lSpWjSpAkrVqx4bDxTp06lbNmy7N69G0goOE2aNIl69epRqlQpmjZtyvr161Pp6h/v/Km/yZU/PxkeKYQUefB8nAun/36i+W7fCgEgk0vKfovgYYGBgeQrUICMmUyfX5RY9DmdxAqe+Ph4zvz9Nx4lPc2OeXp5cfnSJaLu3AHgz/1/AODmlpVBfd6jUY1aNKpRiw8GDOTqlStPHPPjnDx5ihIlShhzLZFXqZJER0dz/vyFJMdev36dkJAQSnqaX1cpLy+CgoIee/5bt27hkswqKREREREREREReXa2trb/2a+nVbt2bf73v/8RHh5ubNu8eTO2trbUqFEjRXNs3LiRypUrJ/n5rKX+AKVLJ/3Yi9SgLeZEXhFeXl6sWLGCfPnyUbduXbJnz27WZ+rUqfTq1Yvy5cvTrVs3AAo89GyYLVu2ULBgQUaMGIGtrS1OTk58+eWXLFq0iD59+uDt7c2uXbsYPXo09+7do1OnThZj+eKLL1ixYgWzZs2iSpUqAAwcOJBDhw7Rt29fihYtyu7du/nggw9wdnZ+Ltvdhd26hUtWN7N2lwdb74XdvPlE821cuhzbdLZUqvvksd+4cYOs2bKatWfNlg2AWzduWBwXHh5ObGyssd/D3B603bxxkwIZM3Lp4kUAvv7sczy8SjJ6/GdcvxbMgtlzGPxeP+atWIajo+MTx56UmzdvUt7CSqtsD+K6ceMGxYsXszj2xoN7n83CdWXLlpXbtxOu297e3uL4Q4cCOHLkKD16dHvK6EVERERERERE5FXVvn17Fi9eTN++ffH19SU4OJgvv/yS9u3bkzNnTmO/d955hytXrrB161aT8SdOnOCff/7h3XfftTj/kCFDKFiwICVLlsTBwYF9+/axYMECGjRooAKRiKSO0aNH069fP0aOHAlAvnz5qFevHl27diVfvnxAwgPR7O3tyZYtG+XKlTObIy4ujtmzZxu38AoJCWHJkiV0796d/v37A1CzZk1CQ0OZNm0aHTp0IF26dMbxBoOBMWPGsGnTJhYsWEDZsmUB2LdvHzt27GDu3LnUrFkTgBo1anDjxg38/f2fS4EoNiaW9HbmBQa7B0WHx22B9rDft2xjz4afee3t9uTKn++JY4mOjsbNzryAZ2/vAEBMTIzFcbHRCe12dnYWxtqbjL0bFQWAW9asfPHNZONvUWTPkYNxI0aybfNmXm/Z8oljT0pMTIzFAo7DI3FZHPvguuztLVyXw7/3xNL8ISEhfDTiY/LmzUPXdzo/VewiIiIiIiIiIvLqypIlCwsXLuSTTz6hb9++ZMyYkTZt2jBo0CCTfvHx8dy/f99s/Pr167G3t6dx48YW5y9evDjr169n3rx5xMXFkTdvXnr37k2vXr3S5HoepgKRyCvC3d2dDRs28Pvvv7N3714OHDjA4sWLWbNmDUuXLsXTwvZdj6pSpYrJ812OHDlCXFwcTZo0MenXtGlTNmzYwLlz5yhatCiQUBz68MMP+e2331i0aBElSpQw9v/tt99wcXGhatWqJs/BqV69OmPGjOH+/fsmhaa0YO9gz7048yJQ3IPCUFKrUx4V9NcR5k74itKVK9GmV4+nisXR0ZE4C7HExiYUShweFEUeZe+Y0B4XF2dhbKzJWAeHhNVBdRs2MFliW7dBfT4bNZpjfx19qgJRXFwct2/fNmlzdXXFwcHBYpEt5pG4LHF4cF2xsRauKybpe3L37l0GDPTjzp0o5s+bbfZsIoCoB4Wy1HT37l2TP1NT4jWkdtzWGDOkXdzWGDMoPx6l/DCl/PiXNcYMyulHKT9MKT9MKT9MKT9MKT9MKT9MKT/+ZY0xQ9rntDzes2zl9l9WtGhRFixYkGyfxYsXW2wfOnQoQ4cOTXKcr68vvr6+zxLeU1OBSOQVYm9vT506dYwrcn799Vd8fX2ZNm0aU6dOfez4rFlNtz1LLAQ8uvVX4uuwsDBjW1xcHDt27KB69eq4u7ub9A8NDSUsLAwvLy+L571x4wa5cuV6bHzPwiVrVkItbCMXdutWwnEL25s96sLpv/lm6AjyFSlMv0/Hki790xW1smfPzuWrV83abz2IL6uF7QEBnJ2dsbe3N/Z7WEjiNm3Zsz2YI+FPNzfTbfXSpUtHFpcsRESE8zT++usIPXv1MWnbuGEt2bJl4+bNW2b9bz6Iy9KWh4myJ26PZ+G6bt68RZYszmYFvLi4OAYP/pDTp/9m2rQpFCtW1OLcgYGByV/QMzh37lyqz1mhQgUg7eK2xpgh9eO2xphB+ZEU5UcC5Yc5a4wZlNOJlB+WKT8SKD8sU34kUH5YpvxIoPwwZ40xQ9rltMjLRgUikVdYrVq1KFGiBP/880+K+tvY2Ji8dnFxAeDWrVsm+20mfpCfeBwSilMzZ86kZ8+ejBkzhnHjxhmPZcmSBTc3N2bNmmXxvI8WMdJCgeLFCAwI4O6dO2TImNHYfuZEoPF4coIvX+brIUNxdnXF76sJODpleOpYSpQowf79+7kTGUnGTJmM7SeOHQeg+CMFtkS2trYULlaUoBPm/4F14thx8uTNi9ODa/PwTFjBdeOR5xnFxcVxO+w2Lq6uTxW7u3txvvvOtNiYNWtWPDyKExBwmPj4eJPfJDl29DiOjo4ULFjg0amMcuTIgaurKycs/IfjsePH8XjkfsTHxzPy4zH8ceAgX0z4nIoVyic5d0pWzj2pu3fvcu7cOQoVKkSGDE+fB8lJ7bitMWZI+7itMWZQfiRSflim/LDOmEE5nRTlRwLlh2XKjwTKD8uUHwmUH5YpP6wzZng+cYu8TFQgEnlF3Lx502ylT3R0NFevXqVYsX+LH3Z2dsk+D+ZhpUuXxs7Ojs2bN1OyZElj+6ZNm8iaNSuFChUy6V+xYkWmT5+Or68vDg4OjBgxAkjYSm7OnDnY2dmZbD33PFWqW5tNy1ey86cNvPZ2OyBhe7lff95M0ZKeZM2ZA4Bb14KJiYkhz0MFjbBbIXw16ENsbGwZMulLnF1dnimWJk2aMG/ePNb/uJb2nTsBCVvEbVq/gZKlSpEjV0IxLvjaNaKjoyn40H2u6+PDzKnTOHniBCUevCcXzp0n4OBB2nXqaOxXrkIFXN3c2LZpM53e7Wrcom3T+g3cv3+filUqP1Xszs7OVLUwtkH9+mzbtoPtO3bSsEF9AEJDw9i6bTu1a9cyWQF08eIlAPI/9Pym+vXrsWHDRq5dCybXg+vfv/8Pzp+/QMeOHUzO9cUXX7Nly1ZGjhhO/fr1ko03LZeIZ8iQIc3mT6t5rTFmSLu4rTFmUH48SvlhSvnxL2uMGZTTj1J+mFJ+mFJ+mFJ+mFJ+mFJ+mFJ+/MsaY4a0jVuS97JuMfeyUoFI5BXRvHlz6tWrR82aNcmRIwfBwcEsWbKE0NBQ3nnnHWO/IkWKsG/fPn777TecnZ3Jly8frkmsJnFzc6NTp07MnTsXe3t7ypUrx+7du9mwYQMff/yxxecGVatWDX9/f/r27UuGDBnw8/OjRo0a1KtXjx49etCjRw88PDy4e/cuf//9N+fPn+ezzz5Ls/uSqKhXSSrVq8PqmbOJCAslR9687N38CzevXqPbsA+M/WZ9Op6Th/9i4d6dxraJgz/kxpUrvPZ2e04dOcqpI0eNx7K4uVKqUsUniqVs2bLUbVCfWVOnERoSQt78+fllw0auXbnC0I9HGPt9PmoMhw8dYvfBP4xtLdu2YcPanxj2vh/tOnUkffr0fL90Ga5ubiYFInt7e3oP6M/4MWMZ0NOXRq815XpwMKuXr6CMdzlq1/u3sBIZGcmaFSsBOHrkCAA/fr+KTJkykSlzZt7r0fOx19SggQ+ll5VizJhPOHPmLK4uLny/ajXx8fH06W36wD3f3n0B+HnjT8a27t3eZdu27fTq1YcOb7cjKuouixYtoXixYrR4o7mx39Kly/l+1WrKlCmNo6MjGzduMpnbx6eufoNIREREREREREQEFYhEXhn9+vVj586dTJgwgZCQEFxdXfHw8GDBggVUrVrV2M/Pz48xY8bQv39/7ty5w/jx42nVqlWS83744YdkzpyZ1atXM2PGDPLmzcvYsWNp3759kmPq1KnDN998w8CBA3FwcKBv375MmTKFWbNmsXz5ci5fvkzmzJkpXrx4sudObb1GfsSaOfP47ZetREVEkK9oUQZ9+TklypVNdtyFvxO26Pt52QqzYyXKlX3iAhHAR2PHMC/3TLb8vInIiAiKFCvGhG8mUbZ80tulAThlzMg3M79j6qTJLJ47j3iDgXIVytPPb5DZtnFNXm+GnZ0dyxYuZMYUfzJlzkTzVm/Sq+97JsW9iPBw5s6YaTJ25ZKlAOTKnTtFBaJ06dIx1f8bJn8zhRUrVhIdHYOXV0nGjh1FoUIFHzs+V66czJk9g4kTv2HKlGnY2dlRq2YN/PwGmqw+Cjp1CoAjR45y5KFCXaKN3mtVIBIREREREREREQFsDAaD4UUHISKSVvbduPKiQ3giVbPnAeBaxO0XHEnK5cqcBYCoO9YTs1PGLGk2d1RUFIGBgXh6elrNcnZrjBmsM27F/PxYY9yK+fmwxpjBOuNWzM+PNcatmJ8fa4xbMT8/1hi3Yn4+rDFmsN64XyY5Rwx+0SEkKfiziS86hP8cbQgoIiIiIiIiIiIiIiLyilGBSERERERERERERERE5BWjZxCJiIiIiIiIiIiIiMgzs7XVmhRrondLRERERERERERERETkFaMCkYiIiIiIiIiIiIiIyCtGW8yJiIiIiIiIiIiIiMgz0xZz1kXvloiIiIiIiIiIiIiIyCtGBSIREREREREREREREZFXjI3BYDC86CBERERERERERERERMS6FRg7/EWHkKQLo8e/6BD+c7SCSERERERERERERERE5BWT/kUHICKSlk6E3HjRITyRkm7ZATh/O/QFR5JyBbO4AhB1J+IFR5JyThkzA3AmLOQFR/Jkiri4pcm8UVFRBAYG4unpiZOTU5qcIy1YY9yK+fmxxrgV8/NhjTGDdcatmJ8fa4xbMT8/1hi3Yn5+rDFuxfx8WGPMYL1xi7woKhCJiIiIiIiIiIiIiMgzs7XVpmXWRO+WiIiIiIiIiIiIiIjIK0YFIhERERERERERERERkVeMtpgTEREREREREREREZFnpi3mrIveLRERERERERERERERkVeMVhDJK8Xf35+pU6caX7u6uuLu7s6AAQOoWLEia9asYfjw4fz++++4ubmlaSydO3fGycmJmTNnpuq8w4YN49ixY2zYsAGA/fv306VLF1avXk3p0qVN+iZ3LDV4eHjw4Ycf0r17dwDWrFmDnZ0dzZs3N+mXVvciOXGxsSyfPYddm3/hTngEBYsV5W3fXpSrXCnZcZfPX+CXH9dy6vgJzpw6RVxsLDPXrCJH7tzJjrt66TIDO3YmLjaWr+bNoZhniWT7x8bGsmjmLLZt2kxkRASFixWla29fKlSp8thru3n9OjMmf8uf+/djMMRTtkIFeg96n9x585r0uxMZybJ58/lt925uXr+Bi6sr3pUq0blnd3LkymXS99Aff7B8/gLO/v0P9+/fJ1+BArR4qy0NXmtqMYaIiAi++WYKO3buJDo6mlKlvPAbNAjPx1x3ojNnzjJx4iQCDh/Gzs6OWjVr4DfYDzdXV5N+c+bM5eixYxw7dpyQkBB8e/Wkd29fs/m2b9/Bli1bOX7iBLdu3SRXrtzUq1eP1zp2IFPmzGb9Y2NjWTxrNjs2bSYyIpzCxYrRxdeX8lUqJxv3pfPn2bjmR4KOH+fvoIT8WPDjGnLmMc+P3Vu3sX/vXoKOHefKpUuULu/Nl99NT9H9EREREREREREReVZaQSSvHEdHR1auXMnKlSsZM2YMYWFhdO3alVOnTj3XOEaPHs3QoUOf6zlftB9//NFYuHrRpnz6GeuWr6R2o0Z0HzQQW9t0fOo3hBN//ZXsuKBjx9i4ajV3o6LIV7Bgis83/9sppEuXLsX9vx73CT8sW45Pk8b08RtEOtt0jHzfj2OHDyc77m5UFB/06cuRgEN06PoOnXv25O+gUwz27UN42G1jv/j4eIb1G8D6H9ZQo04d+g72o16jhvy6Yzvv9+hJ1J07xr6/79nD8P4DiYuLo3PPHrzbpzf2Dg58OWYsPyxbbhZDfHw8/QcMZNPmzbRv9xbvDxxASEgoPXv5cv7Chcdee3BwMN179OTixYv069eXLp078eve3+jTpy9xcXEmfadN/44TJ05QwsMj2Tk//ewzzp49y2uvNeWDDz6gVq1aLFmyBL8ePYmJjjbrP2ncp/y4bDn1GjfCd9AgbG1tGTXIj2OHk8+PwKPHWPf9Ku5GRZG/UPL5sXHNGvbt+ZXsOXOSydm8SCUiIiIiIiIiYm1sbW3/s19iTiuI5JVja2tLuXLljK/LlCmDj48PK1asoFSpUs8tjmLFij23c4mpU8dPsHfrdt7p9x4tO74NQN2mTRjYsQuLpn7HhNkzkhxbqWZNlmzZTIaMTqxduoyzp08/9nwB+/YTsP8P3uz4NqsWLHxs/yNHjrBry1Z6DuhP204dAWj4WlN6dejIHP9pfDN3dpJj16/+gcsXL+K/YB4eJUsmxFy9Gr06dGT1smV0e68PAIHHjhF04gT9PhjCG23bGMfnK1iQiZ98yqE/DlCzXl0Aflq1Grds2fhy+jTs7e0BaPZmS7q/1Z6tGzbi1+c9kxi2bdvOX38d4csvJ9CwQYOE+Bs1pGXLVsyYMZPxn3+W7PXPnTef6Oi7LFu6hNy5E1YyeZXyok+fvqxbt57WrVsZ+27csI48efIQGhqGT/0GSc751ZdfULFiReNrp4yZKVWqFEOHDmXnL1to0uIN47Gg48fZvXUr3fv3o82D+9/gtab0frsj86ZOZdKcpO9/1Vo1WbVtC04ZM7J6yVLOnEo6Pz4YM5qs2bNja2tL7w4dk70nIiIiIiIiIiIiqU1lM3nl5cmTBzc3Ny5dumRsu3btGj169KBcuXI0atSItWvXGo8tXryYsmXLEhkZaTLPP//8g4eHB7t37wbgzz//pGPHjlSoUAFvb2+aN2/Ojz/+aOzfuXNnfH19zebo168flStXpmzZsrzxxhsmK27mzZtH69atqVChAtWqVcPX15ezZ8+m5u0AEraCa968OaVLl6ZWrVpMnjyZ+/fvG49fv36d4cOHU79+fcqUKUOjRo2YNGkSsbGxSc7ZuXNn/vjjD3bt2oWHhwceHh74+/ub9Nm8eTONGzfG29ubLl26cCEFq02exu87d2GbLh2NWrYwttk7ONCg+esEHTvGzeDgJMdmzuJMhoxOKT7XvXv3mDv5W15/qy258uV9/AAS7oNtunS81rKlSXyN32jOiaNHuZ5MfL/u2IlHyZLG4hBAgUKF8K5YkT3bthvbElcIuTyylaJbtqwAODg6mPTNlDmzsTgEkC59epxdsmD/UL9E27ZvJ2vWrNT38fl3XldXGjVswK5du5PNE0jYDq5WrVrG4hBA1SpVKFiwAFu2bjPpmydPnmTnSvRwcShRgwfFq4vnzpm0792xE9t06Wj66P1v3pzAo8e4kWx+ZMEpY8YUxZQ9Z0799oqIiIiIiIiIiLww+mRKXnmRkZGEhYWRI0cOY9uQIUOoWbMm06ZNw9PTk2HDhvHPP/8A8MYbb2AwGMy2Slu9ejU5c+akZs2aREZG4uvrS6ZMmZg0aRLTp0/nrbfeIjw8PMk4zp07R7t27Th//jwjRozgu+++o1WrVly5csXY59q1a3Tq1Inp06fz6aefEh8fT/v27QkLC3vsdcbHx3Pv3j2Tr/j4eLN+8+fPZ+TIkdSsWZMZM2bQs2dPFi1axOTJk419QkNDcXFxYfjw4cyZM4cePXrw448/Mnr06CTPP3r0aEqWLEn58uWNW/y1bdvWeDwwMJC5c+cyZMgQxo8fz4ULF/jggw8ee11P4+ypU+TJn9/sg/ziJT0fHH/8qqCUWr/ieyIjImj77jspHhMYGEi+AvnJmMk0vhIPij7/JLEdYnx8PGf+/pviFp7z4+FVkiuXLhkLQ+6enjhmyMDCmTMJOHCQm9evc+TQIeb4T8WjZEnKV/r3WUxly5fn/JkzLJgxk8sXL3Ll0iWWzJ3HqcCTvNW5k9m5Tp4MokQJD7Pih1cpL6Kjozl/PunC3/Xr1wkJCaGkp6fZsVJeXgQFBSU59kndvHkTAOcsWUza/zl1irz5ze+/u1fy919ERERERERE5FX3oreR0xZzT0ZbzMkr6d69e0BCweWLL77g/v37NG7cmBs3bgDQsWNHOnZM2PLJ29ub3bt388svv/Dee++RJUsWGjduzA8//ED79u2N861bt442bdqQLl06zp49S0REBH5+fng8eDZKtWrVko3J398fOzs7li9fTqZMmQCoXr26SZ+PPvrI+Pf79+9To0YNqlWrxi+//EK7du2Snf+tt9567H2JjIxkypQp9OjRAz8/PwBq1KiBnZ0dEyZMoHv37ri6uuLh4WHy/KTy5cuTIUMGhg0bxqhRo8iQIYPZ3MWKFSNTpkw4OTmZbPGXKCIigrVr1+L2YEVLVFQUw4cP59q1a+TKlcus/7MIuXUL16xZzdpdH6yeCXlQOHhWobdusWr+Arr275viVSUAN27cwC1rNrN2t2wJbbduWI4vIjycuNhYYz/TsQnXduvmTZwyZiSLiwsjPvuUyZ+PZ2jffsZ+FatW5eMJn5Mu/b//PLzdvRvXrlxh+fwFLJs3HwAHR0dGTRhP9Tq1zc518+ZNypf3NmvP9iCuGzduULy45S0Wbzy499ksXEO2bNm4ffs2sbGxJquZntbs2bOxTZeOmg+tdAIIuXnLeL8elviehCRx/0VERERERERERKyJCkTyyomKisLLy8v4OkuWLIwaNYpatWqxZs0aAGrWrGk87uTkRJ48ebh27Zqx7a233qJTp06cPn2a4sWLs3v3bm7dukXr1q0BKFCgAJkyZWLMmDF07tyZqlWrGgsfSdm3bx+NGzc2FocsOXz4MN9++y0nTpwwWTV07pEtsiz54osvKFq0qEnb8ePHTVb9BAQEEBUVRZMmTYxFNEgoVEVHR3P69GkqV66MwWBg4cKFfP/991y6dImYmBhj34sXL+Lu7v7YeB5VokQJk3uU+IymtCgQxcbEYGdvZ9Zu96DoEBuT/BZoKbVo2nfkzJuHBm80f6Jx0dHRuGQ3L5DYOyTGF2N2DDC+D/Z25tdmb+9gNjaLqwvFPNzxatuGgkWK8M+pU3y/eAlfj/uUjyd8/u9YOzvyFihALR8fatSrS3z8fX7+8Se+GD2GCf5TKFizllkclgo4Dg9iiEkifoCY6AfXYGG8vcO/45+1QLR+/XpWr15Nm86dyFsgv2kMMTHY2Vk6v73xuIiIiIiIiIiIiLVTgUheOY6OjixZsgQbGxtcXV3JnTu32RLDzJkzm7y2s7MzeW5KpUqVKFy4MKtXr2b48OH88MMPVKpUiQIFCgAJRaf58+czZcoUPvzwQ+7fv0/FihUZOXKkcUXRox7d5u5RV65coVu3bpQqVYqxY8eSI0cO7Ozs8PX1TdEH1kWLFqV06dImbVFRUSavQ0NDAXjzzTctznH16lUAFi5cyBdffEGPHj2oUqUKzs7OHD16lHHjxj31h+fOzs4mr+0eFDnS4sN4ewcH4mLjzNrjHrzHiYWAZxF07Bi7N//CWP9vn3gJq6Ojo8X4EgtXiYWSRzk8aI+NszA2NsZk7NXLl/mgT18+HDOKWg9W0FSvU5ucuXPz9bhP+ON//6PygxVsU7+aSOCxY0xfvNB4LXUaNKDHW+2Z8sWXVPBI2NLublQkrq6uODg4WHzOUMyDGBySiB/+ffaRpfGJxa3kxqfEoUMBjBgxgpo1a9K1t6/ZcQcHB+LiLJ0/NlXOnxoe/d59Vnfv3jX5MzU5OSU8syu1Y4a0i9saY4a0i9saYwblx6OUH/+yxphBOf0o5Ycp5Ycp5Ycp5Ycp5Ycp5Ycp5ce/rDFmSPuclsfTVm7WRQUieeXY2tqaFUqeRtu2bZkzZw7vvvsuu3fv5rPPPjM5XqZMGebMmUN0dDT79+/niy++oG/fvmzbts3ifC4uLly/fj3J8/36669ERUUxdepUYzHl3r173L59+5mvJVGWB89imTp1qsVVO/ny5QNg8+bN+Pj4MHjwYOOxxGc0WQO3rFktbtMWevNWwnEL25s9qUXTvsOzbFly5snN9QeFtfAHq75Cb97kxrVrZE9iZVT27Nm5dPWKWXvi1ndZLawuAsjs7Iydvb3FLfJCHlxb1gfXtmXDRuJiY6ny0Go5gGq1E1YDHf/rCJWrVycuLo7N69bxVudOJv/Ap0+fnsLFi/Hbzl0mK+42blhHtmzZjM/3eVhiW/bs2S3GD5D9QXxJjc+SJcszrR4KOnWK9wf5Ubx4caZMmUJwnHkB0i1bVm5ev2HWHnIrISa3JO7/8xQYGJgm86ZkNeKTqlChApB2MUPqx22NMUPax22NMYPyI5Hyw5w1xgzK6UTKD8uUHwmUH5YpPxIoPyxTfiRQfpizxpgh7XJa5GWjApHIU3rzzTeZPHkyQ4YMwdHRkSZNmljs5+joSJ06dbhw4QKfffYZMTExFlcgJD5LaMiQIRa3mYuOjsbGxob0Dz0bZtOmTSZbwT0rb29vMmTIwLVr12jYsGGS/aKjo40rfBKtX7/+sfPb2dn9J7bnKlS8OEcPBRB1547Js4FOHT8BQGH34s98jhvXgrlx7Rq+rdqaHfv8w2E4ZcrE0q2bLY4tUaIE+/bv507kHTJm+je+k8ePA1A0iS38bG1tKVy0KKcDT5odO3n8OLnz5jVeb2hICAaDgfj4eJN+ifkUf/8+AOG3b3P//n2zfgAZH+TpzJkzsbe3Jzo6iqxZs+Lh4U5AwGHi4+NNikrHjh7H0dGRggULWIwfIEeOHLi6unLCwn8kHjt+HI+n2L4w0cWLl+jXrz9ubq7Mnj2bjBkzQph5PhYpXpy//jxkdv+DHnP/nydPT89Une/u3bucO3eOQoUKWXyGWGpI7Zgh7eO2xphB+ZFI+WGZ8sM6YwbldFKUHwmUH5YpPxIoPyxTfiRQflim/LDOmOH5xC3yMlGBSOQpubm5Ub9+fTZv3ky7du1wdHQ0Htu1axerV6+mQYMG5MmTh5s3b7JkyRLKly+f5PZU/fr1Y9euXbz99tv06NGD7Nmz888//3D37l169uxJ1apVARg+fDjt27fn9OnTzJ8/32xrtmfh7OzMgAED+Oqrr7h27RqVK1cmXbp0XLx4ke3bt+Pv70+GDBmoXr06ixYtYsmSJRQqVIh169Zx/vz5x85fpEgR1q5dy44dO8iePTs5cuQgZ86cqRZ/SlX3qctPy5azZe1PtOz4NpCwvdyOjT/j7lWSbA9iunHtGjHRMeQrVPCJz/HesA+JiY42aTv65yE2rlpN1/59yVsw6TmbNGnCvHnz+HntWtp26ggkbLn2y4YNlCjlRY4H8V2/do3o6GgKFCpkHFvLpx5zp03n1IlA3Esm/IfWxfPnOXzwT9o+uFaAfAXyYzAY2LNtG41ef93YvmvLVgCKeiQUQVxcXcmUOTO/7dpNF99exsLg3agoDu3/g/yFClK3bl0Aou5EANCgfn22bdvO9h07aNigAQChoWFs3baN2rVrmawAunjxEgD58+czttWv78OGDRtMnj+1f/8fnD9/gY4PXcOTuHnzJu/17YuNjS3Tp01N9plgNX18+GHpMjatXUubh+7/1vUb8fDyIvtD9z8mOpr8D93/5yWtlrZnyJAhzeZOy+X4aRW3NcYMyo9HKT9MKT/+ZY0xg3L6UcoPU8oPU8oPU8oPU8oPU8oPU8qPf1ljzJC2cUvybG1sXnQI8gRUIBJ5Bg0bNmTz5s20adPGpL1AgQLY2tryzTffcOvWLVxcXKhZsyZ+fn5JzlWoUCFWrFjBxIkTGTt2LPfv36dQoUL06tULAA8PD8aPH8/UqVPx9fXF09OTb7/9lvfffz9Vr6lbt27kzJmT+fPns2TJEtKnT0+BAgWoW7eusTjQt29fQkNDmTJlCgCNGzdm5MiR9O7dO9m5e/bsyYULFxg6dCjh4eH069eP/v37p2r8KeHu5UV1n3os+W4mt0PDyJ0vLzt/3sz1q1fp+9EwY79vx33K8YDD/Pj7XmPbnchIfl61GoDAI0cB+HnVD2TMnImMmTLzWtvWAJSrUtnsvHciIwHw8vammGeJJOMrW7YstevXZ9606YSFhJAnf362btxI8JWr+I0YYez35ZixHDkUwJY/9hnbmrdpzaaf1jHSz482HTuSPn16fli2HFc3N1o/VFxp1Ox1Vi9Zxrfjv+DvoFMULFKEv08GsWndOgoWKUKNB0WfdOnS0abj2yyYMZOB3brT4LXXiI+/z+Z167l5/TpDx40xi79Bg/qUXlaaMWPGcebMWVxdXPh+1Sri4+Pp88gzf3x790m4hxv/XYHWvdu7bNu2jV69etPh7fZERd1l0aLFFC9WjBZvvGEyfsOGjVy9dpXouwkrgQ4dCmD2nDkANHutGXny5Aagb78BXLp0ma7vdCEg4DDHTySssroRdQcXNzfKP/R+lSjlRa36PiyY/h23Q0PJnS8f23/+meCrV3l/5EfGfl+PHcfRQwFs2v+7se1OZCTrvl8FwIkjRwBYt2oVmTJnJmPmTLzR9t8VZUcDAjgWcBiA26GhRN+9y/J58wEo5V2O0t7eZvdWREREREREREQktahAJK+U/v37J1uQaNWqFa1atTJr/+mnnyz237NnD+7u7pQpU8akvUiRIsbiSVIWL15s1lasWDG+++67JMe0bNmSli1bmrTt2LHD5PWECRNMXlepUoWgoCCL8yV1rFmzZjRr1izJODJmzMj48ePN2h+d69HXOXPmZNasWWbjLN0LT0/PJONODQNHjWTZrDns3vwLkRERFCxalBFff4mXd7lkx92JiGDZrDkmbT8tXwFA9ly5jAWiZ/XhmFEsmJmL7Zs2ExERQZFixfhk0kTKlE++aOCUMSNffTedGZO/Ydm8+RgMBsqU96b3oPdxcXU19nN2ycLUhfNZOHM2+37dy8Y1P5I5SxYaN3+dbu/1MdlC8O1u75IrTx5+XLmSJXPmEhcbS+Hixfh4wufU8vExiyFdunRM9f+Wyd98y4oVK4iOjsHLqyRjx46hUApW2+TKlYs5s2cxceJkpkyZip2dHbVq1sTP732z5w+t/ekn/vzzkPH1gYMHOXDwIADe5coZC0SnTp0CYMHCRWbnK13e26RABDBk9CgW5ZrF9k2biYyIoHCxooyd9PVjizaR4REsmmma42uWLQcgR+5cJgWivw7+ydI5c036Jo7t2KO7CkQiIiIiIiIiIpKmVCASeQpBQUEEBgby888/M3r06BcdjjwFewcHuvbvS9f+fZPs8+n0qWZtOXLnNllR9CR8mr2GT7PXUhxfrwH96TUg6YLm1zMsFxOz58zBxxM+f+w5suXIweCPRzy2H4BPk8b4NGmcor6QsF3h6FEfM3rUx8n2e3jl0MOKFi3KdAv3/1FzZpsXHC0JOHTQ5LVTxswAnAkLsdjf3sGBHgP60yOZ+//ld9PN2nLmyW2yoig5nXr2oFPPHinqKyIiIiIiIiJiDR5+HrX896lAJPIU+vTpQ0hICC1btqR169RZMSIiIiIiIiIiIiIi8ryoQCTyFB7d1k1ERERERERERERExJqoQCQiIiIiIiIiIiIiIs9MW8xZF71bIiIiIiIiIiIiIiIirxgViERERERERERERERERF4x2mJORERERERERERERESembaYsy56t0RERERERERERERERF4xKhCJiIiIiIiIiIiIiIi8YmwMBoPhRQchIiIiIiIiIiIiIiLWrfzUr190CEk61G/Iiw7hP0criERERERERERERERERF4x6V90ACIiaSnqTsSLDuGJOGXMDMDNSOuJO1umhJivR4S/4EhSLkdmZwBu34l8wZE8mSwZMwGw5fLZFxxJyjXKWzjN5o6KiiIwMBBPT0+cnJzS7DypSTE/P9YYt2J+PqwxZrDOuBXz82ONcSvm58ca41bMz481xq2Ynw9rjBmsN26RF0UFIhEREREREREREREReWa2ttq0zJro3RIREREREREREREREXnFqEAkIiIiIiIiIiIiIiLyitEWcyIiIiIiIiIiIiIi8sy0xZx10bslIiIiIiIiIiIiIiLyitEKIpEk+Pv7M3XqVHLkyMHu3bvNqt/t27cnICCAN998kwkTJqTquQMDA9m2bRs9evQgQ4YMTzzew8ODDz/8kO7duwMwbNgwjh07xoYNG8z6JnfsWa1Zs4bhw4fz+++/4+bmRnh4OAsXLqRp06YUK1bM2O/SpUvUr1+fb7/9liZNmqR6HIkiIiL45psp7Ni5k+joaEqV8sJv0CA8PUukaPyZM2eZOHESAYcPY2dnR62aNfAb7Iebq6tJvzlz5nL02DGOHTtOSEgIvr160ru3r9l8586dY/XqHzh67DgnT54kNjaW7du3ky9fPovnj42NZc6MGWze+DMREREUK1aMnu/1oXLVqo+N/cb160yZOIk/9u0j3mCgfMUKDPDzI28S5wL4K+Aw7/XoAcDGbdtwcXVJ9hyxsbHMnTGTX35OiK9osWL07NOHSlWrpCg+/0mTOZAYX4UK9PcbRJ5H4qtVsZLF8b79+tKpa1fj6z07d7L2hzWc+ftvwm/fxsXVlZKlStGtV0+KPJR7sbGxzPxuBps2bky4p8WL0fu996iSgnt6/fp1Jk+cyP7f92EwGKhQsSKDBpvf09WrVnHwwAGOHztG8LVgmjV/ndFjx1qcc/++fcyZNYuTJ09ib2dPpcqVGTDoffLkyfPYeOJiY/l5wWL+2LqduxGR5ClSmNe7vUOJiuWTHXd4z14O7drDhaBThIeE4po9G17VqtCk89s4ZcqU5Lgbl6/weTdf7sXF8cF3Uyjg4f7YGEVERERERERE5L9DK4hEkmFnZ0doaCgHDhwwab98+TKHDx/GyckpTc4bGBjI1KlTuXv3bprM/6KEh4czdepU/v777+d+7vj4ePoPGMimzZtp3+4t3h84gJCQUHr28uX8hQuPHR8cHEz3Hj25ePEi/fr1pUvnTvy69zf69OlLXFycSd9p07/jxIkTlPDwSHbOI0eOsnzFSqKi7lC4cKHHxvDZmDGsWLKURk2b8v6QwdimS8eQAQP5K+BwsuOioqLo79ubgEOH6NLtXbr79uL0ySD69fLldliYxTHx8fFM/urLJypQfj5mLCuXLqVh0yYMHOxHunS2fDBwIEcOPz6+Ab37cPjQITq9+y7devXiVFAQ/X0tx1epShVGjhtr8lWjVi2TPv/8/TeZM2embfv2+A0dSsvWrTkdFESvd7ry96lTxn7jRo9h2dIlNGnaFL8hQ7C1Tcf7AwZwOCDgsTH36eVLwJ+H6NqtGz19fQkKOolvz16EPRLz4gULOXjgIEWKFCVd+nRJzvnrnj0M7Nef2Ng4+vXvz9udO3Hozz/p1a07oaGhycYDsOSLiexYtYZK9evRul9vbG1t+W74x/xz9Fiy41ZMmkLwhQtUauBDm3698axckV/XrmdSv0HExsQkOW7N9JnYpkv6ekRERERERETk1ZPO1vY/+yXmtIJIJBl2dnZUq1aNjRs3UqXKv6sgNm7cSPHixbWnphXZtm07f/11hC+/nEDDBg0AaNioIS1btmLGjJmM//yzZMfPnTef6Oi7LFu6hNy5cwHgVcqLPn36sm7delq3bmXsu3HDOvLkyUNoaBg+9RskOWedOrXZs3snGTNmZNGixQQFnUqy74ljx9j2yxb6DhzI2106A9CkWTM6v9WO6VOmMHP+vCTH/rhqFRcvXGDOooV4enkBUK16DTq3a8fyJUvp3a+v2Zif1qzh+rVgXm/ZklXLlyd7bwCOHDnC9i1beG/gADp0ToivcbNmvNOuPd9NmcJ385KLbzWXLlxg1sIFxviq1qjOO+3as2LpUnz7msaXv0ABGr/2WrLxvNuzp1nb6y1b0Oq1Zqxd/QPVK1TkyJEjbPnlFwa8P5BOXboA8NrrzejQ9i38v53C3AXzk5x/9fcJ93TB4kWUfBBz9RrV6fBWO5YtXsJ7/fsZ+86YPZtcuXNhY2NDnRo1k5xz6hR/8ubNy5z587CzswOgVu3adHm7Iwvnz+d9P78kx54LDOLQzt209O1B/XZtAKjcqAGfd/Plp5lz8Zs6Ocmx3ceMoHi5siZt+d2Ls2TC1xzctoPqzZqajQk8cJCTBw9Rv10bflny+PwQEREREREREZH/Hn26LfIYr7/+Or/88ovJKpENGzbw+uuvm/X9559/6NOnDxUqVKBcuXL06tWLC4+sTvHw8GD27Nn4+/tTvXp1qlSpwvDhw4mKigL+3ZYNoFq1anh4eODj4wMkbGk1fPhw6tevT5kyZWjUqBGTJk0iNjY2Va85PDycMWPGULNmTUqVKkWrVq3Yu3evSZ9du3bx7rvvUq1aNcqXL0/btm3Zs2dPknMmbiMHMHDgQDw8PPDw8ODSpUv/Z+++w6I6ugAO/6QjSAdRUFBQBCzYYq9gN9EYezf2HsuXaGJsMdHYYu8Ne6+oqGCJMYlGxYKgYq8oSAcpCt8fCyvLLi22kJz3efLEnTtz77mzw4r37Mwo6yQlJTF16lSqV69O3bp1+fnnn3n16tU7uSc/f38sLS3xTO9LAAtzc5o28eLkyVO59qG//3Hq1aunTA4B1KxRAweHkhw95qdSNy/LgQGYmppiZGSUp7on/P3R1tamTbvPlWX6+vq0btOGwCtXeBYammNbV3c3ZfIFwKGUI1WrV+f4sWNq9WOio1m5ZCn9Bg2iSJHslxjLzNfXF21tbT77XDW+Vm0+I/DK1RzjO+Xvj6tblvgcHalSvTonsvRthqTERJJymN2iibmFBQYGBsTGxqrE3Lbdm+Sevr4+n7Vtw9Vc+vS4vz9u7u7K5BCAY6lSVKteHb8sfVqseDEKFSqUY2zR0dHcvXOHBo0aKZNDAGXLlsWxVCmOHTmaY/tLv55GS0uL2q3fJHN09fSo1bIZd4OCiXwelm3brMkhgEp1awMQ+uCh2rHXr16xc9EyGrRrg1XxYjnGJYQQQgghhBBCCCH+uSRBJEQuGjVqRHJyMmfOnAHg1q1b3Lhxg5ZZZjA8fPiQzp07Ex0dzYwZM5g9ezYRERH07t1bLfmwadMm7t27x4wZMxg6dCgHDhxgyZIlADRs2JDBgwcDsGrVKrZt28aiRYsAiIyMxMzMjPHjx7Nq1Sr69evHnj17mDRpUp7u5dWrV2r/paWlqdRJTk6mT58+nDx5kq+++oqlS5fi5OTEwIEDuXHjhrLeo0ePaNSoETNnzmThwoVUqVKFAQMGcPbsWY3XtrGxUd7H6NGj2bZtG9u2bcPGxkZZZ968eWhpaTFv3jw6d+7MmjVr2LFjR57uLTfXr9+gXDkXtVlf7uXdSUxM5P797JeZe/78OREREbi5uqodK+/urtIv78vNGzcoUbIkRln2hHErr0hQhNzUPPsoNTWV2yG3KOfqpnbM1d2dx48eER8fr1K+cukyLKwsaZNpVlRugoODsdcQX0bS51ZO8d26hYubet+6ubvx+NEjErLEd9jHhyb16uNVpy7dO3TkmK9vtnHFxsYSGRnJ7Vu3+PmHacTHx1P1k+rKmEuWLIlx1j51Lw/AzWxmdKWmpnIrJARXDTG7l3fnkYY+zU1K+meEgb6+2jEDAwPCwsIIDw/Ptv2jW7exKWGPYZaEo0M5F+Xx/IiJUCxpZ2xqonbsxM49vIyLo1n3Lvk6pxBCCCGEEEIIIf79PvYycrLEXP7IEnNC5MLQ0JDGjRtz8OBBGjZsiI+PD5UrV6ZEiRIq9RYtWoSpqSlr165FP/0hb5UqVfD09GTHjh1069ZNWdfa2po5c+YAUL9+fYKCgjhy5Ahjx47FwsKCkiVLAuDu7o6FhYWynYuLC998843ydZUqVTA0NGTcuHFMnDgxx/1iQkJCcM802yGzMmXKKP984MABrl+/zr59+3B2dgagXr163L9/nyVLljB//nwAunfvrmyTmppKjRo1uHXrFtu3b1dZji+Dnp4erukJFgcHBzw8PNTqVKxYkQkTJgBQp04dzp49y5EjR+jS5e0fRIeHh1OlSmW1cisrKwDCwsIoU8ZZY9uw9AfzGXWzto+OjiY5ORk9Pb23jjM7L8LDsdRw/Yyy8DDNM0RiomNITk7W2NYqU9uMmUy3QkLYt3s3s+bPRzsf+8uEhYVhaWWZQ3yakxsxMdnHl/neSqbHV75iRRo38aJY8eKEh4WzZ8cOpk74nri4OD5v317tHIN69+HB/fsAGBYuTK++X9K6TZtMMWvoF+s3Y0JjzOnvd3bjISPmvM4OA7CwtKRIkSJcvnxZpTwqKoq7d+4o4nkehpODo+aYXkRgkumzIkNGWfSLF3mOBcBv63a0tLTwqK+6t1NMRARHNm6h7aB+askoIYQQQgghhBBCCFGwSIJIiDxo3bo1Y8aMITExkUOHDtEjfY+VzM6cOUPLli3R1tZWLotmYmKCm5sbgYGqm8TXrl1b5bWTkxMHDx7MNY60tDS8vb3Zvn07jx49Ulli6+HDh5QtWzbbtiVLlmTu3Llq5YsXL1ZZ5u3MmTOKZa0cHVWWd6tduzb79+9Xvg4NDeWXX37h999/JywsTDkTKbskVF7Urau6P4uTkxN//vnn3z5fZklJSRoTOPp6+srj2bZNVBzT1F5P/03795kgSkpMQldPV60845rZxZ+UlJheT0NbffW282bNombt2tSoVTNf8SUmJmKpa61Wrq+ML1FzfImKcl1dDX2r4b1Zuma1Sp1WbT6jX/cerFi8hJatW6NvYKByfPykicTHx/Pk8WMO7z9AUlISqampypitNY6J3Po0KV8x54WWlhaff9GO9eu8WbxwIZ+2aUN8XDwL589XLm+ZXR8CpCQlo6Or/h7rpt9LSlLel6E873+CPw4dwatzB2zs7VSO7VuxBstittRq2TzP58uQsYzmu/Ty5UuV/78rhQsXBgpWzPD+4i6IMYOMj6xkfLxREGMGGdNZyfhQJeNDlYwPVTI+VMn4UCXjQ5WMjzcKYszw/se0EP82kiASIg/q1q2Lrq4u8+fP59GjR7Roob5pe2RkJN7e3nh7e6sd083y4NbExETteF72EfL29ubnn3+mX79+1KhRAxMTE65evcrUqVNzfSCtr69PhQoV1MrNzMxUEkSRkZEEBQVpTPRkzChJTU1l8ODBxMbGMmLECBwcHDA0NGTBggU8ffo01/vITpEiRVRe57VfMktOTiY6Olr5+mVCHObm5ujr62s8V1Kyot/0NSztlUHfQF95brXrJeXe/l3QN9AnJTlFrTwjpuyur69vkF5PQ9sk1bZ+R49y9fIVNmzflu/4DAwMSE7R1L8Z1zBQOwYoEzopGtom5+G90dXVpV3HjsyePp0b169TMcvMtPIVKyr/7NW0Kd07dABgyvcTFTFrHBO59an+W8WcnYGDBxMVFcUG7/V4r10HQI2aNfmsbRt279yV4y+juvp6vEpRf48zlq7T1c9b8vLWlUA2z/oF1+pVad23t8qxu0HB/HXMn2GzZ6gt1ZgXwcHB+W6TV/fu3Xun56tatSpQsGKG9x93QYwZZHxkkPGhriDGDDKmM8j40EzGh4KMD81kfCjI+NBMxoeCjA91BTFmeH9jWuROlnIrWCRBJEQe6Orq0rRpU9atW0etWrU0Li1lampKgwYN6Nq1q9qx/Cw1lRNfX18aN27MmDFjlGW3b+dvb5HcmJqa4uLiwo8//phtnfv37xMUFMTixYvx8vJSlicmZj/D4UMJCAigZ8+eKmUHffZjZWWlcQ+XjDJra/XZLxmsM5YNy6a9qanpe509BIrl1sKfqy959iJj+bts4jcxNUFPT09ZL7PwLG2XzJtPIy8vdHV1efrkCQCxsXEAPH8WSsqrlGz7ydramscakoNv4lP/mQFFsjS7+HK7tww2RYsCiqXfclLExIQq1apz9LAvU76fiLW1tcaEZsZyeNndq0n6+53TeMotZk10dXWZMHEig4cO5cH9B1hYWuDg4MCEb79FS0sL+yzLWqrEZGlBdLj6MnIxEREAmFqqL/+X1aPbd1gxYTLFSjnQd/IEtSUG9y1fjVOF8lgWK8qL0FAA4qNjAIh+EUHEs+dYFLVRO28GVw17eL2tly9fcu/ePRwdHXNcYvPvKogxw7uPuyDGDDI+siPjo2DGDDKmsyPjQ0HGh2YyPhRkfGgm40NBxodmMj4KZszwYeIW4t9EEkRC5FGHDh148eIFHTt21Hi8Vq1ahISE4Obmlq+9WzTJmHGUdXZDYmKi2mykAwcOvNW1sqpduzanTp3CxsaGoukP3rN6s8TWm1geP35MQEAAjo6O2Z47o35+l9/Kj3LlyrF27Vrl68TEBCwtLXFxKUtAwCVSU1NVZj8EXr2GgYEBDg4lsz2njY0N5ubmBGn4ZkvgtWu45LC037tSpqwLAecvEB8Xh5GxsbL8WvryhWWyiUFLS4vSzs5cDw5SOxYUGEhxOztlAvPZs2cc8/XlmK+vWt0+3brjXLYs3ls2a7xOuXLlOHv2rFp8QYHXAHDOMT4nbgSp921Q4DWK29lROJcE65PHjwEwMzfPsR4oxl58XJxKzHFxcRhr6NOyLtnH7OTsTLCGmK8FBmJnb/dWSWFLS0ss0xM6r1+/5uL5C7iXL5/jDCJ7p9KEBFzmZXy8yt5A94JvKI47O+V4zbDHT1j6zXcUMTNl0PQf0NfwS3Tk8+dEPHvO5K691Y6tmDAZQyMjZh7Yle013ud0fENDw/dy/oIYM7y/uAtizCDjIysZH28UxJhBxnRWMj5UyfhQJeNDlYwPVTI+VMn4UCXj442CGDO837iF+DeRBJEQeVSxYkWWLFmS7fERI0bQvn17+vbtS8eOHZUzVs6dO0e1atVo3bp1nq/l5KR4mLtp0ya8vLwwMDDAxcWF2rVrs379ejZu3IijoyP79+/n/v37b31vmbVt25atW7fSs2dPvvzySxwdHYmNjSUoKIiUlBTGjBlD6dKlsbW1Zc6cOaSmppKQkMCCBQuwscl+9gAoZmSYmJhw8OBB7O3t0dPTw8XF5Z3Gb2pqqrLHU0J8LABenp74+fnjf/w4TdJnPUVGRnHMz4/69eupzAB6+FCx5F6JEvbKMk/Pxvj4+BAaGoqtrS0AZ8+e4/79B3Trpj5r7F1r5OnJlg0b2Ld7D117KvbASk5O5tD+A7iVL0/R9JhCn4aSlJiIQynHTG0bs3ThIoKDgnB1cwPg/r17XDx/ni7duyvrTZ89W+26fkeP4H/0GN9PnYK1jeaEIUDz5s1Zs2YN+/fsoUuPN/EdPqAa37PQUBITE3HIlEhs2NiTZYsWcT0oiHLp8T1Ij69z927KepGRkZhnSQIlxMezY8sWTM3McMn0zaPIiAjMLSxU6j598oQLf/2lvEZGzHt376Z7+qyz5ORkfPbvp7xKnz4lMTERx1KllOdq7OXJ4gULCQoKwi1Tn57/6zzdenTnXdm4YQPh4eGM/ebrHOt5NKiH//Zd/O5zGM9O7QHF8nJnfY/i6FoOcxvFjKaIZ89JTkrCtuSb2UgxEREs+fo7ChXSYsjMHyliZqbxGp1Hj1QuqZghJOASp/bsp+2g/hQtaa+xnRBCCCGEEEIIIf47ZIm5gkUSREK8Iw4ODuzYsYN58+YxZcoUEhISsLa2pnr16vlOgri5uTF8+HB27NjBqlWrKFasGMePH2fo0KFERkayYMECAJo1a8aECRMYNGjQO7sPPT091q9fz8KFC1m2bBlhYWGYmZnh5uamXD5PT0+PhQsXMnXqVEaOHEmxYsUYPHgwf/75J4Hpsy800dLSYvr06cydO5fevXuTnJyMv7//O4s9J15enlTYXIHJk6dy585dzM3M2L5jh2I/pUEDVeoOHDQYgEMH38zO6vtlH/z8/BgwYBBdunYmIeEl69dvoIyzM20++0ylvY/PQZ6GPiXxpeJh+sWLAaxctQqAVi1bUbx4MUCxfNvWbVsBuHTpCqBIChYpUgQtfT3ad+qkPKd7hfI09vJi2aJFREZGYF+iBId9fHj65AnjJ36vrDdt0kQCLlzkzIXzyrLPO3Rg/569/G/kV3Tp0R0dHR22bdyEuYUFnTMlM+o3aqjWbyE3FTNQataug5m5Wbb9W6lSJRp5ebF80WIiIyKxL2HPYZ+DPH3yhG++n/AmvomTuHTxIqfP/5UpvvYc2LuXr78aRefu3dHR0Wbbps2YW1jQKVMCa8/2HZw+dZI69ephY2vLi/BwDu0/wLPQUCZMnaIyo61X5y5UrV4d57JlKWJShEcPHnJw/35evXrFwGFDlTF7NvFi8aJFREREUqJECQ76+PDk6RO+mzhRea7JEydx8cIFzl28oCxr36ED+3bvYfSIkXTr0QMdHR02b9qIhYUF3dITZBlOn/qVmyE3AXj16hW3QkJYnT4e6tdvQJmyZQA4fPAQx4/7U7lyFQoXNuTc2XP4HTtGm8/b0tjTM9u+B3B0LUflBvXYv2otsVFRWNsV5+wRP16EPqPr2FHKehtmzOLW5assPP5mltiSbyYQ/vQpXp07cOfqNe5cvaY8VsTcnHLVqgDgWl19veWX6bOxylSqQMlsZlwJIYQQQgghhBBCiH8mSRAJkY3hw4czfPjwHOvs27dP5bWjoyPz5s3Lsc2NGzfUynr37k3v3r1VyoYNG8awYcNUyoyMjJg+fXqu58z6esaMGdnGo+mYsbEx48ePZ/z48dm2q1ixIjt37lQpa9u2rcrrdu3a0a5dO5UyLy8vlX2LsosZ4LvvvuO7777LNob80NbWZtHC+fwybz5bt24lMTEJd3c3pkyZnOOyeBlsbW1ZtXIFc+b8woIFi9DV1aVe3bqMHv2V2v5De/ft48KFi8rXf50/z1/nFQmbyh4emRJEMSxZskyl7Zo1axTXK1ZMJUEEMGHqFIouLcaRg4eIjY3FqYwzs+bNw6NKlRxjNzIyYtGK5SyYMxfvVatJTUujStWqjBgzWm1Gztv4bspkihaz5cihQ8TFxuLk7MzP837JNb7CRkYsWL6MhXN/Yf1qRXyVq1Zh+GjV+CpUqkTglSsc2LuPmOhoDAwNcXV3Z9zE76lavbrKOdt+8QV/nPmNs3/8QUJ8POYWFlSvUYMeX/bBydlZWW/y1KksX7KUw4cOEhsTi3OZMsydN48qVXPv06UrV/DLnDmsWb2KtFRFn44aM0atT48f9+fgAR/l6xvXb3DjumK8F7WxUSaISjqUJCY6hjWrVpGUlERJBwfGffstn3+h+jOUnR7j/4fFGm/+OuZPQmwcxUuXYtBPU3CuVCHHdo9v3wHAb+sOtWPOlSooE0RCCCGEEEIIIYQQ4t+lUFpaWtrHDkIIId6XjCXmCorCRkUACI8rOHFbGStifh4b85EjyTubIiYARMfHfeRI8sfUSLFX0tHHdz9yJHnX1K5U7pX+poSEBIKDg3F1dS0wa0tLzB9OQYxbYv4wCmLMUDDjlpg/nIIYt8T84RTEuCXmD6cgxi0xfxgFMWYouHH/mzTZsOJjh5CtYz0GfOwQ/nFkQUAhhBBCCCGEEEIIIYQQQoj/GEkQCSGEEEIIIYQQQgghhBBC/MfIHkRCCCGEEEIIIYQQQgghhHhr2loyJ6UgkXdLCCGEEEIIIYQQQgghhBDiP0YSREIIIYQQQgghhBBCCCGEEP8xssScEEIIIYQQQgghhBBCCCHemiwxV7DIuyWEEEIIIYQQQgghhBBCCPEfUygtLS3tYwchhBBCCCGEEEIIIYQQQoiCrdWWNR87hGwd7PLlxw7hH0eWmBNCCCGEEEIIIYQQQgghxFuTJeYKFkkQCSH+1f4Me/KxQ8iXmtbFAbgZGf6RI8m7suZWACTEvfjIkeRdYWNLAC6Eh37kSPKnqpUtAMuvX/zIkeTdwHJVAHgYHfmRI8m7Eqbm7+3cCQkJBAcH4+rqSuHChd/bdd6lghgzFMy4JeYPoyDGDAUzbon5wymIcUvMH05BjFti/nAKYtwS84dREGOGghu3EB+LpPOEEEIIIYQQQgghhBBCCCH+Y2QGkRBCCCGEEEIIIYQQQggh3pqWLDFXoMi7JYQQQgghhBBCCCGEEEII8R8jCSIhhBBCCCGEEEIIIYQQQoj/GFliTgghhBBCCCGEEEIIIYQQb01blpgrUCRBJIQQ6VKSk9m9ai2/HzlGfGwsJZxK88WAvpSvXi3HdudP/cpZ/xPcDb5BdEQEFjY2eNSuyWe9e2JUxPidxrdpxSpO+PoSFxuLo5Mz3Qf2p3KNT3Js9+j+fQ7v2cvNa0HcvnGTlORkVu3eSdHixVTqxURH43fAh3O/neHhvfu8fvUKe4eStOnciXpNvPIVa2xsLPPmL+b4iV9JTEykvLsbo0cNx9XVJU/t79y9x5w58wm4dAVdXR3q1a3N6NEjsDA3V9Z5HhbG/PmLuRZ0nbCwcLS0tHBwKEHHDl/waesWFCpUSFl32fJVLF+xRu06unp6eJ84plaekpzMzlVrOO17lPjYWEo6O9Gxf18qfFI9x7if3H+A/9793AoK4t7NEFKSk5m/cyvWxVT7OuhiANOGf5XteToO6EfbXj1yvFZWr1JS+H3zDoJPnCYxPh5rh5LU6d4RB4+KObYL+eMvrvj6EX7/AYmxcRiamlCsrDO1urTHyqGESt2Tq9bz6Fow0c/DeJ2cgomNFWXr1qJa29boGRrkeJ3k5GS8l6/A77AvsbGxlHZ2os+ggVStUSPXewt//pwlv8znwtmzpKWlUqlqVQaP+oridnYq9eLi4ti8Zi1nTp0i7HkYZubmVKlenR79+1LU1lbtvCeOHWP3lm3cvXULbR0dHEqVos+ggZTwapJrTEIIIYQQQgghhBAFnaTzhHgPFi5ciIuLCy4uLpQrV46qVavy6aefMnXqVG7fvq1St3HjxkydOlWlbN26dTRs2BBXV1eGDBkCwLVr1+jYsSOVKlXCxcWFQYMGUb9+fbVrDx8+HBcXF/7880+V8mPHjuHi4sKVK1fydA+7d+/GxcWFiIgIAB49eoSLiwu+vr7Ztjl79iwuLi5cvXo1T9f4p1n5488c2baDWk296DZyGFra2swdO46bl3O+n7Uz5/Dk/gNqN/Oi21fDqVCjOn679/LDoKEkJyW9s/jm/fAje7dspUGzpvQf9RVa2lpMGT2Wa5cu59ju+tVAfLbv5GVCAiUcHXKst2HZCoxNTOjUpxc9Bg1A38CAmd9PYtPKVXmOMzU1leEjx3LY9xidO33BVyOHEhEZSf+BQ7n/4GGu7Z89e07ffkN4+PARw4YOpGePrpz+7XcGD/mKlJQUZb2oqGiePQ/Dy7Mho74axtAhA7CysmTS5GksWrxc47m/Hf8/pv0wkZkzZzJz5kwGfvuNxnrLfpzOoa3bqdO0CT2/Go6WlhYzx37D9cs5//yEBF7Dd+cuEhMSKO5QMtt6do4ODJn4ndp/GQmoCp/knJTU5Mj8pVzcd4hyDerSqF8vCmlpsWfqTB4HXc+xXfj9BxgYG1H50xY0HvQllZp78fzuPTaPnUDY3fsqdUNv3cHOrRy1u7SnYf+elKjgxl+79rN7ygzSUlNzvM6sqT+wc/MWGjdvxpDRo9DS0ubbr0Zz9dKlHNu9TEhgzOChXAm4SNfevejZvz+3btxkzMDBREdFK+ulpqbyzbAR7N+1mzoNGjBszGgaNW3Cr8f9GdmvPwnx8Srn9V6xkp8mTMS6aFEGfTWSPoMGUtrZmfCwsBzjEUIIIYQQQgghhPi3kBlEQrwnBgYGeHt7AxAfH8/NmzfZtm0b27dv58cff6RNmzYALFq0CBMTE2W7e/fuMWPGDPr370+jRo0wT58xMW3aNF6/fs3y5csxMDDg+vXrnDhxgsePH2OX6Vv0Fy9exNDQkICAAGrWrKlW7ubm9t7u2d3dnW3btuHk5PTervG+3A4K5qz/cToNGUTLrp0AqNO8Gd/17MO2pcv5ftmibNsO+2EKrlU8VMocXcqy8scZ/H7Uj4aftnrr+G5eC+LXY370GT6Udt26AtC4RXOGdevBusVLmLVSc0IEoEa9etQ+1pDCRkbs3rSZOzdDNNYrWboUy3dsw6bYm5kWLb9ox4ThI9m1YRNfdO+GgaFhrrH6+Z3g8uWrzPx5Gk28GgPQpElj2n7emWXLVjH9pyk5tl+9xpvEly/ZvHENxdJjcXd3Y/CQkew/cJAv2rUFoGwZZ1atWKzStnOn9oz86n9s2bqDIYP7o62trXLcy7MR5uZmFDa2BOBCeKja9W8FBfOH33G6Dh1M666dAajXvBnf9OjDliXLmLJ8SbaxV61Xh1UND2JoVBifzVu5H3JLYz1TCwvqNmuqVr5rzTpsS9jj5Oqa7TU0eXrzFjdO/0H93t2o9nlrANwa1cN7+Nf8um4zXWZOzbZtrc5fqJWVb9qIlV8O4/LhY3gN6acs7zxjsvq92Bbl17WbeBpym+IuZTRe48qVK5w4eowBI4bTsXs3AJq2bEG/Lt1YuXAxC1avzDa+/Tt38fjhQxatW0O59M+vT2rXol+XbuzcvJm+QwYDEBwYyI2gIIb/byxtOrRXti/h4MDsH6Zx8dxf1G3UEICgq4FsXL2GgSNH0L5rl2yvLYQQQgghhBBCiPz5ty4xd/v2baZNm0ZAQABGRka0adOGr776Cj09vRzbNW7cmMePH6uVX7lyBX19feXrZ8+eMW3aNH777Td0dXVp0qQJ48ePx9j43a1OpMm/890S4h9AS0sLDw8PPDw8qFOnDn369GHfvn1UrVqV7777jocPFTMp3NzcsLe3V7a7e/cuaWlpdOzYkSpVqlCqVCkA7ty5Q/369alZsyYeHh5UrVoVUCR+Mjx48IDw8HDatm2rUp5Rr2LFiujovL+8sLGxMR4eHhQuXPi9XeN9OX/yFFraWjRq01pZpqevR/3WLbkVeI0Xz55n2zZrcgigaoN6ADy9d1/t2N9x5vgJtLS1ad62Tab49GnyaWuuXw0k7NmzbNsWMTWhsJFRrtewLV5cJTkEUKhQIWrWr0dKcjKhj5/kKVY//xNYWlrg2bihsszC3JymTRpz8tRpkpOTc2zvf/wk9erVUSaHAGrWqI6DQ0mOHjue6/WLFS9GYmIiKSmv1I6lkUZcXDxpaWnZtj934iRa2to0bvOpskxPX5+GrVsSkstYMDYxwdDo743/W0HBPHv0mDpN87+8WcjvZymkpUWFZo2VZTp6elRo0pCnN0KIDXuRr/MVNjVFR1+PpPiEXOua2FgDkJRlhk5mvr6+aGlr06ptW2WZnr4+zT/7lKCrV3mew/j99fgJXNzclMkhgJKOjlSuVo1Tfv7Ksvj065tbWKi0t7BSJAP1DN780rV761YsLC1p17kTaWlpvEzI/T6FEEIIIYQQQgjx3xQdHU2vXr1ISUlh4cKFjBo1iu3btzNjxow8tW/WrBnbtm1T+S9zYiklJYV+/fpx79495syZw+TJk/ntt98YM2bM+7olJUkQCfEB6evr8/3335OSksKOHTsA1SXmxo0bx6BBgwDw8vLCxcVFudRbVFQUS5YswcXFhR49euDs7IypqalKIujixYuULFkSLy8vLl26pHwInpSUxLVr16hSpQoAJ0+epE+fPtSqVYsqVarQoUMHfv3113zfz7Vr16hZsybjx48nNTVV4xJzLi4urFy5koULF1K7dm1q1KjB+PHjScjyQPb8+fO0bduWChUq8Omnn3LmzBnatGnDuHHj8h3X33H/5i1sS5TAMEsipbRrOQAeZDMTJDvRLxRL8xmbmb6T+O7cvIldiRJqiZ6y6Q/N72YzK+hdiEy/F5M83sv1GzcpV84FrSzfGHF3dyMxMZH797NfZu758zAiIiJxcyundqy8uys3btxUK09MTCIyMoonT56y/8Ah9u8/SMWK5THIlBDI8OlnHajXoAlVqlRh7NixRKcvoZjZvZshFCthr9bXTm6KWT33Qt5PX585qtgLqU7T/O33BPD8zj3MixdDP0ty1raMs+L43Xu5niMxLp6E6BjC7j3g6KIVJCe8pEQld7V6qa9f8zImhrgXEdwLuMLvm7ajZ2iovJYmwcHB2JcsgZGxap9mJH1u31R/X0GxbNydW7co66o+Hsq5u/Hk0SPl0nEurq4YGBqybvlyAv46T/jz51y+eJGVCxfh4uZG1epv9o8K+Os8Zd1c2bNtO180bc6nDRvTsUUr9m7fkWs/CSGEEEIIIYQQ4r9l69atxMfHs2jRIurVq0f79u353//+x9atW3mWw5deM1hZWSknEmT8l3nv7CNHjhASEsL8+fNp3LgxLVu25Mcff+TkyZN53i7k75Il5oT4wJydnSlatCgBAQFqx4YMGYKTkxOzZ89m0aJFWFtbY21tzbZt2+jTpw8tW7akQ4cOGBsbU6hQISpXrqyWIKpcuTIeHh7ExcUREhJC2bJluXr1KikpKcpZR48ePaJRo0Z8+eWXaGlp8euvvzJgwAC8vb2pkYcN4wEuXLjAwIEDadu2Ld99953Kh1pWmzZtomrVqsyYMYN79+4xc+ZMLC0tGTt2LADPnz+nf//+uLm5MW/ePGJjY5k8eTKxsbG45nOprb8r6sULzCwt1MrNLBWzD6LCw/N1voObtqClrUX1hg3eSXwRL15gnj4TIrOMshf5jC+vYqNjOLb/AO4elbCwsspTm/DwF1TRMKvKKj3WsLAwypTRvAxhWPp9WGm4VysrK6KjY0hOTlb5lsXmLdtYuGiZ8vUnn1RjyqTvVNqaFClCp07tqVShPLp6ulwNvMHmzZv561IA01avUEkGRb2IUL7vmb0ZC/mbjZMXqa9f86f/CZzcXLHNNKMwr+IjozCyMFMrNzJXlMVHROZ6ji1fTyQyfZaYroEBNTp+TgWvRmr1Qm/dYevXE5Wvze2K0+a7sRgWyX7Kc1hYGJaW6uPHMn1MvQjTPH5jY2JISU5W1svMItPYL2xkhKmZGRN+nMYvP03nf0OHKetVq1mTSTN+Qjt99mRsTAzRUVFcu3yFS+cv0KNfX2yKFuWIjw+LZs9BR0eHwX2+zPZehBBCCCGEEEIIkb1/4xJzv/76K7Vq1cLMzExZ1qJFCyZNmsSZM2do167dW5/fxcWF0qVLK8vq1KmDmZkZp06domLFim91/pxIgkiIj6BYsWKEa3igX7JkSeWScq6ursql5+zs7NDW1sbW1hYPDw9l/apVqzJv3jzi4uIwNjYmICCArl27YmxsjLOzMwEBAZQtW5aLFy+ipaVF5cqVAejevbvyHKmpqdSoUYNbt26xffv2PCWIfv/9d4YOHUqPHj0YPXp0rvWtra2ZM2cOAPXr1ycoKIgjR44oE0Tr1q1DW1ub5cuXK9fVtLe3p1u3brme+11JTkpGR1d9zVDd9EREbsuiZfbHUT9+9TlEy66dsS2R/4f9muNLQldXV608I1GSnJT0Tq6TWWpqKrMnTSEuLo6BY0bluV1SUhJ6GmLVT481KYdYM47paXgv9DK1z5wgat68CW5urkRGRnL69O+8iIhQu0bX9H2lMnzWpj0VK1Zk7Nix+O3ey2c93oy15KQkdDTEr/se+zrw/EWiIyJo0/PvjflXycloa4hZW09XeTw3zUYMJDnhJdHPnhPof4pXycmkpqaq/WJnWcKOL6Z8S0pSEk+u3+TB5UBSEhNzPHdiYiLm1upJHl39nMdERrnmsa+v1tbM3Awnl7K06dAeh9KluX3zJts3bGTW1GlMnPETAC9fvgQgJjqa7378gUZNFEv61fdsTP8u3di0Zq0kiIQQQgghhBBCCKF0584dvvhCdQ9nExMTrK2tuXPnTq7tDxw4wPbt29HV1aVatWqMHTsWFxcXlfNnTg6BYtuHUqVK5en8b0MSREJ8BGlpaTnOuMmrKlWq8Pr1ay5fvkyFChUICQlRJoEyZhd16tSJixcvUrZsWWXyJTQ0lF9++YXff/+dsLAw5VJ07u7qy0lldfLkSQ4ePMiwYcMYOHBgnuKsXbu2ymsnJycOHjyofH316lVq1KihsulatWrVVLLy75uevh6vUtQfoqekP1jPbcO5DDcuX2H1jFlU+KQ67Qf0e4fx6ZOSkqJWnpG40tNXX07tbS2f8wsX//yTUZO+p1SZMmrHU1JSiIuJIeyVYvy8jI/E3NwMfX19kjXEmpQeq34OsWYcS9bwXiRn0754sWIUL1YMgBbNm/LDtBkMGjySPbu3alxmLsOnn37KtOk/cfX8BZUEkZ6+Pq80xJ/yHvv6zNFjaGlrU8uzce6VNdDR0+O1hphfJ6coj+emeLmyyj+71KvFuqGKBG6DPt1V6ukXLoyDRwUAnGtUI/jUGfb9NJvuc6djXcpB47kNDAxISdbQp0k5j4mMcs1jP0mlzpPHjxk7eChfT55I/caKfqzToD62xYoxc+oPnPv9dz6pXVtZX0dHR1kPFPvGNWzihfeKlTx58oTixYurLYX5LmQkqDL+/y5l7P/2ruMuiDHD+4u7IMYMMj4yK4gxg4zprGR8qJLxoUrGhyoZH6pkfKiS8aFKxscbBTFmeP9jWhRsnp6eOR739/fXWB4TE4OJiYlauampKdHR0Tmes3HjxlSsWJHixYvz8OFDli1bRteuXdm7dy8lSpRQnr9IkSJ/6/xvSxJEQnwEoaGhODo6vvV5KlSogK6uLhcvXuTVq1cYGRlRtqziIW/lypVZsmQJaWlpBAQE0KpVK0AxK2Tw4MHExsYyYsQIHBwcMDQ0ZMGCBTx9+jTXa544cQJDQ0NatmyZ5zizfoDq6uqqzMgJCwvT2B8WFupLvr0vZpaWRGqY1RX1QrGcmFkelld7EHKLed98h33pUgybNgVtHe13Fp+FpaXGZbgi05c707QE19vYsmoNh3btpteQwTRu0VxjnetXrvLt0OEqZQcP7MLKypJwDcuwZZRZW1tne13r9PvQ3D4cU1OTXJN1Xp6N2L1nPxcvBlC7ds0c61rY2BAfE6NSZmZpkctYUF9+7m0kJyVx/tfTlK9WFdO/OeaNzM2Ie6G+jFx8ZJTiuIV5vs5nYGxMiYruXD91Ri1BlFWZWtXxnQfXT/+ebYLI2tqaR0+fqJVnLI1oqWF2EUARExN09fQ0LqEYkWXsH/U5SHJyMjXr1lWpV6t+PQACL1/hk9q1KWJigp6+PsbGxmhrq/6Mmpkr+ikmJobixYsTHByc3W2/tXv37r3zc2YsI/q+4i6IMcO7j7sgxgwyPjQpiDGDjOkMMj40k/GhIONDMxkfCjI+NJPxoSDjQ11BjBne35gWudPWfvsvxf+bTJgwQfnnatWqUadOHVq0aMHq1auZPHnyxwssnSSIhPjAQkJCePbsGZ9//vlbn0tfX5/y5csrE0SVKlVCK305KA8PDx48eMBff/1FVFSU8i+y+/fvExQUxOLFi/Hy8lKeKzGXJaIyjBs3ju3bt9O7d282bdqEra3tW9+HtbU1ERERauWayt6XkmWcCQ4I4GV8PIaZ9qO5ExSsPJ6TZ48fM3vsN5iYmzN61gwMChu+0/hKlS3DlYsBJMTHq+yXc+PaNeXxd+Xgzl1sXrWazzp3pH3P7JMDpco488OCedgXMQUg8WUMlpYWuJQtQ8Cly6SmpirHI0Bg4DUMDAxwcCiR7TltbKwxNzcjKOi62rHAa8G45OE+E9OXHIuLi8+xXlpaGuFPQ3HIck6HMmUICrik1te3rgUB4KhhNtXbuHD6DC8TEqjT1Cv3ytmwLuXIw6tBJCUkoJ/pW01Pb94CwKaUY77P+SopmaT43L/N9TrlFWmpaSTn8M2vcuXK8efZs8THxWNk/KZPr6ePX6eyZTW209LSopSTEzeD1cfD9WvXKGZnp3yPIiMiSEtLIzU1VfU+Xr1SxPn6tfKcTmXKcCM4mJSUFJXl6zISUebpiaL3sQfay5cvuXfvHo6OjhgavtvPiQzvOu6CGDO8/7gLYswg4wMKZswgYzo7Mj4UZHxoJuNDQcaHZjI+FGR8aCbjo2DGDB8mblFwZTdDKDcmJibExsaqlUdHR2Nqapqvc9nY2FC1alWupT8TyTh/XFycxvMXS181532RBJEQH1BSUhI//PADenp6dOjQ4Z2cs2rVqmzZsoWUlBSV/YNKlSqFubk5q1evBhTL0WXEAKp7ejx+/JiAgIA8zWoyNDRk5cqV9OrVi169erFp0yas3nL2SoUKFdi2bZtyLyWA8+fPExUV9VbnzY/qDetzeMs2TuzzoWX6fjUpycmcPuSLk5srlkVtAHgR+oykpCSKO5RUto16EcGsUV9TqJAWY+fOxMTc7J3HV6dRI/Zs2oLv3n2069ZVGZ+fzyFc3N2wLloUgOehoSQlJlHCUfNMjtycPubHirnzaNisKf1GjsixrrGJCR6fVKesueL9T4hTzOjw8mqEn/8J/I+fpImXYgmvyMgojvmdoH79OiozgB4+fARAiUx7NXk2boSPzyFCQ59ha6u4r7PnznP//gO6ZdpLKCIyEgtz9Zkxe/f5UKhQIcq5uuRYd/PmzcRERVGpxicq5TUaNeDglq0c33eA1l07A4q+PnXoMM5ubsqxEB76jKSkROwc/l5fZ/j9mB/6BgZUT5/p8neUrV2DC3t9uHrkONU+bw3Aq5QUrvmfwrasM0WsFbOeYsLCeZWUhIW9nbJtQlQ0hc1Uf5mJfhbGwyvXKOr8Zv3bxLh4dA300dZR/dXh6rHjACp1s2revDlr1qzh4N69dOyuWM4vOTmZIz4+lCvvjk36+H0WGkpSYiIlM30W1W/ciFWLl3AjKBgXN8U/Hh7ev0/A+Qt0SP9ZALAvWYK0tDRO+fnRrHVrZfmJo8cAcHZ5k4Rq2MSL4MBAjh48SKu2bRXxJCXh73sEh1KlKJoez/tcQsDQ0PC9nf99nbcgxgzvL+6CGDPI+MisIMYMMqazkvGhSsaHKhkfqmR8qJLxoUrGhyoZH28UxJjh/cYt/ntKly6tthdQbGwsYWFhansH/d3z37x5U6UsLS2Nu3fvUqdOnbc+f04kQSTEe5KamsqlS5cAxZqqN2/eZNu2bTx8+JAZM2Zgb2+f8wnyqEqVKqxatYrz588zaNAglWMeHh6cPHmS4sWLK7PNpUuXxtbWljlz5pCamkpCQgILFizAxsYmz9c0NjZmzZo19OzZkz59+rB+/XrlN+7/jt69e7NlyxYGDhxI3759iYmJYfHixZibm7+TvZrywsndjeqNGrBz+UpioyKxsbPjN98jhD8N5ctx/1PWWzFtOtcvXcb7txPKsjljvibsyRNadu3MzStXuXnlqvKYqYU55atXe+v4XMq7U8ezMeuXLCM6IpJiJew5fvAwz58+ZcR345X1fpkyjcCAAA78eUZZFh8Xh8/2nQAEpcfms3MXxsbGGBUxpnWH9gDcvBbE3KnTKGJqQqXq1Tjpe1QlBteK5bG1syM3Xp6NqFDBnclTfuLOnXuYm5myfeduUlNfM3ig6r5MAwcrklCHfHYry/p+2RM/v+MMGDiMLl06kpDwkvUbNlHG2Yk2n7VS1lu92ptLl69Qu1ZNitkWJTomBv/jJ7l2LZjOndpTMlPSqVWrdjRt6omzsxP6enpcvXaDgwcP4lDGGc+2n6nE5OzuRo3GDdm2bAUxkZEUtbfj9GHFWBgw/htlvaXTfiI44BKbz5xSliXExXFkp+Jebl5V9PXRXXsobGxMYWNjmrVvp3KtuJgYLv15lk8a1sfgLX5xLebiTNk6Nfhtw1YSoqMxK2ZL0PFfiXkeRtPhA5T1fOct4VFgMKP3bVGWrR/xNSUqlcemlAP6xkZEPQkl0O8kr1+/ol7PLsp6jwKDOLHSmzK1a2Be3JbXr17x+Np1Qv78i6LOpXFtkH2Cq1KlStT39GT14iVERURQvEQJjh08SOiTp4z57jtlvZ8nT+HKxQD8zv2pLPus/Rcc2ref70aPpkO3bujo6LBz8xbMLSxUEkRNW7Vmx8bNzJv+M7du3MShdGluXb/Bof37cSxdmroNGyrrtv68LYf37WfhzNk8evAQm6JF8Tvsy7PQUKbNmfW33wchhBBCCCGEEOK/TjvTajL/FvXr12fZsmUqexH5+vqipaWV7wTOs2fPuHDhAm3atFE5//79+5Wz3wD++OMPoqKiaNCgwTu7D00kQSTEe5KYmEinTorZDoULF8be3p5atWqxaNEinJyc3tl1qlSpQqFChShUqBAeHh4qxypXrsyJEyeUs4cA9PT0WLhwIVOnTmXkyJEUK1aMwYMH8+effxIYGJjn65qamrJ27Vq6d+9O37598fb2/tv3YGNjw8qVK5k2bRojRoygZMmSfPfdd0ydOlXjBm3vy4AJ37J71RrOHDlGQmws9k5OjJr5E+U8KuXY7sGt2wAc2rxV7Vg5j0rvJEEEMHriBDbaFuWE7xHiYmNxdHZi4pxZlK/skWO7uJhYNq5YqVK2d7MiQWBja6tMED24e5dXKSlER0Yxf9pPaucZOeHbPCWItLW1WbRgDr/MW8zWrTtITErC3d2VKZMn4JiHmU22tkVZtXIxc+YuYMHCpejq6lKvbi1GjxqhMvuoXt3aPHr0mH37fYiMjEJfX48yzs5MmfQdn36qukdWixZNuXwlEP/jJ0lKSsbOzo5+/fpRs0M79A0M1GIYPOFbdhRdw29HjhIfG0cJp9KMnTUD11zGQnxsLDtWrlYpO7hlGwBWtrZqCaKzx0/y+tUrajf5+8vLZWj+1RDObNpB8MnfSIyLx8qxJG0n/A9795yn7Fds0YS75wO4d/EyKS8TMTQ1wcGjAp+0b4u145uZclYOJSlRwY3b584THxFFGmmY2RalZqd2VP+8Ndq6Of9KMW7yRNYut8XvsC+xsbGUdnZm2tw5VKxSOcd2hY2MmLN0CUt/mcemNWtJS0ujUpXKDB71lXLPIABTM1OWeK9l3fKV/HH6N3x278HE1JTmn7am75DBKrMm9Q0MmLVkESsXLsJ3/wESExNxKluGH+fOoXqtnPetEkIIIYQQQgghxH9L586d2bBhA0OHDmXgwIE8e/aMmTNn0rlzZ+UqJAC9evXiyZMnHDumWM3Ex8eHEydO0KBBA2xsbHj48CErVqxAW1ubPn36KNs1a9aM5cuXM3z4cEaPHs3Lly+ZOXMmDRs2pGLFiu/13gqlpaWlvdcrCCHE33Dv3j1atGjBTz/99Fb7Nf0Z9uQdRvX+1bQuDsDNyPCPHEneZV1iriAobKxYcu1CeOhHjiR/qlop9vxafv3iR44k7waWUySoH0ZHfuRI8q6E6d+fEZmbhIQEgoODcXV1LTDLHRTEmKFgxi0xfxgFMWYomHFLzB9OQYxbYv5wCmLcEvOHUxDjlpg/jIIYMxTcuP9Neh3a8bFDyJZ3y7+/5cft27f54YcfCAgIwMjIiDZt2jBq1CiVLzP36NGDx48fc/y4Yjn+S5cuMWfOHEJCQoiNjaVIkSLUrFmTESNGqC1N9+zZM6ZNm8Zvv/2Gjo4OTZo04dtvv1Vux/G+yAwiIcQ/wpw5c3BxcVFm05cvX461tTVNmzb92KEJIYQQQgghhBBCCCHy4N+4xByAk5MT69aty7HOhg0bVF57eHiolWWnaNGiLFy48O+G97dJgkgI8Y+QkpLC7NmzCQ8Px8DAgE8++YSvv/4aIyOjjx2aEEIIIYQQQgghhBBC/OtIgkgI8Y8wbtw4xo0b97HDEEIIIYQQQgghhBBCiP8ESRAJIYQQQgghhBBCCCGEEOKt/VuXmPu3kndLCCGEEEIIIYQQQgghhBDiP0YSREIIIYQQQgghhBBCCCGEEP8xssScEEIIIYQQQgghhBBCCCHemiwxV7DIuyWEEEIIIYQQQgghhBBCCPEfUygtLS3tYwchhBBCCCGEEEIIIYQQQoiCbZDfvo8dQraWebX52CH848gSc0IIIYQQQgghhBBCCCGEeGuyxFzBIgkiIcS/mv+Tex87hHzxLO4IwPXI8I8bSD6UM7cCICHm6UeOJO8KmxQDICgi7CNHkj9uFtYAhMZGf+RI8s62iCkAMQ8OfeRI8s6kZEsADj+685EjyZ8W9qXfy3kTEhIIDg7G1dWVwoULv5drvA8FMW6J+cMoiDFDwYxbYv5wCmLcEvOHUxDjlpg/nIIYt8T8YRTEmKHgxi3ExyLpPCGEEEIIIYQQQgghhBBCiP8YmUEkhBBCCCGEEEIIIYQQQoi3JkvMFSzybgkhhBBCCCGEEEIIIYQQQvzHSIJICCGEEEIIIYQQQgghhBDiP0aWmBNCCCGEEEIIIYQQQgghxFuTJeYKFkkQCZEPn332GTdu3GDTpk1Uq1btvV4rPj6etWvX4uvry8OHDylUqBDOzs60atWKrl27oq+vn+dzLVy4kDp16lClSpX3GHHBkpKcjM/a9Zw75k9CbBx2pUvxad9euFarmmO7gF9/48KJU9y/cZOYiEjMbaypUPMTWvTsRmFjY5W6OxcvI+TyVV6EhpKSnIJFURuqNmqAV6f2GBga/q2YN69YxQlfX+JjY3Fwcqb7wP541Pgkx3aP7t/Hd89ebl4L4s6Nm6QkJ7Ni906KFi+mVnfVvPlcu3iJ56FPSU5KxsbWlrpenrTt1gXDwoXzHXNmsbGxzFuwnOMnT5OYmER593KM/moIruXK5qn9nbv3mTN3EQGXr6Krq0u9OjUZPWooFuZmanUfPnrMkmVrOHvuAgkJCdjYWNPUqxHDhvTL07VSkpPZsnIVJ32PEB8Ti4OzE10HDsDjk+o5tnt8/wFHMvr6pqKvl+/egU0x9b7O7Omjx4zs1oOU5GRmrVmFs2u5HOsnJyezZtlyjh46TGxsLE7OzvQdPIjqNWvkem9hz5+zaO4vnP/zLKlpaVSuWpVho0dR3N5OpV6DaprH1YBhQ+nWu5dK2fmz59iwZi13b93i9evX2JcsSbtOHWnWqmWu8WSIjXvJgpX7OXnmKolJKbi7lOSrgZ9RrkyJHNulpqZy8Nh5Tvx2hRu3HxMTm0BxWwuaNqxM9w6N0NfTzbbtpcA79B+1EIBjO3/AzNQ427qZvUpO5tC6DZz3O87L2DiKlS5Fqz49camW82fs5dNnCDj5Kw/TPz/MrK1wr1mDpj26qH1+ZBb+5AkzvhzEq5QURi+ZT0mXvP3MCCGEEEIIIYQQQuREEkRC5FFISAg3btwA4MCBA+81QRQREUGvXr14+vQpvXr1ompVRdIiICCAFStWoKWlRa9evXI5yxuLFi2icOHCkiDKZMPPc7h46jSN23+OjZ0dfxw5yuJx3/PVLzNxrlA+23ab58zH1MqST7waY1HUhsd37nFq7wECz/7F+BWL0cuUuLt//SZOFcpTs3lTdPV0eRhym6Obt3HjQgCj5s9GK5/fqJj/w4/8fvwEn3buSPESJfA/eIipo8cybfFC3DwqZdvuxtVADm7fSYlSjtg7OnD3Zki2dW8FXcfNoxKe9i3R09Pnzs2b7Nqwkct/neenZYvzHXOG1NRUhn81npsht+jVozNmpqZs37mP/oO+YtP6FTiUtM+x/bNnz+k7YARFjI0YNqQ/L1++ZP3GbYTcusNG72Xo6r5JAty4EUK/QV9hY21Nj24dMTU1ITT0Oc+ePc9zvAum/cgfx0/SulNHipew5/jBw0wbPZapixfgVimHvg4M5OCOndg7OmLv4MDdkOz7OrO18xegra1NSh7jmz55Kqf8/enQtQt2JUrg6+PDNyO/Yt7ypVT08Mi2XUJCAl8NGkx8XDzd+vRGR0eHHZu3MGLgQFZv2oipmZlK/Wo1aqglecpkSU6cOfUr3439H+4VKtB7QH8KFSrECT8/fpo0meioKEYMGpzr/aSmpvLVdysIufOEHh0bYWpizM4DvzFo7GLWLx5DSXvrbNsmJqUwdfYWKrg68EWr2pibG3M16B4r1vvyV0AIS2cNoVChQhqvOWvRbgwN9HiZmJxrjJltmjmXy7/+RoMv2mJtV5xzR/xY/u1Ehs2ZQekcPj+2z12AiaUFVT0bYW5jw9O79zi9bz9B5/5i7LKFKp8fme1ZsgItbW1IyesIEUIIIYQQQgghhMidJIiEyKMDBw6gpaVF9erV8fX1ZcKECSoPpd+lKVOm8PDhQ7Zv307Zsm8extauXZtu3bpx586d93LdjyExMREDA4MPes17wdc5f/wknw/qR5NOHQCo0cyLaX0GsGf5Kv63aF62bftPmUDZLMmYkmWdWT9jNn/5HadOqxbK8jEL56q1t7Yrxu6lK7l//Qal3FzzHPPNa0GcPuZH7+FD+bxbVwAatWjO8G49WLd4CTNXLs+27Sf16rHpWEMKGxmxZ9PmHBNEM1YsVSuztbNj7cJFhAQF4VI++4ffOfHzP8XlK4HMnDGZJp4NAWjSpBFtv+jOshVrmT7t+xzbr167icSXiWzesIJitkUBcHcrx+BhY9l/wJcv2n0KKB76T5j0E6UcS7Ji6TwMDPI+0y7DzWtB/HbMn17DhtA2va8btmjOyG49Wb9oKTNWLsu2bfW6ddl41BdDo8Ls3bQ5TwmigD/PEnD2HJ9368qOdd651r9y5QrHjx5l8MgRdO7RHYBmrVrSp1MXli1YyJI1q7Ntu3fHTh49eMgy73W4ursBUKNObfp06sK2TZsZMHSISv0SJUvStGULTadS2r19B5ZWVvyybAl6enoAfNruc3q274ivj0+eEkT+py9zJegeM77vhWd9DwCaNPDgiz4/sWK9L9O+7ZFtW10dbVbNG0El91LKss9b1qJYUQtWrPflXMBNalRxUWu35+AfPAuLok2Lmmzd82uuMWa4f/0GASdO8dnAvjTu2B6A6k29+LnvIPavWMNXGn7uM/Se9B1lPCqqlNmXdWbzz3O44HeCWq2aq7UJ/usC189fwLNTB45u3JLnOIUQQgghhBBCiI9BlpgrWOTdEiIP0tLS8PHxoWbNmvTp04eoqChOnz6tUickJIRu3bpRoUIFmjZtyv79+xkyZAg9eqg+2Lx9+zaDBw+matWqeHh4MGDAAB48eKA8/vjxY44cOULnzp1VkkMZzMzMlDOBnj9/zvjx4/H09KRixYo0bdqUuXPnkpz85tvwLi6KB6MzZ87ExcUFFxcXzp49q7yv1atX06xZM8qXL4+npyfr1q1Tu+axY8do1qwZFSpUoGPHjly7do1q1aqxcOFClXpbt25Vnqtx48YsWbKE1NRU5fHdu3fj4uJCQEAAffr0wcPDg5kzZzJ8+HA6d+6sdt3NmzdToUIFoqKiNL0tf9vFU7+hpaVF3dZvZkbo6ulRq2Vz7l4LJuJ59jNNsiaHADzq1QEg9P4DtWNZWRZVJDcS4uLyFfPvx0+gpa1Ns7ZtlGV6+vo0+bQ1N64GEvbsWbZti5iaUNjIKF/Xy8ymmC0A8bH5izkzv+OnsLQwx7NRfWWZhbkZTb0acfLUGZUxq4n/iV+pV6+WMjkEULNGNRxKluCo3wll2R9//sWt23cZ0K83Bgb6vExM5PXr1/mK9Y8TJ9HS1qZplr72+rQ1NwIDCc+lrw2N8r4U36tXr1j9y3xad+yAbZYl3rLj6+uLtrY2n37eVlmmr69Pyzafce3KVZ6HZh/fKf/jlHNzUyaHABwcHalSvRonj/lpbJOUmEhSUlK250yIj6dIkSLK5BCAjo4OpmZm6OvnLfl7/NfLWJgXoVHdN8kTczNjvBp4cOqPQJKTX2XbVldXRyU5lKFR3QoA3Hug3h/RMfEsXXeYgb2aU8Q4f8s9Xk7//KidKRmsq6dHjRbNuBcUTOTzsGzbZk0OAVSsWxuAZw8eqh17/eoVexYvo8HnbbHMZZlCIYQQQgghhBBCiPySBJEQeXDx4kUeP35M69atqVu3LmZmZvj4+CiPJyYm8uWXXxIVFcWsWbMYPXo0K1eu5Nq1ayrnefjwIZ07dyY6OpoZM2Ywe/ZsIiIi6N27t/IB+fnz50lLS6NevXq5xhUZGYmZmRnjx49n1apV9OvXjz179jBp0iRlnW3btgHQo0cPtm3bxrZt23B3dwfgxx9/ZMGCBbRt25YVK1bw+eefM3v2bLZsefMt9aCgIEaOHImzszOLFi2ibdu2jBo1Su2B/oYNG5g0aRL16tVj2bJlfP755yxatIhZs2apxT1mzBhq1qzJsmXLaNOmDR06dCAgIEBtZtSuXbto0qQJZlmWvXpbj27dwqaEPYZZkiaO5VzSj+dvhlZMRCQARqamasdev35NXHQ0UeEvCPrrAvvXeGNQuLDyWnl15+ZNipcooZboKeOmeNCf06yg/Hr96hUxUVG8CAsj4OxZNi1fiWHhwspr/R3Xb4RQrlxZtSXq3N3LkZiYyP0Hj7Jt+/x5GBERkbi5qvdZefdy3Lh5S/n67LkLAOjp6dK15wBq12tOrXrN+ebbKURHx+Qp1rvZ9rVr+vF319cHtm4nLjaWDn3yvmRkcHAw9iVLYpRlz5qMpE/IzZsa26WmpnLn1i1cNMxcc3V35/GjRyTEx6uU+/r40KxeA5rWqUfPDp045uur1tajahXu3rnD6qXLePTwIY8fPcJ71WpuBAfTpWf2M38yu3HrMeWc7dXHh0tJEhOTefA478sDZngREQuAmYn63j7L1h3G0qII7VrVzvd5H926jbW9HQZZxodD+l5aj2/dztf5YpWfHyZqx07t2ktCbBxNu6sn0IUQQgghhBBCCCHeliwxJ0Qe+Pj4oK+vT9OmTdHV1aVZs2bs37+f+Ph4jIyM2LVrFy9evGDLli3Y2yv2UilfvjxNmzalZMmSyvMsWrQIU1NT1q5di376XhNVqlTB09OTHTt20K1bN56lz04olodvi7u4uPDNN98oX1epUgVDQ0PGjRvHxIkTMTQ0xCN9P5JixYop/wzw4MEDNm7cyJQpU+jUqROgWMIuMTGRxYsX06lTJ7S0tFi+fDn29vYsXLhQ+fDWyMiIr7/+Wnmu169fs3jxYlq1asWECRMAqFu3LikpKaxZs4YBAwZgbm6urN+5c2cGDBigfJ2amkrx4sXZtWsX//vf/wC4efMmgYGBjB49Otd+yK/oFxGYWliolZtaKsqiw1/k63xHt2xHS0uLKg3Uk3oPbtxk1tCvlK+LlrBn0I+TMTJRfxick8gXL7CwslQrN08viwgPz9f5cnLr+nW+7jdQ+drOoSTfzfqZIhoeYOdVePgLqlRWn31llR5/WFg4ZZxLa2wblv5+WGm4fysrS6KjY0hOTkZPT48HDx8D8M34ydSu9Qlf9u7GzZu3WbtuE8+ehbF21UKN+9FkFvHiBeaW77+vI1+8YMfadfQePjRfM7zCwsKw1NAXllZWALwI0zyDJSZG0U8Z9TKzSC8LDwunZHos5StWpFETL4oVL054WBh7duxk2oSJxMfF0bZ9e2Xbnv368vTJEzasWcv61WsAMDAwYOrPM6jbsEGe7ik8IobKFZ3Uyq0sFGMuLDwG51LF83SuDOu3H8eosAG1P1FNiIXcecKeg38w78f+aGvn/3syMRERmFiqf36YpH+mRL+IyNf5/LfuQEtLC4/6ddWuc2TjZtoM7KeWjBJCCCGEEEIIIf6p/s6/tcXHIwkiIXLx6tUrfH19adCgAUWKFAHg008/Zdu2bRw7doy2bdsSGBhI2bJllckhAHt7e8qVK6dyrjNnztCyZUu0tbV59UqxZJKJiQlubm4EBgaq1M3tITYolojz9vZm+/btPHr0SGUZqIcPH2pcoi7D77//DkDTpk2VsYAiSbRy5UqePn2KnZ0dV69excvLS+Wb/Z6enirnunPnDpGRkTRvrrp/RsuWLVm+fDlXrlyhQYM3D4obNmyoUk9LS4svvviCrVu3MmrUKHR0dNi1axd2dnbUqlUr137Ir5TkZHT01PeP0k1fIislOfvltLL6y+84vx/ypUnnDthoWCLM1qEkI2ZPJ+llIneuBXH9QgBJL1/mO+bkpCSNe15lLOuVnMMSYPlVolQppiyYR1JiItevXOXyX+dJ/BsxZ5aUlIyehvj10+PPaQmzpCTFbDVN7fUytdfT0+NlgiJON7dy/PiDIlnp1bgBBgb6LFy8krPnLlCzRrUcY01OSkI3h/GRnJTzcnh5tX7xUoraFcfrs0/z1S4xMRELXWu1cj09RdI5u75MTlSU5zSOMrddvGaVSp2WbT6jf/eerFy8lBatW6OfvneYrq4uJUqWpIFnY+o3akRqaioH9uxh2sRJzFm8ENvaqokPTZKSU9DVVf+VRC/9fUhKTsn1HJmt3XyMcxdv8s2I9mpLyM1evJtan5SjZrVy2bTOWUpSEjoa+lDnb3x+XPA/wZ+Hj9C4U3uss3x+HFixBstixajZUn1fIiGEEEIIIYQQQoh3QRJEQuTizJkzRERE0KhRI2JiFEtUlS1bFmtra3x8fGjbti3Pnz/HQsOMFAsLC5UHrpGRkXh7e+Ptrb4RfcZD26Lpe9Q8ffqUUqXU99XIzNvbm59//pl+/fpRo0YNTExMuHr1KlOnTs3xgXtGLGlpadSsWVPj8YwEUVhYmNq9GRsbK2dAAURHRwNgmWXWRcbrjOMZrDTMYGjfvj1Llizh1KlT1K9fn/3799O1a1e1JafeBV09PV5peOCckr5snq6evtoxTW5ducrGWb/gVr0qn/Xro7GOoZER5aoq9oyqVLc2f/kdZ9mEKYxfvgh7Z/UZE9nR09cnJUU95oyl/vT08xZzXhQ2MsLjk+oA1Khfj1NHjvLT1+OY672GUmXK5Ng2JSVFbSk3c3Mz9PX1SNYQf1J6/Po5xK+vn56YyeH+M9rrGyjqNm+mmsRs0dyLhYtXcvnKtVwTRHr6+qTkMD709PXUjuXXjcBATvkeYcrC+fke4wYGBqSkqCepktMTE9n1pZ6BojyncZTT+6Crq0u7jh2YM30GN65fp2L6jMT5M2cRFBjIyo0blPfSqIkXvTp2YuHsuXjufpMgSkl5RXRsgsp5zU2N0dfTJSVFfZ+h5PT3QV9Dwi47R08GsHTdYdo0r0H7T+uoHbsSdI+tK7/OpnXudPX1eaWhD1/l8/Pj9pVAts6eR7nqVWnVt7fKsXtBwZz3O86QWdP/1mdgQkJC7pXy4WV6gvjlWyaKNSlcWLFn17uOGd5f3AUxZnh/cUvMqgri+CiIMYOMj6xkfKiS8aFKxocqGR+qZHyokvHxRkGMGd7/mBbi30YSRELk4sCBAwCMHz+e8ePHqxyLjIzkxYsX2NjYEBwcrNY2IiICo0xLA5mamtKgQQO6du2qVjejXvXq1SlUqBCnT5+mdu2c98fw9fWlcePGjBkzRll2+3be9r8wNTWlUKFCbN68WeOMgozklLW1NRERqksmxcXFqSSgMvYIylrvxYsXymvlxtbWlnr16rFr1y5ev35NZGQk7dq1y9O95JeppQVRGpaRy1gaylTD8l1ZPbp1m6XfTaZYKUf6TfkebW3tPF3bo35dmD6L8ydO5StBZG5pyYsw9aXNItPvw0JD0u1dqdWwAfOm/MDpY365JoguXwmk/6BRKmUH923BysqScA19nlFmbZ19/Nbp70d27U1NTZQzYKzT+8HSwlylnoW5GQCxsbE5xg9g8QH6ev3ipbhWqkTR4sV4/vQpADFRUenXCScsNBRrW1uNba2trXmc3iazF+lL31laq88uAsVsRT09PWW9zDKWzbPK4X0AsElPYMemJwFTUlI4uG8/XXr2UElk6OjoUKN2bfZs36Fc/g/gStA9Bo1drHLOfRu+x8rChPAX6ntEhUcoyqyt8ra84dkLN5g8cxN1argy7qsOascXrNiPZ/1K6Oro8CRU8fMeG6f4R8OzsChSUl5jbZXz55WJhQXRGvowJv3zz1TD8nNZPb59h1XfT8G2lAN9Jn2n9vmxf8UaSldwx6KYLS9CFcuOxscoEu0xLyKIfPYc86I22Z5f099H78K9e/fe+TmrVq0KvL+Y4d3HXRBjhvcft8SsUBDHR0GMGWR8ZEfGh4KMD81kfCjI+NBMxoeCjA91BTFmeH9jWuRO+z182Vu8P5IgEiIHL1++xN/fHy8vL3r27KlyLDw8nNGjR3Po0CHKly/P3r17efjwISVKlADg0aNHXL9+XeUvkFq1ahESEoKbm1u2CYXixYvTrFkztm7dyhdffIGzs7PK8ZiYGG7fvk3lypVJTExUS+5kJLQy09XVVZtRlLF0W1RUFI0bN862DypUqMDJkycZN26c8gGwn5+fSp1SpUphYWGBr68vTZo0UZYfPnwYXV1dKlasmO35M+vQoQMjR44kIiKCWrVqYWenvmTbu2Dv7MTNgMu8jI/HMFMC717w9fTjmvfCyRD2+AmLvplAEXMzhs74AQNDwxzrZ/YqOYW01FRexsXnK+ZSZctw9WIACfHxKvvV3Lx2TXn8fUlJSSE1NZWEPMRctowzSxfNVimztLTApawzAQFXSE1NVUkkBAYGY2BggENJ+6ynUrKxscbc3Iyg4BtqxwKvXcelzJufEVfXsrAXnmdJ8ISFKZI75umJopw4lsmur4OAd9PXYaHPCAsNZWA79STGT1+Po7CxMZuO+WpsW65cOc6ePUt8XBxGxsbK8qBAxVgok83SklpaWpRyduJGkPov4EGB1yhuZ5frXkhPHiv2eDJN78eY6Ghev35NamqqWt1Xr16RmpqqcqxM6eIs+nmQSj1LiyKUdbIjIPCO+vi4fh8DAz1K2mWfDFHWDb7P/yavwbVMCaZP6IWOhs/YZ2FRHDl+kSPHL6od6z54DmVKF2fz8v/leB0759LcunSZxPh4lb2B7qePT7tcEr/hT56wfNwEjM1MGfjTVPQ1fH5EPn9O5LPn/NCtt9qxVd9PwcDIiBn7d2Z7DVdX12yP/R0vX77k3r17ODo6YpiPz7v8eNcxw/uPuyDGDDI+oGDGDDKmsyPjQ0HGh2YyPhRkfGgm40NBxodmMj4KZszwYeIW4t9EEkRC5MDf35+EhAR69OhBjRo11I6vWrUKHx8fvL29WbZsGYMGDWL48OEALFq0CCsrK5W9hEaMGEH79u3p27cvHTt2xMrKivDwcM6dO0e1atVo3bo1AJMmTaJnz5506dKFXr16KZNMly9fZuPGjfTv35/KlStTu3Zt1q9fz8aNG3F0dGT//v3cv39fLc7SpUvj7+9PtWrVMDQ0pFSpUpQqVYpu3brx9ddf07dvXypVqkRKSgr37t3j7NmzLFmyBICBAwfSvn17hg8fTseOHXny5Alr1qxBX19feW/a2toMGTKEadOmYWFhQYMGDbh06RIrV66kV69emJubq8WkScOGDTE3NycgIIC5c+fm453Kn8r16+G3bSe/+RyiSSfFA/qU5GT+8D2Ko2s5LGwUD6Mjnj0nOSkR25IllW2jIyJY+PW3FNIqxPCZP1IkffZUVglxcegbGKCto/oxe+bQYQAcXLLfH0qT2o0asXfTFo7s3cfn3boqY/b3OURZdzes02d2hIWGkpSYhL2jQ77ODxAXG4uBoSE6WWI+tk+RdHR2zX3PFhOTIhqXcPNq3AA//1P4n/iVJp4NAYiMiuKY/0nq16ulnGEC8PCRIglRItOeLJ6N6+Pjc4TQ0OfY2iren7PnLnD/wUO6dW2vrNewfh1mzVnI/gOH+ax1c2WyYc++gwDU/CTn5eUAajduyL7NWzi6dx9tM/X18YOKvrZ6B309ZNzXJCUmqpRdvXCRgzt20nv4UOwcsj9n8+bNWbNmDQf27KVzj+6AYom4wwd8cCtfHhtbRXzPQkNJTEzEwdFR2bZh48YsX7SY60FBlHNzA+DBvfsEnD9Pp+7dlPWiIiMxy/JzmxAfz84tWzE1M8Ml/Zd4M3NzjIsU4fSJk3w5aKAyYZ2QkMDvp09T0tERg/S9igBMihSmRhUXtXtqXL8S/qcvc+K3K3jW91DEEB2H/6+XqVfTHT29N2Py0RNF8s+++JvZTnfvP+OrCSspZmvBL9P6Y5DNMoCzJn+pVnb0ZADHTgYw5euu2FibaWyXWaX6dTmxfRe/HzxM446KsfcqOZmzR47h4OqCuY1iBlfks+ckJyVRtGQJZduYiAiWfv0dhQppMejnHzHO5vOj0+gRyj2jMoRcuszpPftpM7AfNpnOqcn7WvrA0NDwvZ37fS7X8L7iLogxg4yPzApizCBjOisZH6pkfKiS8aFKxocqGR+qZHyokvHxRkGMGd5v3EL8m0iCSIgc+Pj4ULx4cY3JIYC2bdvy008/8fz5c9asWcOkSZMYO3YsRYsWZciQIezdu5ciRYoo6zs4OLBjxw7mzZvHlClTSEhIwNramurVq+Pi8uahqYWFBVu3bmXdunUcPnyYFStWoKWlhbOzM/369aNz584ADB06lMjISBYsWABAs2bNmDBhAoMGqX5Df+LEifz000/079+fxMRE1q9fT40aNZgwYQKlSpVi27ZtLF68GCMjI0qVKkXz5m82RXdzc2PevHnMmTOHYcOGUaZMGWbMmEHPnj1V7q1Hjx7o6Oiwbt06tmzZgrW1NcOGDVOLJSc6Ojo0btxYbSbSu1bKrRxVGtRj38q1xEZGY2NXnD+PHONF6DO6/2+0sp739FmEXL7CkhNHlGWLv/6O8CdPadK5A7euXuPW1WvKYybmZrhWUyTzbl66wo6FS6hcvx429sV5lfKK21cDuXT6DCVdyvJJk+xnbWniUt6dOp6N2bBkGdERkRQrYc/xg4d5/vQpw797s/ThvCnTCAwIYN+fZ5Rl8XFxHNyumG0QfOUqAId27sLI2BijIsa06qB4yB14MYCVc+dRu1FDipcowatXKVy7dJk/T57C2bUcDZo3y1fMmXl5NqDCVjcmT/2ZO3fuY25myvade0lNTWXwANX9mwYOUbwHh/ZvU5b17d0dP7+TDBj8FV06tych4SXrN26ljHNp2nzaQlnPysqSvn16sHT5GoaO+JpGDepyM+Q2u/f60LyZJ+7uuSe5yrq7U7txIzYuXU50ZBTF7O04cciX50+fMvTbccp686dO41rAJfb88ZuyLD4ujkM7svT1jl0YFTHGyLgILTt8AYBHjU/UrhsfFweAe+XKOSbjKlWqREMvT1YsWkxkRAR2JUpwxOcgoU+e8M333ynr/TRxMpcuXuTU+XPKsrYd2uOzdx/jvhpNp+7d0NHRYfumzZhbWKgkiPZs38Fvp05Ru149bGxteREezuH9B3gWGsp3U6coE0Ha2tp07t6NVUuXMbj3lzRr1ZLU1FQO7ttP2LPnTPhhaq79DeBZrxJbXR2YOnsrd+4/w8zUiJ0HzpCamsqAns1V6g75WpG83r9xoqLfEhIZPn4ZsXEJ9OjQiN/OBqnUty9uRUU3RwAa1qmgdu2btxUJydqfuGJmaqx2PCtH13J4NKiHz6p1xEVGY2VXjL+O+hMR+owuY79S1tv482xuX77KPP/DyrJl477nxdNQGndqz92r17ib6fOjiLkZLtUU+5WVq6a+dEHGrEOnShUomc8EsxBCCCGEEEII8aHIEnMFiySIhMjBsmXLcjzeq1cvevXqpXy9efNm5Z+joqKYPn06vXv3Vmnj6OjIvHnzcr22sbExw4YNY9iwYdnWMTIyYvr06WrlN26oLsVVrVo1du/erVavUKFCdO/ene7du+cYS9OmTWnatKny9R9//MGrV6/UpgJ36dKFLl26ZHuedu3a5bivUGpqKr/99huffvqpyoyS96HXt19jscabc8f8SYiNxc6pFEN+mkqZSuoPkDN7dPsOAMe27lA7VqZSRWWCyK6UI2U9KnHl9z8UexulpWFVvBgtenajSacO6GjY9yk3X02cwCbbopz0PUJcbCyOzk5MmDML98oeObaLi4ll04qVKmV7N28BwMbWVpkgcnAqTYWqlTl3+jQR4S+ANGzt7Oj0ZR8+795V415VeaWtrc2ieT/zy4KlbN22i8SkZNzdXJgyaRyOjiVzbW9ra8Oq5fOZM28JCxatQFdXh3p1ajL6qyFqY6V/3x6YmBizddseZs1dhJWlBX37dGdA/17ZnF3dyIkT2LxiFafS+9rByYnvZs/Mta/jY2PZvGKVStm+LVsBsLa1VSaI3ta3Uyazpthyjh46TFxsLKWdnZkxby6VqlTJsV1hIyPmLV/Korm/sGH1GlLT0vCoWoVho0epzBgqX6kSgVeu4rN3HzHR0RgYGuLq7sY3EydQpXp1lXP26PsltnbF2bVlG+tWriIlORmnMmWY+vMMGnjmLRGqra3FvB8HsGDFfrbtPU1ScgpuZUswaWwXHEvkvLxcdEwCz8KiAFi02kfteKsm1ZUJonel27ixmK9dz3k/fxJi4yheuhT9f5yCU8WcPz+epH9+HN+mvjycU6UKygSREEIIIYQQQgghxIdQKC0tLe1jByHEv8GKFSuwsrLCzs6OsLAw1qxZw927dzl06BDFihX72OG9lcmTJ1OrVi3MzMy4desWS5YswcbGhl27dqnsF/J3JScnc/36dY4cOcLatWvx8fGhdOmc9wHKK/8n997JeT4Uz+KOAFyPDM+54j9IOXPFUl8JMU8/ciR5V9hE8TMZFBH2kSPJHzcLxfJlobHRHzmSvLMtYgpAzINDHzmSvDMp2RKAw4/ufORI8qeF/bv53MwqISGB4OBgXF1dC9QSDQUxbon5wyiIMUPBjFti/nAKYtwS84dTEOOWmD+cghi3xPxhFMSYoeDG/W/y/V8nPnYI2fqheqOPHcI/jswgEuId0dLSYunSpTx79gxtbW0qVaqEt7d3gU8OAcTExPDDDz8QFRWFsbEx9erV45tvvnknySGA58+f06FDBywsLPj+++/fWXJICCGEEEIIIYQQQgjx4cgScwWLJIiEeEf69etHv379PnYY78XcuXPf6/nt7e3VlsUTQgghhBBCCCGEEEII8f5IOk8IIYQQQgghhBBCCCGEEOI/RmYQCSGEEEIIIYQQQgghhBDirb2rLSnEhyHvlhBCCCGEEEIIIYQQQgghxH+MJIiEEEIIIYQQQgghhBBCCCH+Y2SJOSGEEEIIIYQQQgghhBBCvDXtQoU+dggiHwqlpaWlfewghBBCCCGEEEIIIYQQQghRsP146bePHUK2vvOo+7FD+MeRJeaEEEIIIYQQQgghhBBCCCH+Y2SJOSHEv1p4XOzHDiFfrIyLAPA4JurjBpIPdiZmAEQUoL62SO/n+ISEjxxJ/hgVLgxAQkL8R44k7woXNgIgIb7gjI/CRorxUZBihjdxnwt7+pEjybtPrIu9t3MnJCQQHByMq6srhdN/dv7pJOYPoyDGDAUzbon5wymIcUvMH05BjFti/nAKYtwS84dREGOGghv3v4l2IZmTUpDIuyWEEEIIIYQQQgghhBBCCPEfIwkiIYQQQgghhBBCCCGEEEKI/xhZYk4IIYQQQgghhBBCCCGEEG9Nu1Chjx2CyAeZQSSEEEIIIYQQQgghhBBCCPEfIwkiIYQQQgghhBBCCCGEEEKI/xhZYk6Id2ThwoUsWrRI+drMzIzSpUszaNAgGjRo8BEjU/fw4UO8vLz44Ycf6Nixo7L8xo0bfPbZZ1SvXp2NGzeqtPnss88oWrQoK1eu5OzZs/Ts2ZOdO3dSoUKFbK8zbtw4AgMD8fHxASA4OBg/Pz/69euHoaHh+7m5PEpOTmbVsmX4HjxEbGwszs7O9B8ymE9q1sy1bdjz5yyYM5dzf/5JaloaVapVZcTo0djZ22fb5nLAJYb06wfAQT8/zMzNco1v3fIVHDt0mNjYWEo7O/Pl4IFUq1EjT/Et+WUe5/88S1paKh5VqzJk1CiK29sp6/ge8GHm1B+yPce3U6fg1aI5AL8eP8HJY37cCAoi4sULrIsWpVbduvTo9yXGRYqoxLwyvU9j0vt0YB779Pnz58zP1KdVq1VlZJY+TUxMZM7MmQQFBvIs9BmpqanY2dvT+rPP+KJDB3R03/yVFnDxIps3bODmjZtERUZiXKQITs7OmJubc/H8eWJjY3FxcWHQ4MHUzGN8c2bP5o8//iAtLY1q1aoxZuxY7DW853v37GH9hg08efyYokWL0qVLFzp36aJS5969e+zcuZPAq1e5fv06ycnJ+Bw8SPHixVXqRUVFsW/fPn49dYq7d+/y+vVrSpcuTZcunWnWrBmxsbHMmzeP48dPkJiYSPny5Rk9ehSurq653hPAnTt3mDNnDgEBl9DV1aVevbqMHj0GCwtzlXqpqamsX7+eHTt2Eh4ejoNDSfr0+ZIW6WMko46Pjw/+/se5ceMG0dHR2NnZ0bp1a/r27atyPkXcCzh+IiNud0aPGoWra7k8xn2XOXPmEnApPe66dRg9ZjQW5qpxr1q1mquBgQQGXiMiIoKBA/ozaNBAtfP5+x/n6NFjXAsK4sWLcGxti9GoUSP69O5JkfQx/k+LOcORI0fZtHkLISEh6Orq4uzsTLPePXCvWkWlXkpyMrtWreXMkaPEx8ZSwsmJ9gP6UqF6tRzjfvrgAf5793M7KJj7N2+SkpzC3B1bsC5WTK1uYkICO1eu5tzJU8RGRWNTvBhN2n+B1+dt8tRHQgghhBBCCCEKPllirmCRBJEQ75CBgQHe3t6A4oHysmXLGDRoEJs2baJKlSq5tP5wSpQogbW1NQEBASoJoosXL2JoaMjVq1dJSUlBV1cXgLi4OEJCQmjZsmW+rjNkyBASEhKUr4ODg1m0aBHdunX76AmiHydP5oSfPx27dqVEyRIcOuDD2BEjWbh8OZUqe2TbLiEhgeEDBxEXF0fPL/ugraPD9k2bGTZgIOs2b8LUzEytTWpqKr/MmomhoSEvX77MU3w/T5nKr/7H+aJLZ+xLlMDX5yDjR45i7rIlVPDIPr6XCQmMGTyE+Lg4uvXpjbaODrs2b2HUwEGs2LQRUzNTACpWrsz4KZPV2u/csoXbIbeoUr26smzuT9OxsrbGq0VzbGxtuXvrFnt37ODs77+zfIM3mCjqTZs8meN+/nRK79ODB3wYPWIki/PQp8PS+7RXep9u27SZIQMGsj5TnyYlJXH39h1q1alDsWLFKaRViKtXrjB/7lyuBQYy9acfled8eP8BWoW0+PyLdlhYWhIbE8u6NWuIi42loWdjGjdoyJ49exgxfDjLV6ygcuXKOcY3oH9/4uLi+LJvX3R0dNi8aRP9+/Vjy9atmGV6z3fu3MlPP/6Ip6cn3bt3J+DiRWbOnEliYiK9+/RR1rty5Qpbt2yhdOnSlCpVihs3bmi89pUrV1i8aBF169alX//+FDY05MiRI4wbN57bt29z7txf3Lx5k169emJmZsb27Tvo338AmzZtwsGhZLb3BPDs2TP69u1HkSLGDBs2jJcvE1i/fgMhIbfYuHGD8ucfYNGixaxdu5Z27T7H3d2dkydP8u2331KoUCGaN28GKBJ4kyZNpkKFCrRv/wUWFhZcuXKFhQsX8scff7Bs6WIKFSpEamoqw0eM5ObNEHr17KGIe8dO+g8YyKZNG3AomYe4+/WniLExw4YN5WVCAus3bCTk1m02bvBWiXvxkqVYWVlSzsWF3//4I9tzTvvxR6ytrGnZsgW2trbcu3efjRs3cvLECTZv3oient4/LmaAZcuWs2LlKry8PPns09Zoaetw8+ZNIsPC1equ+HEGf508RbOO7Slqb8/pw77MGfsN4xf8gkulitleIyTwGkd37sbO0YHiDg7cD7mlsV7q69fMHPM1d6/fwKtdW4ra23P13Dm85/xCQmwsn/XsnuO9CCGEEEIIIYQQ4sOTBJEQ75CWlhYemR7eV6pUiQYNGrB3795/VIIIoEqVKly8eFGl7OLFi7Rq1Yr9+/cTHBxMxYqKh4YBAQGkpqZStWrVfF2jZC4PTT+WoMBA/I4cZejIkXTt2QOA5q1a0aNjJ5YsWMDytWuybbtnxw4ePnjAqvXeuLq7A1Crdh16dOrElo2bGDRsqFqbfbt38zz0Ga3btmXHli25xnflyhVOHD3GwBHD6dRD8VC1aauWfNm5K8sXLGLRmlXZtt23cxePHjxkybq1lHN3A6BG7Vp82bkrOzZtot/QIQAUt7dTmVEEkJSYyPyZM6lcrSoWVpbK8sk/T8cjy3tf1tWVGZOn4Od7hAE9e3HlyhWOHTnKsJEj6Zbepy1ataJbx04sWrCAlTn06e70Pl293hu3TH3avVMnNm/cxOD0PjU1NWWV9zqVtu3at8fY2Jid27YzcvQoLK2sAPjs87Z89nlbZb1rgYHEzY/FsHBhXia8pFOnTrRt25aWrVoxf9481qUndjXZvn07Dx48YMPGjbinx1enTh06dujAhg0bGD58OKBIkCxZvJi69eoxa/ZsRXzt2pGalsbKlStp98UXmJgosmkNGjTg1K+/YmRkxPr167NNEDk5ObF33z7lzCKjwoXp2rUrPXv2YM2atbx+/ZqZM2fSpIkXAE2aNKVt27YsW7aM6dN/yvaeAFavXkNiYiKbN2+iWPpsEHf38gwePJj9+/fzxRdfAIpk94YNG+jUqSPjxo0D4PPPP6dv337MmzePJk280NbWRldXl7Vr1+LhUenN+9OuHSVLOrBw4ULOnjtHzRo18PPz5/LlK8ycOYMmXulxN21C27btWLZsOdMzJfo0xr1mLYmJL9m8aSPFitkq4i7vzuDBQ9m//wBffNFOWfegz36KFy9OZGQUjT29sj3nrJk/U63am5k0hY2KUL58eb755hsOHfbF2MjoHxfzlStXWbFyFaNHfUX37t2UcQOcC3uqUvd2UDB/+h+n85BBtOraGYC6zZsyvmcfti5dzqRli7O9TpW6dVju2wDDwoU5uHlrtgmiv06dJuRqIP3GfU2D1oovE3h93oYFEyayd916GnzaCtMss6WEEEIIIYQQQgjxcckeREK8R0WLFsXCwoInT54Aiget48ePx9PTk4oVK9K0aVPmzp1LcnKySrvU1FTWrl1LixYtKF++PHXq1GHEiBHExsYq69y+fZvBgwdTtWpVPDw8GDBgAA8ePMhzbFWrVuXevXu8ePFCWXbx4kU++eQT3N3dVZJHFy9eRFdXV205uZiYGMaMGUPlypVp1KgRK1euVDk+btw4WrduDcDu3bsZP348ALVq1cLFxYXGjRsr64aGhjJ27Fhq1KhBxYoV6datG4GBgXm+n/w44e+PtrY2bdp9rizT19endZs2BF65wrPQ0Bzburq7KZNDAA6lHKlavTrHjx1Tqx8THc3KJUvpN2gQRYoY5yk+X19ftLS1aZ0pwaGnr0/Lzz4l6OpVnoc+y7btKf/juLi5KZNDACUdHalSvRon/fxzvO4fp38jIT4Br+bNVcqzJocA6jZULJv44O49Zcza2tq0zdKnn+ahT4+n96lbpj51LOVIterV8dfQp1kVK6ZInsTGxmVbJ+M9L1q0KHHpP0f6+vq0bdOGK1euEJpDfP5+fri7uyuTQwClSpWi+iefcCxTfOf/+ouoqCg6duig0r5jx468fPmS06dPK8tMTU0xMjLK9d7s7OzUlp0rVKgQDRs24vXr15iamuLp+ebnyMLCnKZNm3Dy5Em1zxW1+/L3p169esrkEEDNmjVwcHDg6NE393Xy5ElevXpFhw5vZhsWKlSIDh068OzZM65cuQKArq6uSnIoQ5MmTQC4e/cuAH7+/lhaWuKZ6effwtycpk28OHnyVB7iPp4et+2buGvUwMGhJEeP+anUzdp32cmcHMrglZ4Iunv37j8y5k2bN2NpaUnXrl1IS0tTma2Z1bmTp9DS1qJxm0+VZXr6+jRo3Ypbgdd48ex5tm2NTUwwLFw413hupI+Dml6NVcprejYmJTmZi6fP5HoOIYQQQgghhBAFn1YhrX/sf0Kd9IoQ71F8fDzR0dHKfUoiIyMxMzNj/PjxrFq1in79+rFnzx4mTZqk0u6HH35g1qxZNGzYkGXLljFx4kSMjIyUDwAfPnxI586diY6OZsaMGcyePZuIiAh69+6d64PKDBkzmgICAgBF8urRo0dUqVKFypUrqyWI3N3dMTAwUDnHpEmTcHR0ZPHixTRq1IjZs2fz66+/arxew4YNGTx4MACrVq1i27Ztyj2boqOj6dq1K9evX+f7779n4cKFGBoa0qtXL5UE1rty88YNSpQsiZGxasLGrbwiARBy86bGdqmpqdwOuUU5Vze1Y67u7jx+9Ij4+HiV8pVLl2FhZUmbTDMEchMcHEyJkiXU4iuXnqC4lUN8d27dwkXD/jPl3Nx48ugRCVniy8zP1xd9fX3qNWqYa4wR6e9LxpJ1ipiz79ObufSpaz76NCUlhajIKJ6FhnLy+Ak2b9iAbbFi2JdQ3w8oPi6OqMgoLl+6jLGxMffu3qXaJ2+Wz3MvXx4g2xk8qamphISE4OamHl95d3cePXyojO96+jkyJ7oA3Nzc0NLS4sb16xqv8Xe8eKFYQqxs2bJoaan+Ve7uXp7ExETu37+fbfvnz58TERGBm5v6WClf3l2lP65fv4GhoSGlS5dSq5dxPCfh4YpYM5biu379BuXKuajHXd49Pe7sE93KuDWM8fLu7tm+j39H5rj/iTGfO/cX7u5ubNmylcaeXtSpW5+6deuq7R8HcP9mCLYlSmCYJSnplL5/UnazgvLjVXIKWtpa6OioTk7XS/974947fG+EEEIIIYQQQgjxbsgSc0K8Y69evQIUDwVnzZqFkZERPXv2BMDFxYVvvvlGWbdKlSoYGhoybtw4Jk6ciKGhIXfv3mXLli2MGjWKgQPfbEzerFkz5Z8XLVqEqakpa9euRV9fX3kuT09PduzYQbdu3XKN09XVlcKFC3Px4kW8vLwICAjA2tqaEiVKULlyZQ4cOADA69evuXLlCp07d1Y7R9OmTZXLa9WqVYuTJ09y5MgR6tevr1bXwsJCueScu7s7FhYWymPe3t7ExMSwY8cOLC0tledr1qwZq1ev5uuvv871fvLjRXi4cimyzDLKwsPCNLaLiY4hOTlZY1urTG0zZobcCglh3+7dzJo/H21t7TzHFxYWhoWl+jUyln17Ea45vtiYGFKSk7HMtDxchjf3Fk5JDTNXYqKj+euPP6nToAGF8zCzZev6DWhpa1M/ffZKWFhYrv2iSX77FODk8eNM/PY75WtXNze+nThR7cE0wHfjxnM2fR+XQoUK0faLdvTp10953Dr9GmHZxBcdHU1ycrIyFpX4rK2VbY2MjAgPD0dbW1tlbINiZo2pqWm218ivqKgo9uzZi5aWlsbZJlaZ7qlMmTIazxGWvkeNxvuyslLet56eHuHhYVhaWlIoyyaTVrn0XYZVq1ZhbGxM3Tp1AEXipUoV9T2fVON21hx3eN7jflsrV65EW1sbLy9PVq9e84+KOSYmhqioKC5fvsxff51n4ID+2Nra4nPwED/88AN9XsbTuO1nyvpRL15gZqn+uZBRFhWuvmdRfhUrWYLU16ncuhaksqfRjcuKmUURGvZFEkIIIYQQQgghxMclCSIh3qGEhASVZai0tbVZsmQJpUuXBiAtLQ1vb2+2b9/Oo0ePSEpKUtZ9+PAhZcuW5c8//yQtLY327dtne50zZ87QsmVLtLW1lQkpExMT3Nzc8rwsm46ODpUqVVLOFLp48aJy/yQPDw/CwsJ4+PAhMTExJCQkaNx/qG7duso/FypUCCcnpxyX6srpfmrUqIGpqanyfrS0tKhevTpXr17N9/lyk5SYhK6erlp5xgPazO+LSrukxPR6Gtrqq7edN2sWNWvXpkatmvmKLzExEXNr9YfJenr6yvg1xpderqvhQXNGfMnZ3Nuv/sdJSUnBs3kzjccz8/c9wqF9++ncswf26Um/xMRErD5AnwJUrVaN+UsWExcby/lzfxESEkJi4kuN5x8yfBhdu3dj0oTvef36NSkpKbx+/TrTNfRziS+HPs1yb0mJiejqqt8HKJazy+4a+ZGamsrYsWOJjY0lLS1NY1JBP5t+y+xNv2u6rzd9oqenR1JSksb70lf2XWK211m9ejW///47kyZNokiRIirnVTufXs7vBbwZ4xrj1leN+20cOHCAnTt30rtXTxxKlvzHxZwxmzQqKpoZ03+iWbOmAHzWpi2ffvop+9ZvUEkQpSQlo6PhPcwY18nJbz82azXxZO86b1ZNn0nPMV9ha2/H1XPn8d+zLz2Gt7+GEEIIIYQQQoh/Pu0sXzAV/2ySIBLiHTIwMGDjxo2kpaVx79495syZwzfffMOBAwewsbHB29ubn3/+mX79+lGjRg1MTEy4evUqU6dOVT5gjIqKQkdHRzmTRpPIyEi8vb3x9vZWO5bdA2pNqlSpwsqVK0lOTubixYs0T997xsbGBjs7Oy5evEhMTIyyblYZD3wzXzvzPkl5FRkZyaVLl1SSaxkyZh29S/oG+qQkp6iVZyzPl/HgW62dvkF6PQ1tk1Tb+h09ytXLV9iwfVu+4zMwMMgmviRl/BrjSy9P0bDMYEZ8etncm5/vEUxMTahRp3aOsV0JCGDWtB+pXrMmfQcPUolZY7+8wz7NYGFpySfpPx+NvbxYt2YNI4cMZfue3Wozkcq6uCjaWJhjZm5O8LVrTJs8mWVLlqZfIymX+HLo0yz3pm9gQEqK+n2AIgGQ3TVyk5KSQnR0NABLlyzh9OnTTJkymRkzfta4pGRSNv2W2Zt+13Rfqn2ir6+v8b6SlH1noHYM4ODBgyxatJjWrVvTpEkTwsPDMTc3R19fX3PcyTm/F/BmjGuMO5f3Mi9SUlL47bczfPvtt3zyySd06tSJ169f/+NizuhzHR0dvLw8leVaWlq0aNGChQsXEh76DCvbogDo6uvxSsN7mDGuM5KCb8PM0pJRM35i2Q8/MXPUWAAMjYzo+dUIlv84Hf3Chjm2z2kPpb/r5cuXKv9/Vwqn78lUkGKG9xe3xKyqII6PghgzyPjISsaHKhkfqmR8qJLxoUrGhyoZH28UxJjh/Y9pIf5tJEEkxDukpaVFhQoVAKhYsSKlSpWiY8eOLF68mClTpuDr60vjxo0ZM2aMss3t27dVzmFmZsarV6948eJFtkkiU1NTGjRoQNeuXdWO5WXj+wxVq1Zl8eLFnD9/nuDgYMaPH688lrEPUUxMDKVKlVJbNutdMjU1pV69eowcOVLt2LtYKiorSysrwp+rL4v1ImMpqPSlw7IyMTVBT09PWS+z8Cxtl8ybTyMvL3R1dXn65AkAsbFxADx/FkrKqxSss7mOtbU1j58+USuPCH+RHr/mdkVMTNDV0+NFuPq+TW/uTX1m0rPQUK5eukTrz9tqXKYtw+2bN5kw5n+UKl2ayT9PRztTXWtra548farWJmu/ZJWfPs1OY09Pli9ewq+nTvH5F19orGNpZUXY8zDqN2zIhnXrSExMxMDAQLn8V3bvhampafoyaxriS19aLaOtlZUVr1+/JiIiQuXnJSPBk901cnP58mUG9O+vUlatWjWsrKw0x5XLPSmOWanUzdo+474BrKys+euv86SlpaksM5fTdf78808mTZoMgI+PDz4+PgAc9Nn/dnFb5T3uv+OAz0F++GEaAOfOnaNFy1b/yJhNTU3Q19enSBFjteUrM/7eiI+NVSaIzCwtidRw/aj0vcTMNCx/93eU86jE3O2beXjnDkkvEynp7ERk+ueRbYkSObYNDg5+JzFocu/evXd6vowZtQUpZnj/cUvMCgVxfBTEmEHGR3ZkfCjI+NBMxoeCjA/NZHwoyPhQVxBjhvc3poX4t5EEkRDvUYUKFWjVqhW7d+9m2LBhJGpYgipjr58MNWvWpFChQuzatYsBAwZoPG+tWrUICQnBzc0tX3vbZOXh4YG2tjbe3t4UKlSI8uXLK49VrlyZ7du3ExMTQ+3aOc8qyauMe8/6TfratWuzf/9+nJycPsg3MsqUdSHg/AXi4+IwMjZWll9LX56vTNmyGttpaWlR2tmZ68FBaseCAgMpbmenTNA9e/aMY76+HPP1Vavbp1t3nMuWxXvLZo3XKVeuHH+ePasWX/C1awA45xSfkxM3NPyCFXztGsXs7DTuL3T8yFHS0tJyXF7u8aNHfDPiK8zMzZk+/xcMs7xP5cqV46yGmDP6tGwOMTs5OxOcTZ/aZerT7GTMZImPi8u2TpmyLlw8f4G4OMXSbPHx8RgYGCiXZHRJn2mkKT5nZ2eCgtTjCwwMxN7eXhlfxjmCrl2jbr16b+7j2jVSU1OVs5nyq2zZsnTq3JltW7fSpEkTunbtiqWlJS4uLgQEBJCamoqWllamuK5iYGCAg4NDtue0sbHB3NycoCD1sRIYeA0Xlzfvl4tLWfbs2cOdO3dxciqtcv8ZxzO7evUqo0ePoVy5cgwYMAATExMAEhMT0uMuS0DAJfW4r15Ljzv7WYPKuDWM8cBr13DJZpzlxcOHj1i8eDE2NjZ89913mJiY/GNj1tLSomzZsgQFBZGSkqLy98rz588BMDE3U5Y5lHEmOCCAl/HxGGb6ebqd/v47ZLN/0t+hpa2NQ6a9r66dPwpA+Wo5/2PK1dX1ncWQ4eXLl9y7dw9HR0cMDXOewfR3FMSY4d3HLTFrVhDHR0GMGWR8ZJDxoZmMDwUZH5rJ+FCQ8aGZjI+CGTN8mLhFzrQz/btZ/PNJgkiI92zIkCEcOnQIb29vateuzfr169m4cSOOjo7s37+f+/fvq9QvVaoUnTt3Zv78+URHR1OrVi0SExM5efIkw4cPp2jRoowYMYL27dvTt29fOnbsqPx2+7lz56hWrRqtW7fOU2xGRka4uLhw6tQpPDw8VL7F7uHhwbRp00hLS3tn35JwcnICYNOmTXh5eWFgYICLiwu9e/fmwIEDdO/enZ49e1K8eHEiIiK4fPkyRYsWpXfv3u/k+hkaeXqyZcMG9u3eQ9eePQBF0urQ/gO4lS9PUVtbAEKfhpKUmIhDKcdMbRuzdOEigoOCcHVzA+D+vXtcPH+eLt27K+tNnz1b7bp+R4/gf/QY30+dgrVN0Wzja968OWvWrMFnz1469eiujM/3wAFcy7tjkz4r4FmoIr6Sjm/iq+/ZmJWLFnMjKBgXN8UvWg/u3Sfg/AU6duum8Xr+R45gY2tLhfQ9qLKKCH/B18NGUEhLi5kL52Nmbp5tzHt376Fbpj49uP8A7ln6NDExEccsfbpEQ59eOH+erpn6NCoyClMzU5VZLAD79+4FoJyr25uYs8ziaezpyeYNGzh62JeiRYtiaWlJcnIy+/fto3yFCtimx/f06VMSExMpVaqUsq2XlxcLFiwg6No13NKXQbx37x5//fUXPXr0UNarXr06pqam7Ni5UyVBtGPnTgwMDKiXqSw//vjjD3Zs306Lli35Ze5cChUqREJCPF5envj5+eHvf5wmTbwAxXKNx475Ub9+fZWf54cPHwJQItMsDk9PT3x8fAgNDVXe/9mzZ7l//z7dMo2Vhg0bMnv2HHbs2M64ceMAxX5qO3bsxMbGhkqVKinr3rlzhxEjRlK8eHGWLFmMiYkJhQsrEhIJ8YrlJ708PfHz88f/+HGaeGXEHcUxPz/q16+XJe5H6XHbZ4q7sYa4z3H//gO6dVOfVZkX4eHhDBk6FG1tHdauWYVzGZd/fMzNmjbh6tWrHDjgQ7t2nwOKZOmBAwewc3TEPNOsoOoNG3BoyzaO7ztAq66dAcXycr8eOoyTmyuWRW0U/RD6jOSkRIrnkFzMj5jIKHw2baGEkxPuuSSI3ueXAwwNDd/L+QtizPD+4paYVRXE8VEQYwYZH1nJ+FAl40OVjA9VMj5UyfhQJePjjYIYM7zfuIX4N5EEkRDvWenSpWnZsiVbtmzh5MmTREZGsmDBAgCaNWvGhAkTGDRokEqbiRMnYm9vz44dag2smAABAABJREFUO/D29sbMzIzq1asrZyo4ODiwY8cO5s2bx5QpU0hISMDa2prq1atnOxMiO1WrViUoKIjKlSurlJcrVw5DQ0MSEhLeWYLIzc2N4cOHs2PHDlatWkWxYsU4fvw45ubmbNu2jXnz5jF79myioqKwtLSkUqVKNGnS5J1cOzP3CuVp7OXFskWLiIyMwL5ECQ77+PD0yRPGT/xeWW/apIkEXLjImQvnlWWfd+jA/j17+d/Ir+jSozs6Ojps27gJcwsLOvd4k8yo36ih2nVDbt4AoGbtOphl+nZ/VpUqVaKBlyerFi8hKjISO3t7jhw8ROiTp4ydMEFZb8akKVy+eJHjf51VlrVp/wUH9+7j21Gj6NC9GzraOuzcvAVzCws6dld/EH331m3uhNyiS6+eaomXDN+MGMnTx4/p3LMHVy9d5uqly8pj5pYW2DVpRqVKlWjs5cXSTH16KL1Pv83Up1PT+/SPTH3arkMH9u3Zy5iRX9E1vU+3pvdpl0x96nv4EHt27qJBw4YUt7cjIT6Bs3/8wbmzZ6lbvx7VPqmurDt6+AhsitrgVr48FuYWhIaGoq+vT1xcHJWrVmHbtm3s2bOHp0+fMnHSJGW7id9/z4ULF7gYEKAs69CxI7v37GHEiBH06NkTHR0dNm3ciIWFhUqCyMDAgMFDhjBj+nS+/t//qFWrFgEBARw6eJChw4ZhamqqrBsbG8u2rVsBuHTpEgDbtm6lSJEiGBcpQufOiof4gYGBTPz+e0xNTfnkk0/Yv38/oNgnKDU1FRcXFyZPnsydO3cwNzdj+/YdpKamMniw6mfKwIGK14cOHVSW9e37JX5+fgwYMIAuXbqSkJDA+vXrKVPGmTZtPlPWK1q0KN26dcXbez2vXr3Czc2dkydPEBAQwE8//aicxRgfH8/QocOIiYmhZ8+enD59Gnizv42NtRWVKlXEy8uTCpsrMHnyVO7cuYu5mRnbd6THPWigatyDBiviPvhmpmXfL/ukxz2ILl07k5DwkvXrN1DG2Zk2n32m0t7H5yBPQ5+S+FIxy+zixQBWrloFQKuWrShevBgAQ4eN4NGjx/Tu1ZOAgEtcC7qu6OekRCwtLf6RMX/xRTv27N3L9Bk/c//+A2yLFeXw4SM8efKEUTN+Ujmns7sbnzRqyI7lK4mJiqKonR2/+R4h/Gko/cZ9ray3fNpPXL90mQ2/nVSWJcTFcXTnbgBCripmjR3btYfCxsYYFTGmyRftlHWnDRtJGXc3itrbEfUigpP7fUh8+ZIxM6erzLwSQgghhBBCCCHEP4MkiIR4R4YPH87w4cM1HpudaTbJ9OnT1Y7fuHFD5bWWlhb9+vWjX79+2V7P0dGRefPm/b1gM5kwYQITMiUdMujo6BCQ6SF5ZjVq1FCLGWDJkiUqr2fMmKFWZ9iwYQwbNkyt3Nramh9//DGvYb+1CVOnUHRpMY4cPERsbCxOZZyZNW8eHlWq5NjOyMiIRSuWs2DOXLxXrSY1LY0qVasyYsxozDXMrPm7xk+exBpbW44dOkxsbCylnZ356Ze5VKpSOcd2hY2M+GXZEhb/Mo9Nq9eSmpZGpSpVGDr6K40zf/zSl8DLaXm52yEhAGxdv0HtWKUqVWjTRNF24tQprFhaDN9MfTp73jwq56FPl6xYzrw5c1m3ajVpaWlUrlqVkVn6tJKHB1cvX+HYkSNERESgra1NSQcHRoweRYdOnVTO2brNZ/gdOcq2TZuJjY3FxMSEqtWrUdjIiIDzFzj7x5+4uLgwb/78XBOgRkZGrFy5kjmzZ7N61SpSU1OpWq0aY8aMwTzL3lwdO3ZER0eHjRs2cOrUKYra2jJm7Fi1/cJiY2PVfl42bFD0b7FixZQJojt37pCSkkJkZCRTJk9Wi23cuG+4fv0GW7duJTExEXd3d6ZMmYJjplll2bG1tWXVqpXMmTOHBQsWoKurS716dRk9erTanjgjRoygSBETdu3axf79ByhZsiQ//jiNFi1aKOtER0cTGhoKoEyCZ/bpp62pVKki2traLFo4n1/mzU+POwl3dzemTJmc97hXrmDOnF9YsGCRIu66dRk9+iu1uPfu28eFCxeVr/86f56/ziuSk5U9PJTJlps3bwKwznu92vWqVq1CzZo1/3ExGxgYsGL5MubNX8C+/ft5+fIlrq6uLF++HP1y6kvGDZwwnl2rinLmyFESYmMp4eTE6JnTKedRSa1uZvGxsexatUal7PDW7QBY2RZVSRCVcinLuROniAwPw6CwEeWrV6N9vy+xsSueax8JIYQQQgghhPh30M7mC8jin6lQWlpa2scOQggh3pfwuNiPHUK+WBkXAeBxTNTHDSQf7EzMAIgoQH1tkd7P8QkJ/2fvrqOjutY+jn/jBsRwDTQQkgDF3SI4FHcvkAQv0pa2XKSlxUrR4JbgUiRCi4QEqCAtlBDcpThxJWTy/jGTSSYzE2mx9H0+a93VmzNHfmfPMyfh7Dl7v+Mk+WOlejw+MTHhHSfJu+xDzBUEllbK+ihImSEz9+lnj95xkryrX6zUG9t3YmIily9fxtnZucAMLSGZ346CmBkKZm7J/PYUxNyS+e0piLkl89tTEHNL5rejIGaGgpv7v2TVlbO5r/SOeFfN+UvM/x/JE0RC/AcpFAoUCoXe142MjPQOJyaEEEIIIYQQQgghhBDiv086iIT4D/L19WXZsmV6X589ezbdunXT+7oQQgghhBBCCCGEEELkl6F8Kb1AkQ4iIf6DevXqRcuWLfW+XrZs2bcXRgghhBBCCCGEEEIIIcR7RzqIhPgPKlGiBCVKlHjXMYQQQgghhBBCCCGEEEK8p6SDSAghhBBCCCGEEEIIIYQQ/5qRgeG7jiDyQd4tIYQQQgghhBBCCCGEEEKI/2ekg0gIIYQQQgghhBBCCCGEEOL/GRliTgghhBBCCCGEEEIIIYQQ/5qRgcG7jiDywSA9PT39XYcQQgghhBBCCCGEEEIIIUTB5nc9/F1H0Gtw5RrvOsJ7R4aYE0IIIYQQQgghhBBCCCGE+H9GhpgTQvynJSbEvesI+WJpVRiAxPgX7zhJ3lkWsgcgMT7qHSfJO8tCtgBEx8e/4yT5Y1OoEAAxCQUnt7WVMnNCYuI7TpJ3VpaWADyPL1jXj6KFCu7145xfj3ecJO9qDd79xvadmJjI5cuXcXZ2xlJVh+87yfz2FMTckvntKYi5JfPbUxBzS+a3pyDmlsxvR0HMDAU393+JkYE8k1KQyLslhBBCCCGEEEIIIYQQQgjx/4x0EAkhhBBCCCGEEEIIIYQQQvw/I0PMCSGEEEIIIYQQQgghhBDiXzMyMHjXEUQ+yBNEQgghhBBCCCGEEEIIIYQQ/89IB5EQQgghhBBCCCGEEEIIIcT/MzLEnBBvwNKlS1m2bJn6ZxsbGypVqoSPjw8tWrR4h8l0O3XqFIMGDVL/bGRkRIkSJWjevDmffPIJtra26tfc3d1p2bIl06ZNe60ZBg4ciKWlJatWrXqt+81NXFwcixYt4WhoKMnJyVSr5srECRNwdq6ap+1v3brNggU/cO6vvzAxMaFZ0yZMnDQRuyxtBrB27TouREQQEXGRyMhIvL1G4OPjnfeMi305GnpcmdHVhYkTxuLs7JS3jLfvsGDBYs79FY6JiTHNmjZm4sRxGhmfPnvG4sW+XLx0hWfPnmNoaEiFCuXo1bM7nTq2wyDb48EnT51h3To/bty4SZpCgYODA716dqNjh3ZZMi/jaOixLJnH5b1db99WZT6vatfGTJw4XiPz7dt32B8QyO8nT/Pgwd9YWlhQtaoTPj4jcHVx1rnfg4cOs2XrDm7cuImxsTHlK1SgdOnSnDt7lri4OBwdHfEeNYoGDRvmmvHp06csWrCAUydPokhPp07dukyYOJEyZcuq13ny+DGBAQH8+ssv3L93D0NDQz5wdGTosGHUb9BAY39BAQF8M3OmzmMdOHgQ+6JF1T+/fPmSVStW8lNwsDJ3ZUd88pF74YIFnPr9JOkZuSdp5gbYvWsXf5w5w8WICJ48fkKHTh2ZriOfzwgvzv75p97jmZmZ4eTkhM/IkTTMY74F33/P77//Tnp6OnXr1mXS5MmUzZYPYN/evfhv2sTDv/+mRIkS9O3blz59++a4/5E+Ppw6dYpevXszZcoUrddfvHjB3DlzCA0NJTo6Gjt7e+rWr8cXWa55L1++ZO3KlfwcfEBdNyNGjaR+Hs7v2dOnLFnwA6dVdVO7bh3GTdRu/6zOn/uLUcOHAxB85Ag2tja5Hgfev2vHylVrWbV6vdZxTE1N8Z+ct0xZGZlYUrruQKzL18fQyIzE5zf4+w8/kiJv57pt+SajsXd001qeHPM3l/eNz3cWIYQQQgghhBBKhjLEXIEiHURCvCHm5ub4+fkByhueK1euxMfHhy1btlC7du13nE632bNnU6lSJV69esWNGzdYuHAhDx48YN26de862huhUCgYO248165dZ/CggdjY2LBz125GeHmzZcsmKpQvn+P2T548YdjwERQuVIgxY0aTlJiI/6bNXL9xk82b/DAxMVGv67t8BUWL2lPVyYnffv89fxnHT+batRsMHtRPlXEPI7xHs2XzBiqUL5dLxqcMGz6KwoWsGDPam6SkJPw3beX6jVts9l+rzhgdHcOTp8/w9GhJyZIlefXqFSdPnWb6jFncvXuPsWN81PsMO3aCiZOmUKNGNby9h2FmXoiffvqJ/02bSXR0NP369mbs+ImqzP1VmX9khPcotmzemId2fcqw4SOV7TraJ0vmm2z2X6/OvHdfAPv2B+Lh3pJePbsTHx/Pjz/uY/CQ4SxbupCGDepr7HflqjWsXrMeTw93evToyatXr9iwYQOXL12ib//+lCtfnuDAQCaMG8fyVauoWauW3oyJiYmM8vYmPj6eIR9/jLGxMdu2bMHHy4vNW7dibWMDwPFjx/DfuJEWLVvSvmNH0l694kBwMGNHjWLq9Ol0+ugjrX17+fhQukwZjWWFChfW+Pnr6TMICTlC3779KFe+PEGBgXwybhwr8pB7pJc3CVlzb92C9wgvNm/bio0qN8CmjX4kJCbi6urK8+fP9e5z6LCP6dyli8ay7du2cfnSJUqXKY2Ptw979+5l3NixrFq9mlq55PMaMYL4+Hg+HjYMY2Njtm7Zwojhw9m2fbtGvt27d/Pdt9/i4eHBgAEDOHf2LPPmzSM5OZkhQ4fq3H9ISAjh4eF6j//48WM+HjoUAwMD+vTpg5WNNc+fPePSxYsa6307YwahR0Lo1a8f5cqX40BgEJPHjWfpqlV8WKtmjuc31tuH+Ph4Bn08FCNjY3Zu2coYL282bt2irpusFAoFC+fPw8LCgqSkJL371rXd+3btyPDlF59iaWkBgKlZIYyMjODFxjyfm5IBlTy/xMK2Ak8vBvAqOY6iVdtQuc1MrgZ9Rkrc49zbKO0l935bobEs7WViPnMIIYQQQgghhBAFl3QQCfGGGBoaUrNmTfXPH374IS1atGDfvn3vbQdR5cqVqV69OgB169YlJSWF2bNnk5CQgJWV1TtO9/odORLC+fPhzJs3h1aengC0at2KLl26sXLlKmZ/922O269bv4Hk5CS2btlMqVIlAXCt5srIkaMJCAike/du6nWDgwIoXbo0UVHRuHt45iNjKOfPX2De3Fm08nRXZmzlTpeufVi5ci2zv9P9xElmRj+Sk5LYunl9ZkZXF0aOGk9AYDDdu3UBoEplR9au9tXYtk/vHoz/5FO2bd/FqJEjlDdxgR07dlO0qD2rVy7F1NQUy0L29O7dm7Zt2hAQGEzxYsVUmb/LktmDLl17qTJ/nUvmjarMG7NlHqeRuW3b1vh4D8fS0lK9beePOtGtRx9WrVqr0UEUfiGC1WvWM3HCOAb074tlIVvCw8N58OABY8ePZ4DqCbr2HTrQr1cvli1ZwtoNG/Rm/HHXLu7fu8cGf39cXF0BaNS4Mf1692bL5s2MGjMGgDp16xIQHIxNlicuuvXowcC+fVm9cqXODqLGTZrg7OKi99jh4eEcOniQcZ9kyd2xA3179mLp4iWs26g/9+6dytwbN2XmbtykMX179Wbrps2MGjtGve7KNWsoWaokBgYGtGjSVO8+sz+1dDEigsuXLgHgM2oUvXv0pEuXLrTv0IHFixaxUdVxrsvOnTu5d+8emzZvxlWVr0mTJvTq2ZNNmzYxduxYAJKTk1nu60vTZs2Y//33AHTr1g1Fejpr1qyhW/fuFClSRGPfKSkpLPzhB4YMGcKKFZqdAhm+nTULIyMjfvzxR2xtbXkeH6e1zqWICI4cPMTo8ePpN2ggAG07dGBgr94sX7KEVRu0n5DJsFdVN2v9/XBW100TBvbuzbbNW/AZM1prm/179vD08RM6dunCrm3b9O47u/fx2pHB08MNW9VTUJaF7AE457cxz+cGYFOhIYWKV+V22PdE3z0JQPSd33DuuoSSNXtz98TiXPeRrkgj6taJfB1XCCGEEEIIIYT4L5E5iIR4S0qUKIGdnR0PHz4ElE8VffHFF3h4eFCjRg1at27NDz/8wMuXLzW2UygUbNiwgXbt2lGtWjWaNGnCuHHjiIvLvHF58+ZNRo4cSZ06dahZsyZeXl7cu3fvX2e2srIiPT0dhUKhd51z587h4+ND06ZNqVmzJp07d2bfvn1a68XGxvLNN9/QvHlzqlWrhru7OwsWLNC73+TkZLy8vPDw8OD+/fv/+lx0ORISgr29PR7u7upldra2tG7lSVjYMa33IruQkKM0a9ZMffMUoGGDBlSoUJ5Dh49orFu6dOl/mDEUe3s7PNxbZsvoTtixE7lnPBpGs2ZNsmWsp8p4NNfjlypdiuTkZFJTX6mXJSQkUqRIYUxNTdXLjI2NsbGxxtzMLIfMHoQdO56HzKE0a9Y0W+b6Wu3q4lxVo3MIwMbGmlq1PuT2nTsay7ds3Y69vT39+vYmPT2dhIQEfv75Z4yMjOjSLbMjz8zMjE6dO3MhPJwnj/U/gXA0JAQXV1d1JwuAQ8WK1K1Xj5DDh9XLKn3wgUbnECiH02rcpAlPnzwhISFB5/4TEhJIS0vT+Zq+3B91+Xe5j2TJDcr3PvvQgnkRciQEUD5F2aJlS3W+Lp07Ex4ezuMc8oUcOYKrq6u6cwigYsWK1Ktfn8NZ8v1x5gzR0dH06tlTY/tevXqRlJTEiRPaN/39Nm5EoVAwMMtwmlndvn2bX3/9lUGDBmFra0tKSgqvstR9htCQEIyMjOjcrat6mZmZGR07dyYil/YPDQnB2dVF3TkEUKGiA3Xq1eNotvYHiI2JYc3yFQz38aFw4UJ696vL+3jtyJBOOvHxCaSnp+f9hLKxcWhEalIU0XdPqZe9Sokl+s5vWJerh4FhHr8DZWCIoYnFP84hhBBCCCGEEEKTkaHhe/s/oU1aRYi3JCEhgZiYGPU8GlFRUdjY2PDFF1+wdu1ahg8fzt69e5k+fbrGdt988w3z58+nZcuWrFy5kmnTpmFlZUVionIYnPv379OnTx9iYmKYM2cO33//PZGRkQwZMiTXG4DZKRQKXr16RUpKChEREaxfv57GjRtTONvwVlk9fPiQ2rVr8+2337JixQpat27N1KlT2bt3r3qdly9fMnjwYAIDAxk2bBhr1qxh7NixREVF6W2rESNGcO/ePbZu3Uq5cjkPhfRPXblylapVnTDM9gvCtZorycnJ3L2rv5Pt6dOnREZG4uKsPddNNVdXrl69+noyXr2mO6Oriyqj/s6zp0+fERkZhYuL9rw/1VyduXr1mtby5OQUoqKiefjwEQGBBwgICKZGjWqYm5up16lTpxY3b97Gd/lq7t1/wL179/D19eXS5SsMHjyAK1f1tKs6c27tqi+zi87M2b148UJjKDKA06f/wNXVmW3bd+Lu0ZbatWvj7++PtY0NhQpp3nh3rVYNgGvXdB9LoVBw4/p1nHW89y6urjx48EBvx0/WjObm5pibm2u9NsrbG/fmzWnRpAmTJ0zQ6uy9fPky5cuX18rt4qrKraeN1Ll1zM/kWi1vufPiYkQEAC3d3LCwyLzxntGu+j4bCoWC69ev46Lj6alqrq48uH9fne+Kah9ZO7oAXFxcMDQ05OqVKxrLHz16xMaNGxk/frzONgflXGwAdvb2DB48mBo1auDepAmTxo7jkapjH+Da1auUK18eq+ztX02Z5XoOdXPz+g2qOmufn7OrK3/raP81K1ZiV9SezlmeRsyr9/HakaHTRz1p1qIVTZp5Mnny5ByHMNTHwq4iiS9uA5qdTAnPb2BkYo5Zkdw75Q2NzajR158P+22iep8NlG0wHENj3fUhhBBCCCGEEEL8F8kQc0K8Qa9eKb85/fTpU+bPn4+VlRWDVN9ed3Jy4vPPP1evW7t2bSwsLJgyZQrTpk3DwsKC27dvs23bNiZMmIC3t7d63TZt2qj//7Jly7C2tmbDhg2YmZmp9+Xh4cGuXbvo379/nvP26tVL42cnJyfmzp2b4zYdOnRQ///09HTq1avHkydP2LFjB127Kr9hv2/fPi5dusT27ds15h/JeD2rmJgYRowYQUpKClu2bMHe3j7P+fPr+fPn1K6tPR9K0aJFAXj27BmVKzvq3PaZ6oZmxrrZt4+JieHly5caT9n8s4wvqF27po5j2GfJ+EEuGbXbUJkxVivj1m07WLpspfrn+vXrMnP6Vxrbeo0YysOHj1i33o+16zYCYGFhwfx5s3Fr2Zz/Tfs6l3Z9nkO7vtBYN/s568qc1dlzfxEeHsHwYZlz0MTGxhIdHc35v8I5c+ZPvEcMo7xDJb766isiX7xgz48/0q17d/X69lnef11iVe+tvZ73HuD5s2d6h2W8f/8+YaGhuHt6agy9ZW5uTodOnahbty5WVlZcvnyZbVu2MGLoUPy3bKFEyZLqXDqPXSxvufXVbG658yqjQ6tt+3Yay4vl0q4xOeUrVky9rZWVFc+fP8fIyAg7OzuN9UxMTLC2ttY6xsIffsDJyYk2bdvqzX1flfvbWbOoXr06Cxcu5MadO6xfs4bxI0fhv3075hbmvHj+XGf722dpQ11iVbWb17q5cf06+/fsYf7ixVpDtOXF+3jtKFK4ML179+DD6tUwMTXh3Lnz7Ny1hwsXLjCtuyWWZnk/TxMLGxKeXNJa/ipJ+cUDE0tbkqP1d0anJkXxNGI/iS9ugYEhRcrUpFjVtljYVuD6wemQrv/JWSGEEEIIIYQQ4r9COoiEeEMSVZO7ZzAyMmL58uVUqlQJUHam+Pn5sXPnTh48eEBKSop63fv371OlShVOnjxJeno6PXr00HucX3/9lfbt22NkZKTukCpSpAguLi5EqL7Jn1dz587lgw8+ID09nfv377Ns2TKGDx/Otm3b9N40jomJYenSpYSEhPDkyRP1sFhZn+D4/fff+eCDD3KcnB6UT1UNGjQIMzMz5dMd1tb5yp9fKSkpOjsazEzN1K/r3TZZ+Zqu7U3NMrf/tx1EKSkpmKomg9fMaJp7RtVrpiY6MmbZPmvGtm1b4eLiTFRUFCdO/MaLyEitY5iYmFC+fDk8Pdxwd2+BsYklO3fuZOr/ZrBi+ZLXlFl7e1PTnNs1MjKSL7+aRpnSpRkyeIB6eWJiEgDRMTHMmf0NbVq3wrKQLT/88APp6elsWLdOo4Mot5zqjLm897okJyXx5eefY2ZmxmjVfDoZPFu3xrN1a/XPLdzcaNioET4jRrBh/XqmfPmlch/JyRTTWbd5y22isx5yr/m8iouNxdjYmPoNGmgeI5e2UefT1a7Zzi0lORkTHTUCyuHesh7jzJkzhISE4L9pU465M57KtLe3Z/Xq1RgaGvI8Po7iJYoz/cuvOPTzz3zUtQspySmYmOqqz9zaP1m1no5tzbS3XTR/Pg0bN6ZBo4Za6+fF+3jt6Nevt8bPnh5u1K5Tn8mTJ3P4zxJ0blw8j2cHhkamKNJStZZnLDM0yvna++jsVo2fo+/8SkrsI0rX7odNhUZE3/k1z1mEEEIIIYQQQmQy+gfD1Yt3RzqIhHhDzM3N2bx5M+np6dy5c4cFCxbw+eefExgYSPHixfHz82Pu3LkMHz6cBg0aUKRIES5cuMDXX3+tvqkWHR2NsbFxjk/RREVF4efnh5+Oid/13UDV54MPPqB69eoA1KhRAwcHB7p168bevXsZMGCAzm2mTJnCuXPnGD16NI6OjhQqVIht27bx008/qdeJjo6mePHcb/zduXOHmJgYvvzyy9faOZSamkpMTIzGMltbW8zMzHQOw5fyUtn+GU9k6WKmGjZJ1/YvU3LfXl9Gi0TlTeSkhChsbW2UGVO1b4KmqI6bY0bVay9TdWTUs33pUqUoXaoUAO3atuabWXPwGTmevXu2q4eKmjPvBy5cuIj/xtXExcVjYWVLvXr16N+/H/PmLXhNmbW3f5nD+5KUlMS4TyaTkJDIhnWrNOYmyljf2NgYT4/M+abMzc2xtbXl4cOHPH70iJKq884tpzpjPt/7tLQ0pn75Jbdv3WLRkiUUUz0Vk5OatWrhWq0aZ05lzrNibm6up27zljtVZz3kv2Z1+fvBA16+fEnx4sUxNtb8EyO3z4U6n652zXZuZubmpOqoEVB2XGSs9+rVK+bPm0eHDh00Oux1Hl819FyrVq00hmVz8/Tk6/9NIyL8PB917YKZuRmpL3XVZ27tb65aT8e2KZrbHjl0iAvnw9m0c0eOmUF57YhVXd/Sk5TXD3PT9Pfy2qFLp06dmDt3LhfuxOvsIDIwNMbIVHM4v1cpsSjSXmJopP07LmOZIi1/Q6wCPL0URKmavSlcqnqeOogyOhVfp6SkJI3/vk4Z18XXnVsya3pTmeHN5S6ImUHqIzupD01SH5qkPjRJfWiS+tAk9ZGpIGaGN1/TQvzXSAeREG+IoaGhRmdLxYoV6dWrF76+vsycOZOff/4Zd3d3Jk2apN7m5s2bGvuwsbHh1atXvHjxQm8nkbW1NS1atKBfv35ar/3boaI++EA5/ND169d1vp6SkkJYWBhTpkxh4MCB6uVbt2p+M9vGxiZPc/LUqlWLRo0aMWfOHGxsbOjcufO/SJ/p/PnzjPDy0VgWHBRA0aJFdc59kbEspxv4GcNl6dve2to6X08P6cwY+CNFi9rzXDXsmuYxXuQjo67tn2NtXSTXjJ4ebuzZG8DZs+do3Lghqamp7N8XyODB/blw4SIjvMdorP/w4SPKlimTS7tqD7GVmdleY13N7V/ozJyamsqkyVO4fv0GvssW4eioOWyWtXURzMzMKFyokMZQXcWKFSMyMhKA2Lg4dQfRi1ze/yKq9/ZFDudYVMe2382axS8nTjBz1izq1q+vuwF0KFGiBPfu3tXI/ejRI+1jP8tb7pzeG1258+Pnn38GwMhY+8+LZ7m0q3VO+VTDtmVsW7RoUdLS0oiMjNQYZi6jozVjvaCgIO7cucNXX33FwyzzCAEkJiTw8OFDbG1tsbCwUG9jl+1aa2RkhLWNDXGxcYByKLnnT7WHkXuRSxsWUdVuXupm+aLFuHl6YmJiop7/KC4uHoCnTx6T+ipVnffC+fOM9X7/rx05KVmyJHFPdf+esSrmROW2MzWWXdw9ktSkaIwtbLXWz1iWmqh7jrucpKe95FVKPMZm+ufdy+ry5cv5PkZe3blz57Xvs06dOsCbyy2Zld50Znj9uQtiZpD60EfqQ0nqQzepDyWpD92kPpSkPrQVxMzw5mpaiP8a6SAS4i2pXr06HTp0YM+ePYwZM4ZkHUMkBQYGavzcsGFDDAwM+PHHH/Hy8tK530aNGqkndv8n81Tk5JpqsnVbW+2bcKD8JrlCodA4j/j4eI4ePaqxXuPGjTlw4ADnz5/nww8/zPGYQ4YMISUlhS+++AIzMzPa5jBnSF5VqVKFFSt8NZbZ29vj5FSFc+f+QqFQaDwxEHHhIubm5lSoUF7vPosXL46trS2XdPwxE3HxIk5VqvyjjObmym+kJCfFYm9vh1OVypz767x2xoiMjOVyyFgMW1sbLl26oiPjZZyqVM41V7LqqY/4+AQAoqNjeJWWRlqagipVHFmxfDHmFkUA2LB+HcdP/IJj5Q8ID7+QQ+Y8tKvOzJe02lWhUDB12kxOn/mDuXNmUbdOba3tDA0NqVKlMpcuXSY1NVVdr1WrVuX3338HNGv8ompoxip63kNDQ0M+cHTU+YfsxYgIypQpo9U5u2TRIoICApgwaVKO8+Do8vfff2OTJV/VqlU5deoU8fHxFCqU+WSFOrdTLrkv6cldVjt3fh366WcKFSrE0ydPtPJlDHnp5OSkN5+joyOXLmnPKxMREUHZsmXV+TL2ceniRZo2a6Ze79LFiygUCqqoXn/8+DGvXr1i6NChWvsMCgoiKCiIBT/8gJubG87OzgA8e/pUY73U1FRioqPV70HlKk6c++NPEuLjsdLR/pVzqJtKjo5cuax9fpciIiidpW6ePHnC4Z9/5rCqwy2rof0H4FilCn7blB3xjlWqsGi58vpmbaG8fryP1w590tPT+fvvvylrrftP0qSoO9w4pNlBlJoUTVLkHQqVqAoYAOnq16yKVSYtNZmUWM0OwbwwNDbH2Lwwr5Jjcl8Z1DXzOiUlJXHnzh0cHBywsLB47fuH159bMutWEOujIGYGqY8MUh+6SX0oSX3oJvWhJPWhm9RHwcwMbye3yJmRgWHuKxVAN2/eZNasWZw7dw4rKys6d+7MJ598kuMXKJ8+fcrGjRv59ddfuXfvHoULF6ZevXpMnDiRMmXKqNc7deqUet76rNq3b8/ChQvfyPlkkA4iId6iUaNGceDAAfz8/GjcuDH+/v5s3rwZBwcHAgICuJvlKQGAihUr0qdPHxYvXkxMTAyNGjUiOTmZsLAwxo4dS4kSJRg3bhw9evRg2LBh9OrVS/1UzOnTp6lbty4dO3bMc77r16+TlpaGQqHg/v37LF++HAsLC7p06aJz/cKFC1O9enXWrFmDnZ0dxsbGrF69mkKFCqmfzADo3LkzW7duxcvLizFjxlC5cmWePHnCH3/8wTfffKO1X29vb5KTk5k8eTJmZma4ubnl+Rx0KVKkCA2zzYcC4OnhwZEjIYQcPUorT08AoqKiOXzkCM2bN9O4wN+//wCAcuXKqpd5eLgTFBTE48ePKVmyJACnTp3m7t179O+v/URXXjJaWim/uZ4Yr/zmvqenG0dCQgk5GkYrT/csGUNp3rxJ7hnd3QgKOsDjx08oWbKEMuPpP5QZs8wHEhkVhZ2OjsB9+4MwMDCgqrPyhrudnS2FCxcmNOw4o0aOoGGDelgWsichIYGr165R0aECbVp7Ehp6TEfmozRv3jQPmVvqyHxGlbmPRr658xZw6NARpn41BQ93/XXSprUnFy5EEBgYTLduXQBwd3dn/fr12NnZqZ+mePnyJYEBAbhWq0YJ1Xv6+NEjkpOTcahYUb0/dw8PfJcu5fKlSzi7uABw984d/vzjD/pnG45xk78/WzZtYsjHH9NHx5N+GaKiorQ6Y3/95ReuXL5Mrz6Z5922bVvWr1/Pvj17GKD64+Hly5cEBQRQLbfcnh74LlnKpUuXcMmS+48zf9B/oO5hJPPq6pUr3L59m06dPyJwf4BWvoD9+6lWvbr6s/JIla9ilnyenp4sWbKESxcv4qIaEu7OnTucOXNG4ynFevXqYW1tza7duzU6iHbt3o25uTnNVMvatGmjs0Nq0sSJNG3alK7dulGtWjUA6tati52dHT/99BNjx45VD6F2IDCQtLQ06qmuIW4eHmzbtIn9e/bSb9BA9fkdCAjERaP9H5OSnEyFig7q47p5uLNi6TKtujn7xx/0zVI3s7//XivzkUMHCTl0mP99PZNixUuolxcpUkSdrWihzOvH+3bt0Lfu1q1biYyMpEPtUlr7AEh7mUDcowtay6Pv/o6tQyNsKjQg+u5JAIzMCmNToRGxD/4kXfFKva5pYWX+l3FPADAwNMHA0AjFq2SNfZb8sAcGBobEPvxLZ5bs3uQQExYWFm9s/29qv5JZU0Gsj4KYGaQ+spP60CT1oUnqQ5PUhyapD01SH5kKYmZ4s7nF/z8xMTEMHjwYBwcHli5dypMnT5gzZw7JyclMmzZN73YXL17k8OHDdO/enQ8//JCoqChWrFhBz549CQoK0hgVBWD27Nnq+etB/5f2XyfpIBLiLapUqRLt27dn27ZthIWFERUVxZIlSwDljcypU6fi46M5VNC0adMoW7Ysu3btws/PDxsbG+rVq6f+pnmFChXYtWsXixYtYubMmSQmJlKsWDHq1aun95v6+nzxxRcAGBgYULRoUapXr87ixYtxcHDQu82CBQuYNm0aU6ZMwcbGhoEDB5KYmMj69evV65iamrJx40YWLlzIqlWriI6OpmTJknTo0EHvfsePH09ycjLjxo1j1apVNG7cOF/nkheenh5U31qdGTO+5tat29ja2LBz1y4UCgUjfbw11vX2GQnAgeDMp7yGfTyUI0eO4OXlQ99+fUhMTMLffxOVHR3p/NFHGtsHBQXz6PEjkpOU36o/e/Yca9auBaBD+w6ULq375qinhxvVq7syY+Z33Lp1B1sba3bu3oNCkcZI7+GaGUeOU2YM2pMl4yCOHDmKl/cY+vbtpcy4aQuVHT+g80eZ7b9unR9/nQ+ncaOGlCpZgpjYWEKOhnHx4mX69O5BedWNYyMjIwYN7Ivv8tUMGjyCjh3bYWRszu7du3ny5CnffjMDTw93qlffwYyZs1TtmjXziGyZx6gy78uSeYgq82gdmTM7PLds3c7OXT9So0Z1zM3NCD7wk8a+3d1aqr8t1L1bF/buC2D23O+5e+8+5StUZP/+/RgYGBAdHc3SxYspW64cB4KCePTwIVOz/HKfOX06Z//8k1N//qle1r1nT/bv3cuE8ePpP3AgxsbGbNu8GTs7O/pl6cgIO3qUZYsXU658eRwqVuSnAwc0MtZv0EA9fOTwoUNxcnLC2cUFq0KFuHrlCoH791OiRAmGfPyxepsPP/wQj1ae+C5bRmRkFOXKlSM4KIiHjx7yVZbcM6Ypc58+m5m7R8+e7N+zl4njMnNv3aLM3T9LboATx45z7bryKcJXr15x4/p11qlqtnnzFlTO9hTJz6p5xwYNHkxiYqI6XxVHR/bu3cujR4+YNn26ev1p//sff/75J2fPnVMv69mrF3v27mXcuHEMHDQIY2NjtqjaNWsHkbm5OSNHjWLO7Nl89umnNGrUiHPnznEgOJjRY8ao5zCrWLGiRgdUVqXLlNHofDY1NeWTTz5h2rRp9O/fn86dO3Pz7l12bdvGh7Vq0ULVAelavRrunp6sXLaMqKhIypYrx0+quvli2v/U+5s1fRrn/jzLr3/+oV7WtWdPAvbu49Pxn9B34ACMjY3ZsXkLtnZ29MnSQdfcraVW3uvXlMN0NmzcBBtbG53nlNX7du0A6NChG61be+Do+AFmpqac+yucg4eO4OzsjGet/H3DLPruSRKeXqV8k9GYW5flVUocRZ3aYGBgyKO/NOducmytrLtLP44CwMTCBqdO84m6/QspMconjQqX+RDrsnWIfXCOmHtn8pVFCCGEEEIIIcR/2/bt20lISGDZsmXY2NgAyrmmZ86cibe3NyVKlNC5XZ06dfjpp5805mmuXbs2LVu2ZN++fXyc5X4PQOXKldVTlrwt0kEkxBswduxYxo4dq/O177N8M3z27Nlar2efq8fQ0JDhw4czfPhwrXUzODg4sGjRon8WFmjQoEGe5ggCtIaPq1ChAn5+flrrZT9/a2trZsyYwYwZM3Tud9OmTVrLPv/8cz7//PM85fonjIyMWLZ0MQsXLWb79u0kJ6fg6urCzJkzcuwUy1CyZEnWrlnNggULWbJkGSYmJjRr2pSJE7UfL923fz9//nlW/fOZP/7gzB/KG8e1atbU20FkZGTEsiULWLjIl+3bd5GckoKrqzMzZ0zFwaFCHjKWYO0aXxb8sIQlS1eoMjZi4oRxGhmbNW3Mgwd/sz8giKioaMzMTKns6MjM6V/RqVN7jX0OHzaEMqVLs3XbTlatXk9qaipOTk7Mn/cdnh7KJxWWLfmBhYuWsn37ziyZ/5ePzCtY8MNilixdrsrcWCvz1avKzovw8AuEh2s/YRAc+KG6g8jc3JzVK5exaPEy9gcEkpSUjLOzM/MXLODcuXP8FBxMXFwcjpUr88OiRdSqrT1UXVZWVlYsX72aRQsWsGHtWtLT06ldpw6fTJqk8e2OjPm77t+7x4z//U9rP8tXrVJ3ELVq3Zpff/mFUydPkpycTNGiRenStSvDvLy05iCb8fXXrFq+gp8OBBMXm5m7to4h9rLnXrFmNQsXLGD9urWkK5S5J2TLDXD0aAjBgUHqn69eucrVK8rrRInixTU6iBQKBYcPHqJq1apUcHDQyLczNg4nJycWLV6c65jNVlZWrFmzhgXff8+6tWtRKBTUqVuXSZMmYZvtWzW9evXC2NiYzZs2cezYMUqULMmkyZN1zseWVx07dcLExAQ/Pz/mzZtHocKF6dy9G96jR2sM4Tn165mUWFGKg8EHiIuL44PKjsxftIiaeaibZatXsWTBD/itXYdCVTfjJk187d8Keh+vHe3ateZ8eAQhR8NISXlJqVIlGT58OD4+Plz/cUj+TjBdwc2Q7yhdZyDFnNtjYGRK4oub3P3VN9fh5dJeJhD74E8Kl/4Quw9aYmBoSErsYx7+uYUnFwPIOmSdEEIIIYQQQoj8MTIweNcRXrvjx4/TqFEjdecQQLt27Zg+fTq//vor3bp107ldkSJFtJaVLFkSOzs7nmYb4v5dMUhPT5d/BQsh/rMSE+LedYR8yT7EXEFgWUjZeZEYn/9J4d8Vy0LKm/HR8fHvOEn+2KjmvIlJKDi5ra2UmRMSE99xkryzUg1D8Dy+YF0/sg4xV1BkXD/O+fV4x0nyrtbg3W9s34mJiVy+fBlnZ+cCMxyGZH57CmJuyfz2FMTckvntKYi5JfPbUxBzS+a3oyBmhoKb+78k+P6Ndx1Brw7lHP/Rdo0aNaJ79+5MnjxZY3mzZs3o3Lmz1vKc3L59m7Zt2zJr1ix69uwJZM5BZGdnR3R0NMWKFaNDhw6MHz8ec3Pzf5Q5r+QJIiH+4xQKBQqFQu/rRkZGGPwHe/aFEEIIIYQQQgghhBAig4eHR46vh4SE6FweGxur82kga2trYmJi8nz89PR0Zs2aRfHixTWm3ihcuDDDhw+nXr16mJmZcfLkSdavX8+tW7dYtWpVnvf/T0gHkRD/cb6+vixbtkzv67Nnz9b7GKQQQgghhBBCCCGEEELklaFB/uaY/f9k6dKlnDx5krVr12o84ebi4oKLi4v650aNGlG8eHG+/vprwsPDqVGjxhvLJB1EQvzH9erVi5YtW+p9vWzZsnpfE0IIIYQQQgghhBBCiP8CfU8I5aZIkSLExWkPQx8TE4O1tXWe9rFz5058fX359ttvadSoUa7rt2vXjq+//pqIiAjpIBJC/HMlSpSgRIkS7zqGEEIIIYQQQgghhBBCFDiVKlXi1q1bGsvi4uJ49uwZlSpVynX7w4cPM2PGDMaNG0ePHu/XHLzSQSSEEEIIIYQQQgghhBBCiH/N6D8413nz5s1ZuXKlxlxEP//8M4aGhjRp0iTHbU+dOsXEiRPp2bMno0ePzvMxg4ODAahevfo/D54H0kEkhBBCCCGEEEIIIYQQQgihQ58+fdi0aROjR4/G29ubJ0+eMG/ePPr06aMxctPgwYN5+PAhhw8fBuDmzZuMHj0aBwcHOnfuzF9//aVe187OjvLlywMwefJkKlSogIuLC2ZmZpw8eZKNGzfi6ekpHURCCCGEEEIIIYQQQgghhBDvgrW1NX5+fnzzzTeMHj0aKysrevTowYQJEzTWUygUpKWlqX8+f/48cXFxxMXF0bdvX411u3btypw5cwCoXLkygYGBrF+/ntTUVMqUKYOPjw9eXl5v/Nykg0gIIYQQQgghhBBCCCGEEP/af3GIOYAPPviAjRs35rjOpk2bNH7u1q0b3bp1y3Xf3t7eeHt7/5t4/5hBenp6+js5shBCCCGEEEIIIYQQQggh/jNCHt551xH08ijt8K4jvHcM33UAIYQQQgghhBBCCCGEEEII8XbJEHNCiP+0xPiodx0hXywL2QKQGPvoHSfJO8sipQBITIh5x0nyztLKGihYmSFL7vgX7zhJ3lkWsgcKVlsXxHaGLG0dc/cdJ8k7S+sKADy/vCmXNd8fRZ0HApAY9+wdJ8kfy8LF3sh+ExMTuXz5Ms7OzlhaWr6RY7xuBTEzFMzckvntKYi5JfPbUxBzS+a3pyDmlsxvR0HMDAU393+JkaE8k1KQyLslhBBCCCGEEEIIIYQQQgjx/4x0EAkhhBBCCCGEEEIIIYQQQvw/I0PMCSGEEEIIIYQQQgghhBDiXzM0MHjXEUQ+yBNEQgghhBBCCCGEEEIIIYQQ/89IB5EQQgghhBBCCCGEEEIIIcT/MzLEnBBvwNKlS1m2bJn6ZxsbGypVqoSPjw8tWrR4h8lyN2vWLDZt2sS4ceMYPXp0vrd3cnLis88+Y9iwYW8g3esXFxfHosXLOBp6jOTkZKq5ujBxwjicnavmaftbt2+zYMFizv11HhMTE5o1bczEieOxs7VVr/P02TMWL17GxUuXefbsOYaGhlSoUJ5ePbvTqWN7DP7Bo7dxcXEsWrKKo2EnSE5OoZprVSZ+MgrnqlXymPsuC35YxrnzF5S5mzRk4oTR2NnaaK17/8HfLF+5nlOn/yQxMZHixYvR2tONMaOG55xv0VKOhoYp27WaKxMnjM97u966zYIFC7O0axMmTvpEo11v377D/v0B/H7yFA8e/I2lpQVVq1bFx2cEri4uGvsLCQnl0KHDXLx0iRcvXlCyZCnc3NwYOmQAhQsXfmuZAdauXc+FiItERFwkMjISb6/h+Ph46d3vwYOH2bJ1G9ev38DExARHR0d8vIZSv35dVf36cjT0eJb6HYuzs1PeMt++o6rfcExMjFX1O05H/fpy8dKVLPVbTlW/7bTq9+SpM6xb58eNGzd5lZZGxYoVGTBgAK1buanXed/aun2Hzjx69EjnscqVK0vAvp3vZVv/fPAwfn5buHX7DpaWlnh4eDB58mTMjZSvx8XFs2jpGo6G/abKXJWJ471wrlo5j5nvsWDhSs6dj1BdJ+oz8RNvrevEs+cvWLnan5OnzvIiMopiRe1p0bwRw4f2w8amiM59p756Re/+Pty+fY/PPvuMzo1Nc8wSF5/Mcr8Qjp+6SnJKKs6VSzN2qCdOH5TKcTuFIp2fQsM5dvIK1289JjY+mVIlbPBs6kLfLo0wM9X8UzgyOp4V/kf57c8bJCa9xKFsUQZ2b4x7Exc9R1Dli4tj0ZLlHA09oWprZyZOGINz1XzUxw9LOPfXBWV9NGnMxIljtGo6qwM/HeKr/32NhYUFv504rPHatBnfEhj0k9Y2FStW5Oeff85TJiGEEEIIIYT4J4wM5JmUgkQ6iIR4Q8zNzfHz8wPg6dOnrFy5Eh8fH7Zs2ULt2rXfcTrd0tLS+Okn5Q2loKCgf9RBtGPHDkqXLv26o70RCoWCseMncu3aDQYP6o+NjQ07d/3ICO9RbNm8kQrly+e4/ZMnTxk2fCSFCxVizGgfkpKS8N+0les3brLZfz0mJiYAREdH8+TpUzw93ChZsiSvXr3i5KnTTJ/xDXfv3mPsmJH5z/3JF1y7foPBA/tgY23Nzt37GeHzCVv8V1OhfNncc3uNo3AhK8aMGqHMvXkH12/cYrPfSnVugKtXrzPc5xOKFyvGwP69sLYuwuPHT3ny5GnO+cZN4Nq16wweNEDVrrsZ4TWSLVv88tCuTxg23FvZrmNGkZSYiP+mLVy/cYPNmzaq8+3dt599+wLw8HCjV88exMfH8+OPexk8eBjLli2mYYP66n3O+vY7ihUtRvv27ShZsgR37txn8+bNhIWGsnWrP6ampm8lM4Dv8pUULWpPVacq/Pb7yRz3u3LlalavWYenpzsfdeqIoZEJ165d4+mzZ6r6nayq336qzHsY4T2aLZs3UKF8uVwyP2XY8FHKOhjtnaV+b7HZf22W+o3hydNneHq0zFa/s1T166PeZ9ixE0ycNIUaNarh7T0MAwMDQo4e5/PPP+fpk08YMKDfW6uP/LT1p5MnkJiYpP7Z1MyChw8fsmjRIho1rP9etvXOXXuYPed76tevy6QJY3ny9Bnbtu8iIiICv7ULMDExZuyEqVy7fovBA3piY2PNzt2BjBj5KVv8fKlQvkwumZ8xzHuS6joxlKTEZPy37Ob6jdts3rhUnTkxMYnBwz4hKSmZXj06UaJ4Ma5dv8WOXQH88ed5tvr7Ymio/Y+D7Tv28fix/utIVgpFOp/O2s6NO0/o16UR1kUs2fPTH4yZuon1C4ZTrrSd3m2TU1L5bmkgrk5l6NK2DrbWlkRc/Zt124/zR/gdln4zQN3xlpCYwsgv/IiMTqBnx/rY2xbi6K+X+N/8Pbx6paB1i2p68ikYO/4z1TW5r6qt9zLCeyxbNq3LW32MGKOqDy+SEpPw37yN6zdvstlvjUZNZ0hMTGTRkuVYWFjo3a+pqSnTpn6e+bN5YXWHuBBCCCGEEEIIAdJBJMQbY2hoSM2aNdU/f/jhh7Ro0YJ9+/a9tx1Ev//+O8+fP6dx48b89ttvXLx4EVdX13ztI+s5v++OHDnK+fMXmDf3O1p5ugPQqpUHXbr2YuXKtcz+7usct1+3fiPJSUls3byRUqVKAuDq6sLIUeMICAyme7cuAFSpXJm1q1dobNund0/GfzKJbdt3MmqkF0ZGRnnPHXKM8+ERzJszg1YeLVW53ejSfQArV29g9qz/5Zx7wxaSk5LZumk1pUqWUOZ2qcrIMZMJCPyZ7t06AcqbnlOnf0dFh/KsXrEIc3OzvOU7EsL58+HMmzebVp4eynytPenSpQcrV65m9nezcs63fiPJyUls3eKf2a7VXBk5cgwBAUF0794VgLZtWuPjPQJLS0v1tp07d6Jb996sWrVGo4No/rw51K1bR/2zpZU11apV4/PPP+fATz9TyMrqrWQGCA7aR+nSpYmKisbdo7XefYaHX2D1mnVMnDCeAQP6qXMDJMa/4NChEFX9zspSv+506dpHVb8zc8nsp6rf9dnqd3y2+nVk7WpfjW379O7B+E8+Zdv2XYwaOUJdvzt27KZoUXtWr1yKqanyiZCBgz6mXbt2BAQGMWBAv7dWH/lpaze3lho/W1pZs3z5cgDatWvDkSOh71Vbp6amssx3FbVr12Tl8sXqDo76DRrj4+PDnn0HsLez5Xz4JebNnkorj+bKzJ7N6dLjY1au9mf2rC9yzrxxm/I64e9LqZLFVZmdGDlmCgFBh+jetQMAx47/zqNHT1jywzc0a9pAvb21dWFWr93Mteu3qOrkqLHvyMgoVq/bwpBBvVixyj/HHAChv13mwpUHzPqsO26NnQFwb+JM31ErWLftGDMmddW7rYmxESvnDKZ61cxOmo9a16ZkcWvWbTvOH+G3qfdhJQD2HTzLg0dRLPm6P3VqVASga9s6eH2+gWUbj+DW2BkTE+1r9ZGQUM6HX2DenG9o5al8Uq5VK3e6dOvLylXrmP3tjBzPb90Gf1V9rKVUyYz6cGbk6AkEBB6ge7fOWtusWeeHlaUl9erWJjTshM79GhkZ0aF9G/XPloWL5ZhDCCGEEEIIIcT/P/K8lxBvSYkSJbCzs+Phw4eA8qmiL774Ag8PD2rUqEHr1q354YcfePnypcZ2CoWCDRs20K5dO6pVq0aTJk0YN24ccXFx6nVu3rzJyJEjqVOnDjVr1sTLy4t79+7lO2NQUBBWVlbMmTMHExMTAgMDtdbZvXs3HTp0oEaNGjRo0IC+ffsSHh6uft3JyYl169apfw4LC2Po0KE0atSI2rVr07NnT44fP66xzz179uDk5MSlS5cYPnw4NWvWpHXr1uzbty/f55AfR0JCsbe3w8O9pXqZna0trVt5EHbsuNZ7kV3I0VCaNWuqvuEL0LBBfSpUKM+hw0dyPX6p0qVITk4mNTU1f7mPHsPezhYPt+ZZctvQ2tONsGO/5p479DjNmjVSdw4pc9elQvlyHDoSql72+8kz3Lh5G6/hQzA3NyMpOZm0tLTc84UcVbVr5pBiynb1JCwsD+0akrd2dXFx1ugcAuVwjrVq1eT27dsay7N2DmXw9PQElEPVva3MQJ6fsNuydTv29vb069eH9PR0EhMTNV7XX7/uhB07kYf6DaNZsybZMtdTZT6aa77M+n2lXpaQkEiRIoXVnUMAxsbG2NraYm5mrsr9/rW1LkFBQZQpU5qaH1Z/79r6xo1bxMXF0aaVh8awc25ublhaWnLwcBhHjp5QXSeaZslsQ2vP5oQd/y0P14lfaNa0gbpzCKBh/dpUKF+WQ0cyr+HxCcq6tLPTHAqtqL3yqR4zM+2h45b4rsehQlk6tPXI9dwBwn67jJ2NFS0aZg5BaGtthXsTZ06cvsbLLDWYnYmJkUbnUIYWDZT7unP/hXrZ+Uv3sLG2VHcOARgaGuDexJkXUfGcu3hX5zGOhISp6iNzCFk7W1tae7oTduyXPNTHMZo1a6zuHAJVfZQvx6Ej2vVx9959tmzdycQJY3P9ckFaWhrx8Qk5riOEEEIIIYQQr5ORgcF7+z+hTTqIhHhLEhISiImJoWxZ5fBfUVFR2NjY8MUXX7B27VqGDx/O3r17mT59usZ233zzDfPnz6dly5asXLmSadOmYWVlpb5ZfP/+ffr06UNMTAxz5szh+++/JzIykiFDhuR6UyqrlJQUDh06RKtWrShRogRNmzYlODgYhUKhXufMmTN89dVXNG/enNWrVzN37lwaNWqk0VmV3YMHD3Bzc2PevHksXbqU2rVr4+XlxalTp7TWnTx5Mk2bNsXX1xdnZ2emTJnCzZs383wO+XXl6lWqVnXSGv7I1dWF5ORk7t7V38n29OlTIiOjcHHRnjOlmqsLV69e01qenJxMVFQ0Dx8+JCAwmICAYGrUqIa5uXk+c1+natUqOnJXVea+9yCH3M+UuXXMm1LNtSpXr91Q/3zq9J8AmJqa0G+QF42btaVRs7Z8/uVMYmJi9ee7co2qVatq56uW13aNxMXZWUc+V65evap32wwvXrzAxsYm1/WeP38OKDuV3nVmXU6fPoOrqwvbtu3A3aM1TZq2pGnTpmzevBmAK1ev5VK/93PI/CyH+nXWU78pqvp9REDggSz1m/lkWZ06tbh58za+y1dz7/4D7t9/gK+vLxEREQwePFCZ+z1s6+wuXbrEzZs3ade2lTLze9bWL1OV13YzHU/1mZubc/XqTa5cvUHVqo7amV2cSE5O4e69v3PI/JzIyGhcnLXnNKvm6sTVq5nXidq1qmNoaMj8H5YTfuEyT54848Svp1m3YStuLRpT0UFzyMCIi1cIDD7M5Akj8zz/2rXbj6lSqSSGhprrO1cuTXJKKvf/jszTfrJ6ER0PgE2RzCHaUlPTtOYkAjA3VQ7xdvWm7nmqrly9TlUnXddkVX3cy0N96Jh/S/m75LrW8u8XLKFe3Vo0a9pI735B+TunaYs2NGvZhhbu7Zg5cyYJCdJZJIQQQgghhBAikwwxJ8Qb9OqV8lvNT58+Zf78+VhZWTFo0CBA+aTN559nzg1Qu3ZtLCwsmDJlCtOmTcPCwoLbt2+zbds2JkyYgLe3t3rdNm0yh4xZtmwZ1tbWbNiwATMzM/W+PDw82LVrF/37989T1qNHj5KQkEDHjh0B6NSpE6GhoZw6dYpGjZQ3ocLDw7GxsdHI3bJlyxz3O2DAAPX/VygUNGjQgBs3brBz504aNGigsW7//v3VeWvVqsWxY8c4ePAgo0aNytM55Nfz5y+oXbuW1vKiRYsC8OzZcypXdtR6HZSTsmddV3N7e2JiYnn58qXGkxRbt+1k6bLl6p/r16/LzOk5DwenN3etD3UeV53bsVIuue1zzX3vvvIG8udfzKBxo/p8PKQ/167dZMPGLTx58owNa5fqvMH7/PlzateuqWP/Ge36LId2fa6xbk75dDl79hzh4RcYPvxjna9ntWbNGoyMjPD0dGfdug3vLLMusbGxREdHc/78ec6c+QNvr+GULFmCoOCf+eabb1CkpajqV1fmjDp4RuXKH+SSWVcdFNVTvztYumyl+mdl/X6lsa3XiKE8fPiIdev9WLtuIwAWFhYsWbKExo3qAe+2PvIq4+nJdu3aqDK/X21dvlw5DAwM+OuvC3T+qKN6+a1bt4iMjFQdN5LatarnkPkFlR0rar2esa1yXe25fYra2xETG6fO/EGlCkz9YjwLl6xh8LDx6vU6dWjFtK8mamybnp7O3O99ae3Zgg9ruPDw4WOdx8/uRVQ8NV2056ayt1XOp/M8Ko4PHIprvZ6TLXt/x8rSjIa1M2utfBl7/gi/zeOn0ZQsbqNefv6ystPy2QvdX4bI2zVZX33k/ZoMcOKX3zh58jTbt23M8fyKFrVn8KB+OFetgkKRzm+/n2Lr1q1cuXKFTZs2YWws/wQQQgghhBBCCCEdREK8MYmJiRrz9xgZGbF8+XIqVVLeuE9PT8fPz4+dO3fy4MEDUlJS1Ovev3+fKlWqcPLkSdLT0+nRo4fe4/z666+0b98eIyMjdYdUkSJFcHFxISIiIs95g4KCsLe3p3HjxgC4u7tjaWlJYGCguoPIxcWF6OhopkyZQqdOndSdWjl5/PgxCxcu5LfffuPZs2ekp6cD6JzbqGnTzKGQLC0tKV26NI8f5+0G4j+RkpKCqY7Jv81UN+Kyvie6tgV0bm9qapa5/yw3fdu2bYWLS1WioqI5ceIXXkRG5ngM/cd++S9yv8whd+b2pqamJCUmAeDiUpVvv5kKgKd7C8zNzVjqu4ZTp/+kYYO6Oo6RovMGfZ7yJava1VRHPjPd7ZohMjKSL7/6H2XKlGaI6mkVfQIDA9m9ezdDBg+kQvny7yyzPomqto+OjmHO7G9p00b5JMtHnbvRqVMn1q7b+JrqVztT9jrIoKxfZ6Kiojhx4jed9WtiYkL58uXw9HDD3b0FijQF+wIO8Omnn7Ji+VJq1Kj+3rV1dgqFguDgYFxcXKhU0SFzn+9RW9va2tCqlTtBQQeoWLEC7m4tePrsGfO/X4KJiQmpqam8fJmis53MVMv+8fXNLCNzZqdF8eJFqebiRNMm9SlVsjhn/4pg+4592NhYM3G8l3rbgKBD3Lhxh/lz8tcxnvLyFSYm2n+ympkaqbLoH2JOF79dv/DH+dtM9m5H4UKZT3B2alWTfQf/5H/z9zBuWCtsra04+utljp+8qs6hM1+KnrY2y0d96KxpzfpITU3l+x+W0L17Fz6opLtzL8O4MT4aP7dt44lj5aosXLiQgwcP0qFDhxy3F0IIIYQQQoh/yhAZyq0gkQ4iId4Qc3NzNm/eTHp6Onfu3GHBggV8/vnnBAYGUrx4cfz8/Jg7dy7Dhw+nQYMGFClShAsXLvD111+rbxhFR0djbGyMvb32N4szREVF4efnh5+fn9ZrJjpu7ukSGxvLsWPH6Ny5s8bwM82aNePw4cPMmDEDU1NTGjVqxLx58/D392fYsGGYmZnRpk0bvvzyS51DeikUCkaOHElcXBzjxo2jQoUK6qcJHj3SHqqncOHCWvnzM0yePqmpqVpDotna2mBmZsZLHfP/pKiOmfFEli4Zr+na/uXLFJ3bly5VitKlSgHQrm1rvpk1G5+RY9m7Z4fOYeb05zb9F7lNc8itub2ZuXLdtm005wlp19aTpb5rOHsuHMcPKmKRovxVkpQYi62trbJddbxvecqXMYTWSx35UnS3K0BSUhLjxk8kISGRDevXaM1NlCE1NZVffvmVL7+cSv369enduxdpaWnvJHNOMtY3NjamRYtm6uHwLCxf0rx5c9avX4+5uflrqF/tc85eBxm063cOPiPHs3fPdvXQZ3Pm/cCFCxfZtmUDaWlpxMTE0qSZGwMGDOC72XPZstnvvWvrrFJTUzl27DhPnjyhR48ePH/+4jVeK15vW0/98nNSUlJYuGgZCxctA6B169aUKFGCY8eOYWZqprOdUlTL/vH1LSUjs/L68Nf5i4yf+D/81i3B1UU5JJ1byyYUsrJk1drNdO7Uhg8qVSA+PoGlvusZNLAnJUvoftonNTWN2PgkjWU2RSwxMzXWmOsq81zSVFny/ufskV8usmZrGB09a9K1nebcZI4OJZgxsSvzVxzAZ4ryd6q9bSHGDWvN9yt/wszUmBdR8aQ/ewZAUnyW+tDV1in5qA+dNa25/eYtO4iOjmGk97A8n29WQ4YMYfHixRw/fhw3N7fcN8ijpKQkjf++ThnX8uxzsP1bBTEzvLncBTEzSH1kJ/WhSepDk9SHJqkPTVIfmqQ+MhXEzPDma1qI/xrpIBLiDTE0NKR6deXwPjVq1KBixYr06tULX19fZs6cyc8//4y7uzuTJk1Sb5N9vh0bGxtevXrFixcv9HYSWVtb06JFC/r166f1mpWVVZ6yHjx4kNTUVHbv3s3u3bu1Xg8LC6N169YAdO7cmc6dOxMZGUlISAizZ8/G2NiY7777Tmu7u3fvcunSJXx9ffH09FQvT05OzlOu1+X8+XBGeI/WWBYcuIeiRe3VN96zylhWrJj2MFYZiqmGA9K9/QusrYvk+hSDp4c7e/bu5+zZv2jcuKF27vAIRvhM0My9f5sq9wut9TOW5S237u2z5i6mGsbLPtvk83a2NgDcvn2HVu26a+YL2kfRokX17D+jXYvlkK+oxro55cuQmprKpEmfcf36DXx9l+CoZygngMCgYL75Rlmrp0+fpl37Tu8kc26srYtgZmZG4cKFiIi4yAivkVrr2NhY51IHecms+5zzVr9u7NkbwNmz52jcuCGpqans3xfI4MH9MTQ05OzZvxjhPUZjmwcP/n7v2jqr8+fD+fSzLwDw9fXF19eX4MAf8/CZe7ttDVC4cCEW/TCPgwePMOXLaQAcOnQIgCJFCmNtXZjnL7Tn5snMrP+LB8VUQ8s9f65j+xeRWBcprM68e08wdna26s6hDC2aN2Llmk2cD7/EB5Uq4L9lN6mvXtHas4V6aLknT5XvY2xsLI+eGHP/USQTZmzV2M/uVWOwty3E86h4rSwvopRDvhW1Laz1mi6n/7rFrEUBNK5TmU9Htte5jltjZ5rWq8KNO09IUyhwqlSKsxF3ADAyNOCjoYuARer1gwN2vZVrclx8PGvX+9GrR1cSEhLUX+ZITEwiPT2dhw8fYW5ujl2263VW5ubm2NjY8Pfff3P58mW96/1Td+7cee37rFNH2Yn3JvJCwcwMrz93QcwMUh/6SH0oSX3oJvWhJPWhm9SHktSHtoKYGd5cTQvxXyMdREK8JdWrV6dDhw7s2bOHMWPGkJycrPWET8a8FxkaNmyIgYEBP/74I15eXujSqFEjrl+/jouLC0ZGRv8oW2BgIGXKlGH27Nlar02cOJHAwEB1B1EGOzs7evbsyfHjx7l165bO/WY8CZX1PP/++2/OnTuHg4PDP8r6T1SpUpkVy5doLLO3t8epShXO/fUXCoVCY3LxiIiLmJubU6GC9pwXGYoXL46trS2XLl3Rei3i4iWcqmhP7p5dsqp94uO1b3wCVKnsyIpl32fLbYdTFUfOnQvXkfuyMnf5sjnkLoatrQ2XLl/VkfsKTlnmfnF2rgL74OkzzZvxz54pb2Q6OFRgxbLvMbdS3uBMTk5QtqtTZc6d09GuF/LRrjr+SIy4eFGrXRUKBVP/N4PTZ/5g7pzvqFuntt5937//AF/fFRQvXpyvvvqKIkWKvJPMeWFoaEiVKpW5dOkyFSs6sGKF8gkRc3Mr9uzZQ2BgIJUdP+DS5Ss51G+5HDKr6kBn/V7GqUrlXDNm1q/yRnV0dAyv0tJIS1MAUKWKIyuWL8bcogj+/v6EhoZiY2P93rV1Vg4OyqccHRwc+Oyzz0hOilV95ipz7q/z701bZ9WoUX1WLF8MQJrCiPHjx9OgXi3S09M591eEduaLVzA3N6NC+TI5ZC6Kra01ly5f05H5Kk5VMjthIyOjUKje86wyhjxNS1M+5fP48VNiY+Po0WeE1rorV65kJbBs1kAWzdT8soOdbSEqVyzJ+Uv3UCjSMTTMHKrg0rWHmJuZUK6M9lxJ2V289jdfztlFVcdSfPNpN4yNDPWua2JihHPl0uqf/zh/B4BWLarTuF5lrMsrh3xMTozOvCb/peOafFFVH+XzUB+X9f0uUdZHXGwciYlJbPTfykb/rVrrdvioJy1bNGPhAu3f4xni4+OJioqifPnyODs7610vv5KSkrhz5w4ODg65Djv7T73OvFAwM8Obz10QM4PURwapD92kPpSkPnST+lCS+tBN6qNgZoa3k1vkzFBGmCtQpINIiLdo1KhRHDhwAD8/Pxo3boy/vz+bN2/GwcGBgIAA7t69q7F+xYoV6dOnD4sXLyYmJoZGjRqRnJxMWFgYY8eOpUSJEowbN44ePXowbNgwevXqpfp2/nNOnz5N3bp16dixo540Sk+ePOHMmTOMHDmSBg0aaL3esWNHtm7dSlxcHBs2bCA6Opr69etjb2/PtWvXOHHiBEOGDNG570qVKlGyZEkWLFiAQqEgMTGRJUuWULx4/iYT/7eKFClCwwb1tZZ7erpxJOQoIUfDaOXpDkBUVDSHjxylefOmGt/qv3//AQDlymV2vni4tyQo6ACPHz+hZMkSAJw6fYa7d+/Rv18f9XqRUVHY2Wp/q3vf/gAMDAyo6uykJ3dhnXP8eLq34EjIMUJCj9PKo6Uyd3Q0h0PCaN6skWbuB38rc5fNvBns4d6coKCDPH78lJIli6ty/8nde/fp3y9zvquWzZswf8FSAgJ/4qOObdU3PvfuD1a/7upaFcsiyqGwEhNilPk8PDhy5CghR0Np5emRpV1DaN68We7t6uFGUFCwZrueOq1s1/59Ndpi7tzvOXToMFO/+gIPD/1DJj1//pxRo8diZGTMhvWrcazs/M4y51Wb1q24cCGCY8dO0K1bFwCMjM2ZNm0alSpVpEOHtpz45Tcd9RtK8+ZN8lC/bjrq9w9V/fZWr6e/foM06tfOzpbChQsTGnacUSNHqD539Ug3MOfy5ctUdHDA2tr6vWzrDOHhF0hKSmLAgAE0btyYxHhlZ6jyWhH63rR1VhntDDB3/hLS09MZPLAnD/5+xJGjJwgJ/YVWHs2VmaNjOBxygubNGma7TjxUZi6b2Sni4daMoODDPH7yVD0k3KnT57h77wH9+3ZTr1e+fFl+P/Unf/x5nrp1PlQv//lgKABVnZSdSX17d8GtRWON7JFR0cyavZhu3bpRr4oRlSuWoJCV9nCbLRtXJfS3yxw7eQW3xsrPbnRsIqG/XaZJvcqYZpmf6MEj5VNPZUtldhrduf+cT7/ZTsniNsyb2hszs7wNvwpw/2Ek+w7+SZO6lXFRdRoVdVaeR2Kccqg5Tw83joSEEXL0GK08ldehqGhVfTRrkodrckuCgn7Sro9799X1YWtnyw/faz+pu237bsIvRDD72xkUVT2NlJKSwqtXaVhZaQ6BsXz5ctLT03Fzc3sjw2NYWFi8sWE33tR+C2JmeHO5C2JmkPrITupDk9SHJqkPTVIfmqQ+NEl9ZCqImeHN5hbiv0Q6iIR4iypVqkT79u3Ztm0bYWFhREVFsWSJ8smWNm3aMHXqVHx8NCeWnjZtGmXLlmXXrl34+flhY2NDvXr11MPHVahQgV27drFo0SJmzpxJYmIixYoVo169ejg56e54yCo4OBiFQkGXLl10vt61a1c2btzIwYMHqV69On5+fvz000/Ex8dTsmRJhg0bxsiR2sNfgXIC9qVLl/L1118zfvx4SpUqxciRIzl58iQRERH5aLk3w9PDnerVdzBj5ixu3bqNrY01O3fvQaFIY6S35rfcvUcqh8o6ELRPvWzYx0M4cuQoXt6j6du3F4mJSfhv2kJlxw/o/FFmx9y6dRv563w4jRs1pFTJEsTExhJyNIyLFy/Rp3dPypfT/+1y3blbUH27CzO+nsutW3dVufcp53zyGqqZe9REZe6AHZm5hwzgyJEwvEZ+Qt8+PZS5N2+nsmMlOndqp16vaFF7hg0dyIpV6xk97jPcWjTl2vWb7NkXRNs2Hri6VtWdz9Od6lurMWPGN6p2tWHnrt3KfD6aT8J5+yiH/jsQvD9Luw7lyJEQvLxG0rdfb2U+/81UdnSk80ed1Ott2bKNnbt2U6NGdczNzQkO/klj3+7uLdXfFho9ZjwPHvzNkMEDOXfuPBcvKZ+MeJmShL293VvLDBAUdIBHjx+RnKR8KuTs2XOsWbsOgA7t21O6tLLDrXv3ruzdt5/Zc+Zx9+49SpYqwU8/HeLhw4csWjiPRg3rU726KzNmfsetW3ey1e9wzcwjxykzB+3JknmQqn7H6KjfzAns163z01O/l+nTuwflVR0hRkZGDBrYF9/lqxk0eAQdO7YjLS2NgMCfePz4Md/O+vqt1kd+2jrDgZ8OYmpqSps2bTSWe3q4vVdtDbB+gz83b96iWjVXjIyMCAs7zu8nT/PJJ5/g6uJEVSdHqldzZsY3C7h1+x62NkXYuTtQdZ0YpJl59OfKzPs3ZWYe2ocjIcfxGvkZfXt3ITEpCf/Nu6nsWJHOnTKfKO3T6yMCgg4yftI0+vTqTKmSxfnz7AV+PhRKwwa1qV5N2aHjXLUyzlU1n5bKGGrO0dGR5g31D7Pn1siZnU6n+XZJILfvP8OmsCV7fv6TNIWCYX1baKw7ftoWAH5cMxaAhKQUJs7cSlxCMv26NuL3P25orF+mpC3Vqma2a/8xK3Fr4kyJokV49DSavT+fpUghCz4d2Q59PD1aKuvj6++4dVtVH7v2Kts623xB3iPHK9s6MHM412FDB3LkSChePuPo26ensq03bVXVh3IoPAtzc9xaNtc6dmjYCSIuXtZ47cWLSPr0H0rbNp44OFQA4PffT/PLr7/TrFkzPDw8tPYjhBBCCCGEEOL/J4P09PT0dx1CCCHelMT4qBxfj42NZeGipYSFHSc5JQVXV2cmfDIOVxfNx5zbd+wCaHYQAdy8eYsFPyzm3F/nMTExoVnTxkycME5jzqiTJ0+xbftOLl+5RlRUFGZmplR2dKRrl4/o1KkDBgaZz95aFlI+PZAY+yiX3HEsXLKCsLBfSE55iauLExPGj8TVRbPTpv1Hym+fZ+0gUua+zYJFyzn31wVMTIxp1qQhEz8Zhb295lBN6enp7Ni1l+079vL3w0cUtbejY4c2eI0YjImx8jsG2Z8gymzXJYSFHSM5OQVXVxcmTBiHq4uLZr4OnZX5snQAKPPdZMGCRVnatQkTJ47XaNdp02cSGBist42Cg/ZRurTyG/+1ams/QZahTp3arF2z8q1kBhg+woc//zyrM8ua1SuoWzdzXOPIyEgWLV7K8eMnSEpKxtnZmbFjx1KnljKTMrNvtvodo6N+lU98ZO20UGa+xYIflnDur3BV5kaq+s2sg5MnT7Nt+y4uX7lKVFR0lvrtRKdO7TXqF+Cnnw6xddtO7t67T+rLlzhVrcqwYcNo1jRznq33sa3j4+PxbNWOJk0as2LFSgD1E0TvY1ufOPErq9ds4PadO6SlKahc+QOGDRtBu3btSIy5q8ocx8Ilawg79psys4sTE8Z5ac0X1L7zQGXmLB1Eysx3WLBoFefORygzN6nPxPHe2NtrPuV05+59fFdsJOLiFZ6/iKJYMXtaeTTDx2sQFubaTwRlePjwMR26DOKzzz6jc+Oc52GKjU/Cd2MIJ05dJeXlK5wdSzF6qCfOjqU11us+YimQ2UH06Ek0PbyX6d1vO7caTB3/kfrn6Qv2cOHyAyKjE7AuYknT+pUZ3qcFtjaZc/oVdVa2V8YTRKCqj8XLCQs7oWrrqqr6yHZN7qR8SjNrBxGo6mPhMlV9GCt/l3wyRuuanN20Gd9yJCSM304cVi+Li4tj7rxFhEdc5Nmz5ygUCsqVLUPnLl35+OOPtYa3/bcSExO5fPkyzs7OBeYbmgUxMxTM3JL57SmIuSXz21MQc0vmt6cg5pbMb0dBzAwFN/d/yZ/PH7/rCHrVKVryXUd470gHkRDiPy23DqL3TV47iN4nujqI3neWVtZAwcoMWXLHa09o/76yLKTstClIbV0Q2xmytHXM3VzWfH9YWiufcHl+eVMua74/dHUQFQSWhYu9kf0WxH+AF8TMUDBzS+a3pyDmlsxvT0HMLZnfnoKYWzK/HQUxMxTc3P8l0kFUsMgQc0L8xykUChQK7QnEMxgZGWk9ASCEEEIIIYQQQgghhBDiv006iIT4j/P19WXZMv3D68yePZtu3brpfV0IIYQQQgghhBBCCCHywlC+iF6gSAeREP9xvXr1omXLlnpfL1u2rN7XhBBCCCGEEEIIIYQQQvw3SQeREP9xJUqUoESJEu86hhBCCCGEEEIIIYQQQoj3iHQQCSGEEEIIIYQQQgghhBDiXzN81wFEvsj7JYQQQgghhBBCCCGEEEII8f+MdBAJIYQQQgghhBBCCCGEEEL8P2OQnp6e/q5DCCGEEEIIIYQQQgghhBCiYLsQ+fRdR9Crul3xdx3hvSNPEAkhhBBCCCGEEEIIIYQQQvw/Y/yuAwghxJsUl5DwriPkS2ErKwAi4+PecZK8sytUGIDExILT1paWynYuqPURkxD/jpPknbVVIaBgtXVGO0fHF5x2BrAppGzrxPiod5wk7ywL2QIQd//gO06Sd4XLtQEgMf7FO06SP5aF7AFITIh5x0nyztLK+o3sNzExkcuXL+Ps7IylpeUbOcabUBBzS+a3pyDmlsxvT0HMLZnfnoKYWzK/HQUxMxTc3EK8K9JBJIQQQgghhBBCCCGEEEKIf02GLCtY5P0SQgghhBBCCCGEEEIIIYT4f0Y6iIQQQgghhBBCCCGEEEIIIf6fkSHmhBBCCCGEEEIIIYQQQgjxrxlg8K4jiHyQJ4iEEEIIIYQQQgghhBBCCCH+n8nXE0RLly5l2bJl6p9tbGyoVKkSPj4+tGjR4rWHe91mzZrFpk2bGDduHKNHj37XcdROnTrFoEGD2L17N9WrV3/XcQDle71+/XrOnTv3WvZXt25dBg8ezNixYwEYOHAglpaWrFq16rXsX5fbt2/Ttm1bQkNDKV26tHp5bnXg5OTEZ599xrBhw15blj179vDFF1/w+++/Y2dn99r2mx8DBw7k9OnTjBo1ivHjx2u81rlzZ5ydnZkzZ06e9xcbG4ufnx/t2rXD0dFRvfzBgwd4eHiwePFi2rZt+9ry58XLly9ZvHgx+/fvJzY2FicnJ7x8fGjYsGGu2z59+pQfFizg5O+/k56eTp26dZk4aRJly5bVWnffvn1s9vfn4cOHlChRgt59+9KnTx+t9U6dOsX6deu4ceMGaa9eUb5CBXr37k2Hjh011qtbu7bOTDVr1+bBvXvExsXh6OiI96iR1M/juSxe8AOnT55EkZ5Onbp1GD9xImWynEtycjIL5s3jUkQETx4/QaFQUKZsWTp+9BHde/bE2ET718PpU6fwX7+BK5cvk56eTrny5RkweBBtPVsxf/58Dh06RHJyMtWqVWPixAk4OzvnmhXg1q1bLFiwgHPn/sLExIRmzZoyceIk7OxsNdZTKBT4+/uza9dunj9/ToUK5Rk69GPatdNfZ6mpqfTu3Yfbt28zYcInDBo0SP3azZs32bxlCz8dOEB0dDTp6ekUKlSIUaNH06t371xz57Vmdu/axZkzZ4iIiODJ48d07NSJGTNn5rr/Wd98w769e2natCmLlizReO3ly5esWrGSn4KDiYuLw7GyIz6jRtEgj/WxcMECTv1+Up17wiTN+sjI/ceZM1xU1UiHTh2Zrif35UuXWb1yJZcvXyYpMZEyZcrQuWsXevTqpZF55YoVHFBnrszIUaNe6+czr2199s8/2bRpE9euXiUqKorChQtTpUoVho0YQc2aNTUyr16ZpZ0dHfHORzsvWrCAU+rPYV0mZPscPnn8mMCAAH795Rfu37uHoaEhHzg6MnTYMOo3aKCxv6CAAL7R0/4HDh7EvmhRreVxcXEsWryMo6HHlJ9NVxcmThiHs3PVXPMD3Lp9mwULFnPur/PKz2bTxkycOB4728zP5u3bd9gfEMjvJ0/z4MHfWFpYULWqEz4+I3B10bwGrFy1hlWr12kdx9TUlN8OfJ9jlrj4RJasDiD01/Mkp6Ti6lSeCT5dqVq5XI7bKRQKgg+f4egv57l24wExcYmULmlP65a1GdjLHTNTE/W6ySkvmbd0NxFX7vLkaRQKhYKypYvyUduG9PyoGcbGRvrzxcWxaLEvR0OPZ2nrsTg7O+WYL8Ot23dUbR2OiYmxqq3HabT102fPWLzYl4uXrvDs2XMMDQ2pUKEcvXp2p1PHdhgYaH9L7+ChI2zZuoPr129iYmKCo6MjPt7DqV+/njLzoqUcDQ1TXbtdmThhfN7r49ZtFixYmKU+mjBx0ifa9bE/gN9PnlLWh6UFVatWVdWHi8b+7ty5y+7dP3Ih4iJXrlzl5cuXhISE6Pw9LIQQQgghhBDi9cj3EHPm5ub4+fkBypsfK1euxMfHhy1btlBbz03O90FaWho//fQTAEFBQe9VB5Grqys7duzggw8+eNdR3prp06djaPhmH2ALDQ3FyclJo3Pofa6Dt2XTpk18/PHHFC5c+F/tJzY2lmXLllG5cmWNDqLixYuzY8cOHBwc/mXS/JsyZQoHDx5k0KBBODg4sHfvXsaPG8eqVauoWauW3u0SExPx8fIiPj6eoR9/jLGxMVu3bsV7xAi2bNuGjY2Net0fd+9m9nff4e7hQf8BAzh37hzfz5tHcnIyQ4YMUa937NgxJk+cSPUaNfDy8sLAwIAjhw8zfdo0oqOj6T9ggEaGBg0b0qFDB8zNzADw37SJC+fP07tfP8qVL0dwYBATx43Hd9UqPqxVM8dzGePtQ3x8PIM/HoqRsTE7tmxllJc3/lu3YK06l5SUFG7fvEWjJk0oVao0BoYGXAgPZ/EPP3AxIoKvv/tWY79BAQF89/U31G/QAJ8xozE0NOTe3bs8fvQYLy8vrl69yqBBA7GxsWHnzl2MGOHFli1bqFChfI7v2ZMnTxg2bDiFCxdizJgxJCUl4u+/ievXb7B58yZMTDJv3i5b5suGDRvo1q0rrq6uhIWF8eWXX2JgYEDbtm107n/79h08fvxY52u7d+9m544dpKWlUb9BA6wsLfnll1+YN3cuqa9e0b9//xzbOa8147dxI4mJibi6uvL8+fMc2yPDpUuXCAwMxExVD9l9PX0GISFH6Nu3H+XKlycoMJBPxo1jRR5qfaSXNwnx8QxR5d62dQveI7zYvG2rRu5NG/1IyEPuy5cuM3zoUMqVL8+gwYMxNzfnt99+ZcH873nw4AFfz1B2asyYPp2QkBD69e2rzvy6P595bet7qs6Ybt27Y1+0KHGxsfx04ABew4ezaPFi2rRurWznGTM4euQIffop2zk4MJAJ48axPA+ZR3l7E5+1nbdswcfLi81bt6o/h8ePHcN/40ZatGxJ+44dSXv1igPBwYwdNYqp06fT6aOPtPbt5eND6TJlNJYV0nE9VygUjB0/kWvXbjB4UH/lZ3PXj4zwHsWWzRupUD63z+ZThg0fSeFChRgz2oekpCT8N23l+o2bbPZfr/5s7t0XwL79gXi4t6RXz+7Ex8fz44/7GDxkOMuWLqRhg/pa+/7yi8+wtLQAwNTMCiMj/R0vGecy/qtVXL/5NwN7eWBjbcXugF/wnrSETcs/pXzZ4nq3TU5JZeb8LVR3dqBbxybY2RQm/NJtVvsf4My5q6z8fqy6YyUlJZVbdx7RpL4LpUvYYWBoQPjF2/ywYi8Rl+/y7VeD9eYbO36yqq37qdp6DyO8R7Nl8wYqlM+5E0vZ1qMoXMiKMaO9s7T1LTb7r1W3dXR0DE+ePsPToyUlS5bk1atXnDx1mukzZnH37j3GjvHR2O/KVWtZvWYDnh5ufNSpA4ZGZly7do2nT58pM4+bwLVr1xk8aIAq825GeI1kyxa/PNTHE4YN91bWx5hRJCUm4r9pC9dv3GDzpo1Z6mM/+/YF4OHhRq+ePVT1sZfBg4exbNlijfoID7/Atu07qVSpIhUrOnD16rUcMwghhBBCCCHeT4Y6vrwm3l/57iAyNDTU+Hbthx9+SIsWLdi3b9973UH0+++/8/z5cxo3bsxvv/3GxYsXcXV1faeZ0tPTSU1NpVChQhpt+v9B1g6FNyU0NBQ3NzeNZe9jHbxNNWrU4MaNG/j7+7+xzjFTU9N3Us/h4eEEBwdrPP3VpUsX2rdvz5LFi1m/caPebXft3Mm9e/fw27RJXQ9NmjShd69ebNm0idGqJ9+Sk5NZvnw5TZs2Zd78+QB07daNdIWCdWvW0K1bN4oUKQLAzh07KFq0KCtXrcLU1BSAbt2706NbN4ICA7U6iMqXL0/7Dh0obGVFeHg4ERcuMGb8ePoPGghAuw4d6N+rN8uWLGHNhvV6z2XPrl3cv3ePdf5+uKjOpVHjJgzo3Zutm7cwcozyfbe2tmatn2abdOvRg0KFCrF7x07GT5ygfiLh0cOHfD9nLj1792bCp5M1tjly6DDnzp1j8eLFNG/eDIBWrVrTpUsXVq5cyezZ3+nNCrBu3XqSk5PZunULpUqVAsDVtRojR44kICCA7t27A8ovJGzatInevXsxZcoUZdt37cqwYcNZtGgRrVp5at1kjoyMZPXq1QwZMoQVK1ZoHbtKlSq8evWK8Z98wkDVk0VPnz6lY/v2rFqxIscOorzWDMDqNWsoWaoUBgYGNGvSJMf2AOXvhu/nzaNDhw6cOX1a6/Xw8HAOHTzIuE/GM0CVu33HDvTt2Yuli5ewbuMGvfvevVNZHxs3+avro3GTxvTt1ZutmzYzauwY9bor16yhZKmSGBgY0KJJU7373PvjjwCsWrsGa2trALr16I738BEEBQby9YyZ6sxZ27pDx4707tnztX0+Ie9t3aVrV7p07aqxrGfPnnT+6CO2bd1Km9atCQ8P5/DBg4wdn6WdO3SgX69eLFuyhLUb9Lfzj6rP4QZ//yyfw8b0692bLZs3M2qMsp3r1K1LQHAwNlmeuOjWowcD+/Zl9cqVOjuIGjdpgnO2Jy90OXLkKOfPX2De3O9o5ekOQKtWHnTp2ouVK9cy+7uvc9x+3fqNJCclsXXzRkqVKgmAq6sLI0eNIyAwmO7dugDQtm1rfLyHY2lpqd6280ed6NajD6tWrdXZQeTp4Y6trQ0AloWU5x53/6DeLCHH/yL84m3mTBuKZ3Nlx1yrFrXoNmQWq/x+0ttxA2BibMS6xZ/woWsl9bKuHRpTuqQdq/x+4vTZazSoo3zKx7qIFRuXTdLYvkenphSysmDn/uNMGNmVonZFtI5x5Eioqq1nZWlrd7p07aNq65yfGFy33k/V1uuztfV4jbauUtmRtat9Nbbt07sH4z/5lG3bdzFq5Aj1dTD8QgSr12xg4oSxDOivfMLVspA9AIkJMRw6dJjz58OZN282rTw9lJlbe9KlSw9WrlzN7O9m5ZJ5I8nJSWzd4p+ZuZorI0eOISAgiO7dlZ+vtm1a4+M9QrM+OneiW/ferFq1RqM+WrRoxvFjIVhZWeHvv1k6iIQQQgghhBDiLfjXj3CUKFECOzs7Hj58qF729OlTvvjiCzw8PKhRowatW7fmhx9+4OXLlxrbKhQKNmzYQLt27ahWrRpNmjRh3LhxxMXFqde5efMmI0eOpE6dOtSsWRMvLy/u3buX75xBQUFYWVkxZ84cTExMCAwM1FrHycmJ1atXs3DhQho1akTdunWZN28e6enp/P7773Tu3JlatWoxePBgHj16pLHty5cv+eGHH3Bzc6NatWq0a9dO6xhTpkyhY8eOHDt2jI8++ojq1atz9OhRTp06hZOTExcuXMhz29y8eZMJEybQokULPvzwQ9q3b8/69etRKBTqfTx48AAnJyf279/P119/Tb169WjatClz587l1atX+Wq//OzryJEjtG3blurVq9OjRw/Cw8O19jdw4EC8vb3VP7/u84mNjeXs2bNaHUR5qYPswsLCGDp0KI0aNaJ27dr07NmT48ePax1v6tSpNGvWjOrVq9OiRQsmTJiQ435//PFHqlWrxq5du/J8nD179uDk5MSlS5cYPnw4NWvWpHXr1uzbty/X8wCws7OjT58++Pv7Ex8fr3e93N6PjGHkAMaPH4+TkxNOTk48ePBA/T79/PPPQGbdZ5fxhNetW7c0zq9Tp05Ur16dZs2asXDhQtLS0vJ0bj///DNGRkb0zjI0mJmZGZ27dCE8PFzvUyQAISEhuLi6anQWOlSsSL169Th8+LB62R9//EFMdLTGsFkAPXv1IikpiV9OnFAvS4iPp3CRIurOIQBjY2NsbGz0PhWSnJxMSkqK+ly6dMu8gW1mZkanzp2JCA/nSQ7ncjQkBGdXF/VNaeW5OFC3Xj1CspyLPqVKKZ+4i4vLrI+9u39EoVAwwkf57fTExETS09MBCA0JoWjRorRWPXEBYGdnS+vWrQgLC9O67mcXEhJCs2bN1J1DAA0bNqBChQocOpSZNywsjFevXtGzZ2bbGxgY0LNnT548eaLzOrNkyRIcHBzo0KG9zmNfv34dIyMjunbrpl5WvHhxHBwcSExMfC01A1CqdGmdQz/pExwczM2bNxmlpxM3sz4yc5uZmfFRl85cyEN9uLi6ZquPitStV48jWrlL5Sl3QkICpmamWk8lFi1aFDMzc43MXbNlfp2fT2Xm/LV1VuYWFtjY2qp/z+pr506d/107Z/0cVvrgA43OIVB2sjdu0oSnT56QkJCgc/8JCQm5XhuPhIRib2+Hh3tL9TI7W1tat/Ig7Njx3D+bR0Np1qyp+uY/QMMG9alQoTyHDh9RL3Nxrqpx8x/AxsaaWrU+5PadOzr3nU468fEJ6utIbkKO/4W9bWHcm36oXmZrUxjPFrU49vsFXr5M1butiYmxRudQBrcmyn3dvqf/fcxQuqRyaNj4+CSdr+tva3fCjp3IQ1uH0axZk2xtXU/V1kdzzVeqdCmSk5NJTc38W2jL1h3Y29vTr28v0tPTSUxMzJb5qCpz5t9JysyehIXloT5C8lgfLs466sOGWrVqcvv2bY3l1tbWWFlZ5Xq+QgghhBBCCCFen3/dQZSQkEBMTIzG+OBRUVHY2NjwxRdfsHbtWoYPH87evXuZPn26xrbffPMN8+fPp2XLlqxcuZJp06ZhZWWl/kfs/fv36dOnDzExMcyZM4fvv/+eyMhIhgwZkus/XLNKSUnh0KFDtGrVihIlStC0aVOCg4M1Oh8ybNmyhYcPHzJv3jyGDBnCunXrmDt3Lt999x3e3t7MmzePO3fu8NVXX2lsN378eHbs2MHQoUNZtWoVzZo149NPP+XYsWMa6z19+pRZs2YxZMgQ1qxZo3eOjtza5unTp1SsWJHp06ezevVqevXqha+vL8uXL9fa16JFizA0NGTRokX06dOH9evXqzsl8iu3fV2+fJlx48bh4ODAsmXL6Nq1K5988kmu79frPp8TJ05gbW1NjRo11MvyUwdZPXjwADc3N+bNm8fSpUupXbs2Xl5enDp1Sr3O7NmzCQsLY+LEiaxbt47PPvtMo2Mgu02bNjF9+nTmzp1Lz54983ycDJMnT6Zp06b4+vri7OzMlClTuHnzZo7nkeHjjz8mKSmJLVu26F0nt/ejePHi6vnIJk6cyI4dO9ixYwfFi2sP89OhQweuX7/OtWua3wQOCgrC1dWVSpWUN+42bNjA1KlTadq0KStXrmTEiBH4+/uzcOHCPJ3X5cuXcXBwoFChQhrLM24qX7t6Ved2CoWCG9ev46LjG/mu1arx4MED9U3aq1euAGit6+zigqGhIVezHKNO3brcunmTFcuXc//ePR7cv8/aNWu4fPkygwZrf9s9KDCQZk2aUKNGDbZu3YqtnR1W2c7FpZrqXK7p/la1QqHg5vUbODtrn4uzqyt/ZzmXDKmpqURHRfPk8WPCjoayddMmSpYqRdlymdf0M6dPU8HBgd9+/YWP2rXHo1lz2rh7sGr5Cq5dvYqL6vw12s61GsnJydy9e1dnVlDWWWRkJC4u2tfBatVcNdrzypWrWFhYUKlSRa31Ml7PKiIigsDAICZPnqS3w+Dy5cuUL19eq2Yyblm/jprJr4SEBJYuWcLQjz+mqI45ZXLK7eJaTZVbf33cuH4dZx3t7VrN9R/nrl23DgnxCcz+9ltu37rNo4eP+HH3bkKPHmXI0CE5Zn6dn89/Ij4+nuioKO7cvo3v0qXcvHGDevXrqzOX05W5mqqdc/gc3rh+XefvdxfXvLXzixcvMDc3x9zcXOu1Ud7euDdvTosmTZg8YYLeL81cuXqVqlWddHw2XVSfTf1ftlF+NqNwcdGei6aaq0uenux48eKFxvB/WXX6qDvNWnjQpJk7kydPznXoxas3/8apcjntc6lageTkl9x78CzXPNk9j4oFwMa6kNZrqamviI6J5/HTKEJ/Oc+mXUcpVcKOsmV0fyavXL2WS1vf15vj6dNnObS1s862Tk5OISoqmocPHxEQeICAgGBq1KiGuXnmlw9On/4TV9eqbNu+C3eP9jRp5knTpk3ZvHmzMvOVa1StWlU7c7W81kckLjpqvJqr5rVbn5zqQwghhBBCCFGwGb7H/xPa8j3EHKB+WuPp06fMnz8fKysrjYm/nZyc+Pzzz9U/165dGwsLC6ZMmcK0adOwsLDg9u3bbNu2jQkTJmg8SdKmTeY8EsuWLcPa2poNGzaov3Ffu3ZtPDw82LVrV47D/2R19OhREhIS1E8xdOrUidDQUE6dOkWjRo001i1evDjzVUNHNWvWjKNHj7Jx40aCg4PVcwQ9efKEb775htjYWIoUKcLJkyc5evQo69ato2lT5TA8TZo04dmzZyxdupQWLVqo9x8TE8OaNWv48MPMb8Fm/+Z0XtqmUaNG6uzp6enUqVOH5ORkNm/ezJgxYzT2V6NGDaZOnarOderUKQ4ePEjfvn3z1H752dfq1aspVaoUvr6+6mFOzMzMtDrUsnvd5xMaGkrz5s01bnzkpw6yGpBlKDCFQkGDBg24ceMGO3fupIFqEvELFy7QsWNHumYZsqhDhw4697dq1SqWLVvG4sWL1U/h5PU4Gfr376+u/1q1anHs2DEOHjzIqFGj9J5HhmLFitGrVy82bNjAwIEDtb7ZC7m/H6ampuqbnxUqVMhxSLlGjRphZ2dHcHAwVapUASApKYmjR4+q39v4+HiWLFnC8OHDmThxIqB8b01MTJgzZw7Dhg3DNtu37LN79uwZxYoV01peVLXs2TPdNxBjY2J4+fKlzpvxGcuePXuGlZUVz58/x8jICDs7O431TExMsLa21jjG8BEjePj336xft451a9cCyjnc5qo6frOq8eGHtGrVitJlyhAXE8N3333H82fP2LNrN9169tDK81zvucTy8uVLnZPVZ9026ze0w44eZdqXmZ9PZxcXvpw2DWPjzF8P9+/dw9DIiG9nfk3/QYOoXKUyYUdD2bhuHcbGxjSorz2EVNa2q1y5ss68z54911g3+/YxqvfG1NSU58+fYW9vr9XZk/U4GdLT05k7dx6tW7fmww8/1HjCVfP4z7SOfe7sWW6rnmp7HTWTX2tXr8bczIx+Ofx+e/bsme73uJh2W+Q3d/b6yIsuXbty6+Yt9v74I/v37gPAyMiIyZ9/RvcePdSZdB73NX4+/4kvPv+c33//HVB+jrt1787wESNyzGyvo+Z0Zc7P5zCr+/fvExYairun5rCJ5ubmdOjUibp162JlZcXly5fZtmULI4YOxX/LFkqULKmxn+fPX1C7tvY8SZnt9pzKlXUP9/rs+QuNdTW3tydGda3R90WIs+f+Ijw8guHDhmosL1K4CL179+DD6tUxMTXh3Lnz7Nz1IxcuXGDj4pEUsrLQub/nL2KoVV17nsaM4d6evYjBsVJprddz4r8jBCtLc5rU1+7kOPrLeb761k/9s0uV8kyb3A9jPXMlKdu6pna+osoh3ZTXQd3zTD57/lxjXc3ti+ps663bdrB02Ur1z/Xr12Xm9MzreGxsLNHR0Zz/6wJnzpzFe8THlCxZgqADh/jmm29QpKXy/PlzPZmzXrv11UdO1+481MfZc4SHX2D48I91vi6EEEIIIYQQ4u3JdwdRxuTPGYyMjFi+fLn6KQBQ3pzz8/Nj586dPHjwgJSUFPVr9+/fp0qVKpw8eZL09HR69OiBPr/++ivt27fHyMhI3SlVpEgRXFxciIiIyHPmoKAg7O3tady4MQDu7u5YWloSGBio1TGQsU6GihUr8vz5c3XnEICDgwOg7NgpUqQIv/76KzY2NjRs2FBjqLPGjRszY8YM0tLS1Dd5bGxsNDqHdMlL26SkpLBq1SoCAwN59OgRqamZw6skJCRo3HjK6LTK8MEHH3Dy5MkcM+iT277Onz+Pu7u7xk2ttm3b5tpB9DrPJy0tjRMnTvD115rzK+SnDrJ6/PgxCxcu5LfffuPZs2fqIXGyfg5cXFzYu3cvxYoVo1mzZuqOkOwWLVpEYGAgq1at0qq1vBxHVxtYWlpSunTpHIdoym748OFs376dbdu2qefrySo/70dujI2Nadu2LQcOHFAPuxcaGkpSUpK6E+3cuXMkJibStm1brc9QcnIy169fp76OToiskpOTdd6MyliW9TqksZ1qecaE2jltm5KSgrGO9QBMzcw0jmFiYkL5ChXw8PTEzd0dRVoae/fsYdrUqfguX071LE+3rc8yl0lhKyvWrl3Li8hIVvr60r5TR/VTBLmdS0pKsmo9HedipnvbOnXrsni5L/Fxcfxx+gzXr18nOVlzGKWkpCQUCgWjxo5h4JAhALh5eBAbG8vJ337T+YSOmZ7j6c6r630zU29vampKSkqKzvco48sDGfsCCAgI4MaNG8yfP0/vsUFZMyZZjh0ZGcnUr76iRMmSPHn8+LXUTH7cvXuXbdu28e3s2Tk+gZicnEwxHa+b5VofGblzbu/8MjIyomzZsjRs1AiPVp6Ymppy6OBBvp83D3t7ezp37KTV1pnHfX2fz39izLhx9B84kCePHxMcFERqaqp66Lbk5GSK/ot21lnXZjm3c3JSEl9+/jlmZmYacysBeLZujWeWoRxbuLnRsFEjfEaMYMP69Uz58kutHKa6PjN5aDf1Oehsd83PZnaRkZF8+dU0ypQuzZDBmnOt9evXW+NnTw93atepx+TJk9kd8AtD+rbSnedlKqYm2n+ymqmudSk5DDGny/qthzh99ipTxvWkcCHtL0nUrVkZ37mjiUtI5MzZa1y/9TdJyTm3179v65w/H1nbum3bVri4OBMVFcWJE7/xIjJS4xiJicpreHRMDHNmf02b1p4AfNSlB506dWLtuvV63788ZU7OqHFdv2vyUh//o0yZ0gwZPFDvMYQQQgghhBBCvB357iAyNzdn8+bNpKenc+fOHRYsWMDnn39OYGCgengpPz8/5s6dy/Dhw2nQoAFFihThwoULfP311+p/cEZHR2NsbIy9vfY3JjNERUXh5+eHn5+f1mu6bhbpEhsby7Fjx+jcubPGkC7NmjXj8OHDzJgxQ+MfsBkTzGc9jq5lkPmP56ioKKKjo3XeyAfltzBLqr7Zq2/IoKzy0jbz589n165djB49mmrVqlG4cGFCQkJYsWIFKSkpGjfws88LYWJikq8h+rLKbV/Pnj3Tyl2oUCG9c668ifM5d+4cCQkJNMkyQXl+6yCDQqFg5MiRxMXFMW7cOCpUqICFhQVLlizRmIfqf//7n/ppt3nz5lGqVCm8vLzo16+fxv4OHjxIlSpVqFOnzj86Tl7bIDclS5akW7durF+/XueTePl5P/KiQ4cObN26lfDwcGrUqEFwcDB169ZVfy6ioqIANJ7AykpXG2Rnbm6usw0ylumrQXPV8qydYPq2NTMz45WO9QBepqRoHGPe3LlEXLjA5q1b1U+ytWrVil49e/L999/j5++v91wsLCwoVqwY9+7e5erlK3xYq2aeziVjvhdd83G8TNG9rZ29PfVVn1l3T082rl/P+FGj2bl3j/oJCDMzM5KSkqhbvwEvsgwF5dHKk5OqDs3sUvQcT3deXe9bisb2ZmZmOt+jjOtwxr7i4+NZunQZgwYNVNeXPubm5qSqjp2UlMQn48eTkJDAjK+/ZvLEia+lZvJjwfz51PjwQ40nC/Xl1tVmKbnWR0bu3Ns7P/w2bGD7tm38uG+f+onEVq1bM9LLi/lz5tKhbTuNttY87uv7fP4TTk5O6v/fvkMH+vfrx4zp01mxfLnezHltZ511naK/ndPS0pj65ZfcvnWLRUuW6HwiMruatWrh7OLCyd9+48Xz56QmKTsGzE0NMDMz46Wuz0we2k19DjrbXf85JCUlMe6TySQkJLJh3SqdT6hm16lTJ+bOncvps1fp38ONmDjNuXJsrQthZmrCyyzz62SeizKfmY6OCn0OhZ5lxYZgOrdrSI+Pmulcx962CPZ1lH/7eTavxfqthxj9+XJ2rPsCE2Njks2V17ykhChsbW1eU1vn/fNRulQpSqvmbWvXtjXfzJqDz8jx7N2zHXNzM/X6xsbGtGjelOeqJ8IsrBQ0b96c9evX/+PrCICZeUaN6/pdk0t9jJ+orI/1a/JUHxmyz6H0byWpPisZ/32dMs7rdWeGN5e7IGaGN5e7IGYGqY/spD40SX1okvrQJPWhSeojU0HMDG++pkXuDP/h3MDi3ch3B5GhoSHVq1cHlEN9VaxYUT0/ycyZMwHlxM7u7u5MmjRJvV32+VFsbGx49eoVL1680NsRYm1tTYsWLbRusgN5vkF98OBBUlNT2b17N7t379Z6PSwsTGNy9X/C2toaOzs7Vq9erfP1rMNR5WXy7Ly0zc8//0zv3r3x8vJSL8s+39G7UKxYMV68eKGxLD4+PtdveL/O8wkNDaVevXoa80b80zq4e/culy5dwtfXF09PT/Xy5ORkjfUKFy7MV199xVdffcXVq1fx9/dn5syZVKlShbp166rXW758OWPHjmXs2LH4+vqqOxvzepzXydvbmz179rBjxw6t1153fdWpU4dSpUoRHBxMxYoVOX78OF9m+ba7tbU1oBxWUtdN/axznOlTrFgxnjx5orU8Yzg2fTdbi1hbq4Yw054DI2NZxrZFixYlLS2NyMhIjc91amoqMTEx6vVSU1PZv38/gwYN0hjm0NjEhMZNmrBzxw5SU1P1dnQXK1ZMfc2MjY3RylNU77kUwdTUVKMTJ6/bZnD38GCV73KOHztG1+7d1dvcv3ePjwdqftt76gzlvHK6Ooiyt50uxVRDoulre2vVewNQtGgxzpz5g/T0dI3raPbj+PtvIjU1ldat26iHlsuoi9jYWB4+fKhet1ixYuon5D6dNIkb16+z1NeXNNVTbK+jZvLqzOnT/Pbbb8z//nuNIfHS0tJISUnh4cOHFClShMJWVurcWsd+lvOx85I7t/rQZfeuXdStV0/rj+VmzVuw6Icf+Pvvv3PI/Po+n/+WiYkJLZo3Z+PGjcqntIoV46GOzC9yOW5G5vx+Dr+bNYtfTpxg5qxZ1M3licmszM3MePToEe2zDEMbHLiHokXtc2k3/V9YKaYa7kz39i+wVl1rskpNTWXS5Clcv34D32WLcHTUPaSaLiVLliQmLorzF2/jM3mpxmsBm6dT1N6a55Gx2llUy4rZW+fpOCf/vML0eZto2sCFLz7pnfsGKh7Na7J8fRDbfjzG1h9DNV4LDvxR1dYvtLbLWJbjdTBj2EGd2z/X2dbZeXq4sWdvAGfPnqNx44ZYWxfBzMyUwoUKExFxiRHeY7S2sbGx1nvMvGfOZ31M+kxZH75L8lUfoJwT7E24c+fOa99nxpeA3lRmeP25C2JmePO5C2JmkPrIIPWhm9SHktSHblIfSlIf2gpiZnhzNS3Ef80/moMoq+rVq9OhQwf27NnDmDFjKFasmHIomWw3PgMDAzV+btiwIQYGBvz4448aN6GzatSoEddVk1Mb6Rn3PTeBgYGUKVOG2bNna702ceJEAgMD/3UHUePGjVm7di0mJiZUrao9yXB+5aVtsg+3lJaWRnBw8L8+9r9Vo0YNQkND+eKLL9Tv2c8//5zrdq/zfMLCwujdW/PGzz+tgxQdwxv9/fffnDt3Tj3UYHZOTk588cUX7N69m5s3b2p0EFWsWJENGzYwaNAgJk2axMKFCzEyMvpHx/m3ypQpw0cffcTatWu1JmHPy/uR/Um6nBgYGNC+fXuCgoKoXLkyCoVCY06tWrVqYWFhwePHj2nVSvcQQ7mpWrUqp06dIj4+XuN8MoajrJLlSYGsDA0NcXR05NKlS1qvRUREUKZsWXWHdMbTBpcuXdIY5u/SpUsoFAr10IIx0dGkvXqFQqHQ2ucr1fK0tDS9HURVq1ZVz4tik2XupYsZ56JnCENDQ0M+cHTk8mXtc7kUEUGZMmVy7VzPeD8T4uMz8zhX5f69e0ybORP7LDeV/37wQPnfv//WOteIiAuYm5tToUIFvccqXrw4tra2XLqk/QdhRMRFnJwyz9PJqQp79+7l1q3bfPBBpSzrRahfB+VQjbGxsTqH6Fy3bj3r1q1n+/Zt1KpVW10zX37xBWfOnGH2nDnUqVOH9evWAa+nZvIqY4jITydP1nrt6dOnfNSxIxMnTcLby0tvravrwymX+tDR3hcjIihTNvf60CXyRSSKNN21nvHft/H5fB2SU1JIT08nISEh93bO9XOop511fA6XLFpEUEAAEyZNok3btvnKHBcfT/HixfnfjBkUslDO4WNvb49TlSqc++svFAqFRkd1RMRF1WezvN59Zn42r2i9FnHxEk7Zzl2hUDB12kxOn/mDuXNmUbdO7TznT09P5++//6ZKxeJU+aAMvnNHa7xub1eEKh+U4a8LN7XO5eLlu5ibm1K+bO6dhBGX7/Dp9LU4VynP7P8N1TufkC4pKconZayszPCdOxrL4srf68lJsdjb2+FUpTLn/jqfQ1uX07vv4sWLYWtro6etL+NURfccblllDMUYH698QtrQ0JAqVSpz6dIVKlZ0YMXyxQCYWxRhz549BAYGUrmyI5cuXdbOfCEf9aGjxiMuXtRdH/+boaqP7/JVHxky5j18XZKSkrhz5w4ODg5YWOie++rfet2Z4c3nLoiZQeojg9SHblIfSlIfukl9KEl96Cb1UTAzw9vJLcR/yb/uIAIYNWoUBw4cwM/Pj8mTJ9O4cWP8/f3ZvHkzDg4OBAQEcPfuXY1tKlasSJ8+fVi8eDExMTE0atSI5ORkwsLCGDt2LCVKlGDcuHH06NGDYcOG0atXL4oWLcrz5885ffo0devWpWPHjjnmevLkCWfOnGHkyJE0aNBA6/WOHTuydetW4uLitIbsyo8mTZrg5ubG8OHDGT58OE5OTiQlJXHjxg3u3r3Lt99+m6/95aVtGjduzK5du3B0dMTW1patW7f+42HjXicvLy969OjB6NGj6du3Lw8ePGDdunW5DgH0us7n/v373LhxAzc3N/Wyf1MHlSpVomTJkixYsACFQkFiYiJLlixRD6eYoU+fPrRq1YrKlStjZGTEvn37MDEx0egcyuDk5MT69esZPHgwn3/+OfPmzcvzcV43b29v9u3bx9OnTzXmxsrL+1GsWDGKFClCcHAwZcuWxdTUVGO4puw6duzIunXrWLx4MU2aNNF4AqdIkSKMGzeO+fPn8/jxY+rXr4+RkRH3798nJCSEpUuX5vpLvW3btqxfv54dO3ao51V6+fIlgQEBVKtWTf1k0uNHj0hOTsahYkX1tu6enixbsoRLly7h4uICKL9p8seZMwzI8tRM3Xr1sLa25sdduzQ6iHbv2oW5uTlNmymHK7K1s6Nw4cKEhobiM3KkuiMoMTGRE8eP4+DgoJ5XKCoqCtssnUCAxhBAVVV/LL18+ZLggEBcq1VTT0b/+NFj1bk4qLd183Bn+dJlXL50CWfVudy9c4c///iDfgMy5wOJjorG2sZa66nGgH37AKjq7KJe5tGqNYcPHuLu3Tu066icN0qhULB+9RosLCyIiYnh0KFDNG/eTH1Ohw8foXnz5hrfIr9//z4A5cpl3iz18PAgKCiIx48fq9+jU6dOcffuXY3hD1u2bMn33y9g166dTJkyBVDeWN61azfFixdX12/fvn1wc2upcU6RkZHMmvUtH33UiZYtW1K6tHIy+4yaCT16lC+/+gp3D4/XXjN5Va9ePb5fsEBr+bezZlGqVCk+HjYMR0dHjdz79uxhwKBBgLI+glS5S+SY2wPfJUs1ct+9c4c/zvxB/4ED+CfKVyjPqVOniI6OxsbGBlB2Kh85fBgrKyvKly+vzrx3zx4GZsn8Ltoa0HoKECAuLo6jR49SomRJ7O3t9bZzYEBAts+hjsweHvguXarzc9h/gGY7b/L3Z8umTQz5+GP66HhiOoOua8Wvv/zC9WvX6NWnD/UbNMBG1ZGVGB+Fp6cbR0KOEnI0jFae7qp9RHP4yFGaN2+a7bOp7OwtVy7zaU0P95YEBR3g8eMnlCxZAoBTp89w9+49+vfro5Fj7rwFHDp0hKlfTcHD3Q19IqOisMt2Dlu3biUyMpJGvVpQpLAlDepo/x7xaFaTkON/cfSX83g2rwVAdEw8R46fo1nDahpz4Tx4qHwqrWzpzE6j23cfM/6rVZQqac+iWd6Ym+l+Iic6Jh7rIlZa18V9B5Qd9rWrO1KvVhUKl1POIZgYr3wCR9nWoTraOpTmzZvkoa3ddLT1H6q2zvzCi672A9i3PwgDAwOqOme2XZvWnly4cJFjx07QrVtnAIxMCjFt2jQqVapIh/btOXHiV0KOhtLK0yNL5hCaN2+We2YPN4KCgjUznzqtzNy/r0a+uXO/59Chw0z96gs8PPTXR07e1HAeFhYWb2zfb3IIkjeVuyBmBqmP7KQ+NEl9aJL60CT1oUnqQ5PUR6aCmBnebG6RM0NkiLmC5LV0EFWqVIn27duzbds2vL29GT16NFFRUSxZsgSANm3aMHXqVHx8fDS2mzZtGmXLlmXXrl34+flhY2NDvXr11N+srVChArt27WLRokXMnDmTxMREihUrRr169XK8EZ0hODgYhUJBly5ddL7etWtXNm7cyMGD/8feeYdFeWxx+KU3qYJYwQLS7L1hA+xGY+8aC8UupphmT4zGgti7IvYO9qBiSexiwYq9oCjSWarL/WOXhWWXYmIJufM+z31u9vtm5vvN2bMzOOebM0fUvm3+Pvj7+7Ny5Uq2bNnCixcvMDY2xt7enm7duv2t9gqzzc8//8yUKVOYMWMGBgYGfPnll3h4ePDTTz/9o378U5ydnVm4cCFz585l9OjR2Nvbs2DBAsWCfX58qP6cOHGCKlWqKC1A/xM/0NXVZdGiRUyfPp1x48ZRpkwZfHx8OHfunOLNd4A6deqwd+9enj9/Ln9ztyrLly+nShX1KVRcXFxYvXo1X331FZMnT2bGjBlFes6HxtbWlo4dOxIUFKR0vSjfh6amJrNmzWL+/PkMGTKE9PR0jh07lu+znJ2dqVSpEo8ePeJrNbskhg4dirW1NevWrSMwMBBtbW1sbGxo2bJlkc4cq1mzJu3atWP+/Pm8ffsWW1tb9uzZQ+TLl/w8ebKi3OTJk7ly+TKXrlxRXOvZsyd7d+9m/NixDBg4EG1tbTZt2oSFhYXSArS+vj7ePj7M/u03vvv2Wxo3bkxYWBiHDh5k5KhRilR5WlpaDBg4kGVLlzJk8GA6duyIVCpl3969REVFMWPmTEWb27dt42RoKK7Nm1O6dGkS4uPZvXs3IFuMXrF0KeUrVODg/v28jIzkh8k/K+pOnzKZsMtXOHv5kuJat5492bdnLxPHjaffwAFoa2uzNXAT5hYW9M0VADh86CB7du6iRcuWlC1fDkmyhPNnz3Lh/HmaNXelXoP6irLNW7agXoMGBKxbT1xcHPb2VTkVGsq1q1f55vtJ/HHoMN9//z2DBg3C3NyM7dt3yM/VUh7zvbxknw8ezNmNNmzYUEJCQvD09KRv335IJBICAgKwt7ejS5cvFOWsra3p378fGzYEkJmZibOzC6GhJwgLC+PXX39R7Fh0cnJSeQMpO2VblSpVlILHYWFhiv8+efIk4TduEHb1Ki9evMCjTRtSUlIwMDD4Rz4DcOrkSe5FRACy3TQRERGsXr0agBbNm2NftSqly5ShtPxMkdzMmzsXCwsLWubSXbNmTdw83FmyeDExMbFUqFCBA/v3E/kykh9z+frUyVO4cvkyF65cVlzr0bMn+3bvwXfsOPrLdW/eFIiFhQX98+g+ffIU9yLuKXTfj4hgjVx38+YtsJfvbBg8ZAiTf/qZoYMG07VbN/T09Th6+Ah3bt/Ge+RIdHR0qFmzJu4eHixevJiYmBgqVKjA/v37P+jvs6i2Bhg7ejSlrK2pVq0aFhYWvHr1iuCgIN68ecOvv/2WY2d3d5YuXkxsbKzS7/CnXJqnTZHZ+fzlHDt379mTfXv2MGFcjp23BMrs3C+X5tDjx1m8cCEVbGyoWKkShw4eVOpPg4YNFalmh3/1FQ4ODjg5O2NUogR379wheN8+rK2tGTJ0qIrvuLu1pnr1bUydNpOHDx9hbmbK9p27kUrf4eM1Qqmsl48sBdnB/XsV14YNHUJIyHE8vUbRt28vJJIUAjZuwt6uCl2+yHlBZ9PmrWzfsYsaNaqjr6/HgYOHlNpu3aqlIsDfsWNX2rRxx86uCnq6uoRdvc6Ro3/g5ORE905NyQ+35rWovrsi03/fzKMnrzAzKcGO4DNIpVK8BrdXKuvzzRIAgjdNBSBZksroSctITJIwsFdrzpy/qVS+fFlLajjLgnsHQy6ya/+ftGxSg3JlSiJJSePspducv3wX18bVqF9b/a4xd7dWVK/uwtRpv/Lw4eM8th6ex9Zj5bbencvWg+S2Hq3G1h0V5das2cDVa9dp0rgRZUpbE5+QwLHjody8eZs+vXtgkyuA071bV/bsDWLW7Hk8efqM0qWtOXQ4hMjISPz85tG4UUOqb67G1Kkz5P5hxvYdO2Vjt7fy7nUvb9muroMH9uXS/BUhIcfw9PShb7/eMs0Bgdjb2dHli86Kcps2bWH7jp1y/9DnwIE8/tE6xz8SE5PYKk97e/XqdXn9TRgbG2NiYsKAAX8viC0QCAQCgUAgEAgEgvzRyMrKyvrcIgSCD8XQoUNxdHTk22+//dxSBJ+BtLQ0/Pz8CA4OJj4+HgcHBzy9vGjcpImijOeIESoL0CDbaTZ/3jzOnTtHllRK3bp18Z04kQo2qml29uzeTWBgIJEvXmBtbU2v3r3p26+fylvnhw8dYsuWLTx98oT0jAzs7ewYOHgwbm5uijLnzp1jY0AA9+/fJz4uDkNDQ2rUqEG3Xr24dPEiRw4eJDExkSr2dnh6+9CoSWNF3ZGenioBIoDXUVH4zZvPhXPnyMrKonbduoyb6KsUOL196xaBGwK4FR5OTEwMWlpa2Nja0rZDe3r27o22tvL7AxKJhBVLl3Hs6FESEhKwsbVl4ODBtO3QHq13UubMmUNISAipqam4uLgwYcIEXFycldro0EG20Jk7QASyM+rmzZtHWNhVdHR0cHVthq+vr8oZbFKplHXr1rNr1y6io6OxsbFh6NCv6NChg8p3lJvIyEg6duzEhAnjGSTfCWJoaMSkSZPYs2dPvvWC9u+nbNmy/9hnpk6Zwv48aVazmTJ1Kp2/+ELtPYDOHTtSpUoV/OQvXBjLXxJ4HfOWFUuXcejQQRITErGzt8fLx1vJ171HeKoEiLJ1L5g3j/PnzpElzaJO3bpMmDiRCjbKabCmTZnCgeD9anVNnjqFTrl0n/3rLzasW8/DBw9ITk7G1taWHr160a1Hd0yNZLtaomNiWL50KQcPHSIxIQE7e3t8fHw+6O+zqLbevm0bR48c4fHjxyQmJWFibEy16tUZNGgQtevUUdg56u1bVixbxmH579DO3h4vb28a5dLs4+mpEiDK1uyXbecsmZ3HT5yo9DtctWIFq/M5vxBg6YoV1JXvRF2+dCl/njlD5IsXpKamYmlpSdNmzRjm6an4reTeQQSyc7cW+C0iNPQUqWlpuLg4MWH8WFyclYOoHTp1BZQDRAAPHjxk3vyFhF29JvttNmuC74SxSr/NyVOmE7xfObCVmwPBuxW79qbP+JVr128QFRVFWlo6ZcqUpl279nh7e5MV+2e+bQAkJEpYuHIvoX/eIC09A+eqNoz36oqzg7IPdO4/FcgJEEW+essXA6bl226nNg2Y+q0s8HDr7lMCtoUQfucJMbGJaGlpYluhFO3d6tP7y+aKtHTGFWQpUrN3EEG2rZfksfVoNbaWvTiUO0AE2bb2J+zqdbmtG8ttnbPT7dy5C2zZuoPbd+4SGxuHnp4u9nZ2fNm1M507d1CZg2JiYvBbuJRTp8+QkpKKk5MTY8aMoW6dGrk0+xMaepLU1DRcXJyZMGEsLs55xu6Osh1IuQNEMs0PmDfPL5d/NMXXd1we/5hGcHD+KYMP7N+r8I/IyEg6yn0xL+XKleP48eP5tvO+SCQSbt++jZOTU7F6q7Q46haaPx3FUbfQ/OkojrqF5k9HcdQtNH8aiqNmKL66/0s8jIv53BLypbKZReGF/s8QASKBQPCfJjE5+XNLeC+yF6ZjkhI/s5KiY1FClppRIik+tjY0lNm5uPpHfHJSISX/PWQHiIqTrbPtHJdUfOwMqgGi4oBhCVnKtMRnRz6zkqKjLkBUHDAsIQvcSJLjP7OSomNoZPpR2i2uiwbFUbfQ/OkojrqF5k9HcdQtNH86iqNuofnTUBw1Q/HV/V/iUfy/N0BUyVQEiPLyQVLMfS6kUqnaQ+Cz0dLSUnmbUiAQCAQCgUAgEAgEAoFAIBAIBAKB4P+dYh0gWrJkCYsXL873/qxZs/72GUACgUAgEAgEAoFAIBAIBAKBQCAQCAT/VYp1gKhXr160bNky3/vly5fP955AIBAIBAKBQCAQCAQCgUAgEAgEgg+HJiKjV3GiWAeIrK2tsba2/twyBAKBQCAQCAQCgUAgEAgEAoFAIBAIihWan1uAQCAQCAQCgUAgEAgEAoFAIBAIBAKB4NNSrHcQCQQCgUAgEAgEAoFAIBAIBAKBQCD4dyB2pBQvxPclEAgEAoFAIBAIBAKBQCAQCAQCgUDwf4YIEAkEAoFAIBAIBAKBQCAQCAQCgUAgEPyfoZGVlZX1uUUIBAKBQCAQCAQCgUAgEAgEAoFAICjevEiI+9wS8qWcidnnlvCvQ+wgEggEAoFAIBAIBAKBQCAQCAQCgUAg+D9D+3MLEAgEgo+JRJL8uSW8F4aGRgDEJyd9ZiVFx9SoBADJEslnVlJ0jAwNgeKlGXJ0JyYXH782NpL5dFxS8fFpsxIyny5OdoYcW0sSXn5mJUXH0KQMAC+vLPrMSopOmTpjAJAkRn1mJe+HobE1AJKk2M+spOgYljAHiqfmj4FEIuH27ds4OTlhKJ8P/u0IzZ+O4qhbaP50FEfdQvOnozjqFpo/DcVRMxRf3QLB50IEiAQCgUAgEAgEAoFAIBAIBAKBQCAQ/GM00fjcEgTvgUgxJxAIBAKBQCAQCAQCgUAgEAgEAoFA8H+GCBAJBAKBQCAQCAQCgUAgEAgEAoFAIBD8nyFSzAkEAoFAIBAIBAKBQCAQCAQCgUAg+MdoiAxzxQqxg0ggEAgEAoFAIBAIBAKBQCAQCAQCgeD/DLGDSCD4gCxatIjFixcrPpuZmVG5cmW8vb1p0aLFZ1RWMNeuXWP58uVcuXIFiURC+fLl6dixI8OHD0dfX19R7vbt24SEhDB8+HAMDAwU13fv3s3333/P2bNnsbCw+BxdKBKJiYn4+flx/PgJUlNTqVatGr6+E3BycipS/YcPHzJv3jzCwq6io6ODq2szfH0nYmFhrlROKpUSEBDAjh07iY6OxtbWhq++Gkr79u2Uyu3evZsDBw7y+PFjEhMTsbKyolGjRowaNQo9I0NWLFvOoQMHSExMxM7eDu+RI2nYqFGhOl+/fs2CefM4f/YcWVlZ1K1XjwkTfSlXvrxSuZ07dnDp4kVuhocT9SqKjp07MWXatHzbvXD+POvWrOXOndtI30kxMDAgIyOD9PR0HBwc8PbxoVER9c2bO5ezZ8+SlZVFvXr1mPj115TPow9g7549BGzcSOSLF1hbW9O3b1/69O2rVGb58uWsXLFCpa6uri7nzp9XfE5PT6dRw4ZqNY0ZM4avhg7912kOCgpi6pQp+eoyNjYmPT0dO3t7fEaOLLL958+bxzl5X+rWq4fvxIkqfdm5YwcXL14kPDycqFev6NS5M1PV+EdwUBDTpk5V+6zDR49ibGQEyOy/cnkun7azw+s9fNpv3jzOnzuHNNunfZV9OurVK4KDgvjzzBmePX2KpqYmVezs+GrYMBrk871fOH+e9WvXcuf2baRSVZ/29Pb+oDYF2Lt3L4EBAURGRmJtbU3vvn3p06ePSrnz58+zds0a7t+/z7vMTGxsbenduzcdO3VSKlevTh21msaMGkHP7l/g57+C46GnSU1No5qLI77jR+LkWLXQPgE8fPSEefMXE3bthmzMa9oI3wmjsDA3Uyn77PkLli5fy/kLl5FIJJQqZUUb91aMHjlcUSb85m2Cgg8TfvM2EREPyHz3jrt37xZJS2JyGis2/8npiw9JS8/EsYo1Iwc0pWqlUoXW3X/sJn+cucvTyFiSJGmUNDeilnM5BndvQBkrk3zrXb8TydhpuwHYu2IYZiYG+ZZNTEzEz385x0+cktvaCd8JI3FydChS/x4+eiyz9dUb6Oho49q0Mb6+o5VsHRn5ko5f9FZbf9YvU2jX1g2QzUH7Dxzh2PGT3L0XQXx8IuXKlqFT5y8YNmxYoVoSExPxW7iY4ydOyuZKF2d8J4zFycmxiH15xLx5Cwm7ek3mN82a4Os7DgvznLny9Zs3LFy4mJu3bvPmTTSamprY2trQq2d3OnfqgEYBrxx+Cn2PHj1mX1AwZ89d4PnzFxgaGODo6IC39whcnAv+m+Grr77ir7/+on///kyePLlImgQCgUAgEAgEAoHgcyECRALBB0ZfX58NGzYAskXD5cuX4+3tzaZNm6iTz0Le5+TgwYN888031KlTh2nTpmFubs6VK1dYuXIlp06dYsOGDYpg0O3bt1m8eDH9+/dXChAVB6RSKWPGjOXevXsMHjwIMzMztm/fwYgRnmzatAlbW5sC60dFRTFs2HCMjUswevRoUlIkBARsJCLiPoGBG9HR0VGUXbx4CevWraNbty9xcXEhNDSUH374AQ0NDdq1a6sod+fOXcqVK0eLFi0wMTHmxYtI9u7dy4kTJ6heswZ/njlD3779qGBjw/7gYMaPHcuyFSuoVbt2vjolEgk+nl4kJyUxZOhQtLW12bJ5E14jPAncshkzMzNF2Y3rN5AskeDi4kJ0dHSB/Q/eF8TM6dNp0LAhI0eNZn9wEHdu36F2ndp07dKVPXv2MHbMGFasXEntQvR5jhhBUlISQ4cNQ1tbm82bNjFi+HC2bN2qpG/nzp38+ssvuLm5MWDAAMKuXGHOnDmkpqYy5KuvVNr+4YcfMDA0VHzW0lTeJDtFvlBXpkwZGjduzOXLl3n27BlDhw6leQEB3M+puU6dOsyYOVPxWU9XF4AZM2aQmJhIm7ZtcXBwYH9wMOPGjmVFEfzD29OTpKQkvpL7x+bNm/EaMYJNW7Yo9WXD+vVIiugfAN4+PpQtW1bpmrGxseK/p0+dyvGQEPr0k/n0geBgJowdy9IiaB7p5UVSbp/etAlvT08CN2/GVK751MmTBKxfT4uWLenQqRPvMjM5eOAAY0aO5KcpU+j8xRdK7QYHBfGL3Kd9Ro/mQFAQd+7coVbt2nzZVebTH9qmu3buZNavv9LazY3+AwYQFhbG3Gz/GDJEUe7kyZN87etL9Ro18PT0RENDg5A//mDK5MnExcXRf8AAJQ0NGzWiY8eO6OvpAZCeEkdV+yqMGf899yLuM3hgH8xMTdm+cx8jvMezKWAltjaqwavcREW9ZpjnWIxLGDF65AhSUlIICNxGxP2HBG5YrjTm3b0bwXDv8ZSysmJg/16Ymprw6tVroqJeK7V55s9z7Nl3AHv7ypQrV5YnT58VqCEbqTSL7+cEc//JW/p0qo2piT77joYzfsYeVv7Sm/JlzAqsH/H4DaVLmdCkbiWMjfR4+SaB/cdvcfbKY9b81gdLixJqn+m//hT6ejqkpmUUok/KmHHfcS/igczWZqZs37mXEV7j2LRxFbY2FQqsHxX1mmEjxmBcogSjR40gRZJCQOBWIh48JHDDCiVbA7Rr606zpsqByxo1XBT/nZqaypRps6he3YUe3bpgYWHO9es3WbRoEWfPnmX50oX5BmBkffHl3r37DB7UXzZX7tjFCK+RbApcj61NYXPla4YN95H3xVvmNxs3E3H/AYEBaxV9iYuLI+r1a9zdWlG6dGkyMzM5d/4CU6bO4MmTp4wZ7fNZ9e3ZG8TefcG4tW5Jr57dSUpKYteuvQweMpzFixbQqGEDte0fO36Cq1evFqhBIBAIBAKBQCAQCP5NiACRQPCB0dTUpFatWorPNWvWpEWLFuzdu/dfFyCKiorixx9/pF69eqxduxYtLS0AGjZsSO3atRk8eDALFy5k0qRJn1Vnamqq0k6mv0NISAjXrl1jzpw5eHi4A+Dh0YauXbuyfPlyZs36tcD6a9asJTU1lc2bN1GmTBkAXFyq4ePjQ1BQEN27dwdkQcGNGzfSu3cvhd2+/PJLhg0bjp+fHx4e7go7//DD9yrPad++Pd27d+dU6EnGjh/HgEGDAOjQqSN9e/Zi0UJ/1qxfl6/Ondt38OzpU9ZvDMDZRbZg2KRpE/r26s3mjYGMHDNaUXb5qlWULlMaDQ0NWjRtlm+bkZGRzJn9G7369GbiN99wMzyc32fPVugzNSpB165d6dCxIwv9/FgvD5CqY/v27Tx9+pSNgYG4yPU1bdqUXj17snHjRsaMGQPIvvOlS5bQzNWV3+fOBaBbt25Is7JYtWoV3bp3x8RE+c1/N3d3zM2Vd3NlEx4ezpEjRwBwbd6cGdOnk5aWRoeOHblw4QIjR43612kGKF++vNIuFCNDQy5evEhiYiI2NjZ8/8MPAHTs1InePXviv3Aha9evz7e9HfK+bNi4UakvvXv1YtPGjYyS9wVg5apVlC5TBg0NDVybNs23zWyaNG2Ks7Oz2nvXr1/njyNHGDMul0937Ei/Xr1Y7O/P6nX5+/SuHTKfXheQ49ONmzShX+/ebAoMZORomU/XrVePoAMHMMtlz249ejCwb19WLl+uFCCKjIzk999+o2fvHJ+eO3u2Qp9ZCblPd+jwwWyamprK0qVLadasGXN+/x2AL7t1I0sqZc2qVXTr1k3hH9u3bcPS0pLlK1agKw8KduvenR7durE/OFglQGRjY0OHjh0Vu7UkCS85+scJrl0PZ85vU/FwawmAh0crunYfwPKV65g18+d8+wSwZt0mUlNS2bxxJWVKWwPg4uyIz+ivCQo+TPdunQHZgv1PU36lUkUbVi7zQ19fL982e3bvwpBB/dDX1+O3OX5FDhCdPH+f8HuvmDq+HS0b2gHQqpE9A3wDWbfzPD+PaVtg/QnDWqpca1avMl4/bufI6bv071JX5X7wsZu8fptEx1bO7Dp8rcD2Q46Fym09HQ932bM8PFrTtVs/lq9Yx6xfCt5FsmZdoMzWgatzbO3ihM8oX4KCD9G9m3Jw08nRno4d2uTbno6ODuvWLKFWzeqKa92+7IxNxSosWrSI8xcu5hvgCAk5zrVrN5gz+1c83FvL++JG1y97sXz5amb9Or3gvqxdT2pKCpsD11OmTGl5X5zxGTmWoOADdO/WFYCq9vasXrlMqW6f3j0ZN34iW7ZuZ6SPp2Ku/Bz62rVrg7fXcAxzBfC7fNGZbj36sGLFarX2S0tLY/4Cf4YPH46/v3+BOgQCgUAgEAgEgv8ymohDiIoT4gwigeAjY21tjYWFBZGRkYAsgPD999/j5uZGjRo1aNOmDfPnzyc9PV2pnlQqZd26dbRv355q1arRtGlTxo4dS2JioqLMgwcP8PHxoW7dutSqVQtPT0+ePn1aZG07duxAIpEwbtw4lYWYRo0a0aRJE7Zt20ZqaqoijRxA48aNcXBwoHXr1kp1Xr16xfDhw6lVqxZt2rRh7969Ks8MDQ2lZ8+e1KhRg0aNGjFlyhQkEoni/vnz53FwcCA0NJSxY8dSp04dxo0bV+Q+5UdIyDFKliyJm1uOZgsLc9q08SA0NFTF/nk5duwYrq6uiuAQQKNGDbG1teXo0T+U+peZmUnPnr0U1zQ0NOjZsydRUVFcv369wOeUK1dOUadrt26K63p6enzRtQs3rl8n6tWrfOsfP3YMZxcXxUI6QMVKlahXvz4hf/yhVLZM2TIFpvHJZvfOnUjfSfHy9gbgyOHDaGlpqejr2qUL169f51UB+o6FhODi4qJYSAeoVKkS9Rs04I9c+i5dvEhcXBy9evZUqt+rVy9SUlI4ffq0auNZWSQlJZGVlaVyKyQkRMnHU1NTAf7VmvNjzZo1APTr319xTU9Pjy5duxbeF7l/uOTxj/r16yv1BaBM2bJF8o/cJCcn8+7dO5Xrh/Pxmc5d/plPH8uluXKVKkrBIZCl7GvStCmvo6JITk5WXN+zcydSaeE+/SFteunSJeLj4ujRq5dS/Z5y/ziTyz+Sk5IwNjFRBIcAtLW1MTMzQ09PfQAmNTWVtLQ0xeeQ4ycpaWGOW6vmimsW5ma0cW9F6Mk/Cx/zTpzC1bWxImAB0KhhPWxtKnA05ITi2tlzF7n/4BGew4egr69HSmqqWh8AKFnSosAAUn6cPP8Ac1NDmtevorhmZmJAq0Z2/Hn5EekZ6p9XEKWtZLvbkiRpKvcSklJZs/0cQ3s2pISRrsr9vIQcO0nJkha4tVZn6zOF2/r4SVxdmxRq69ykpKSQkaF+Z5OOjo5ScCgbDw8PQJY+Lf++nJD3pWWuvpjTxsON0JOnitCXE7i6NlMEX2R9aYCtrQ1H/wgpsC7I5qXU1NR8+/ap9Dk7OSoFhwDMzEypXbsmjx4/Vtv2+g2BSKVZRUrjJxAIBAKBQCAQCAT/FkSASCD4yCQnJxMfH6/YBRAbG4uZmRnff/89q1evZvjw4ezZs4cpec4ZmTFjBr///jstW7Zk+fLlTJ48GSMjI0Uw5dmzZ/Tp04f4+Hh+++035s6dS0xMDEOGDCl0gSSbixcvYmZmlu/OptatWyORSLh58yYtW7bEx0eW8mX16tVs27ZN6bwlgK+//ppmzZqxZMkSnJycmDRpEg8ePFDcP3z4MD4+PlStWpXFixfzzTff8Mcff/Djjz+qPPvnn3+mQoUKLFmyhKEFnA1TVO7cuYOjoyOaeVJ4ubhUIzU1lSdPnuRb9/Xr18TExOCs5tyBatVclM7QuHPnLgYGBlSuXEmlXPb9vMTFxRETE8PNm7cUQThra2tKlFBOe+TsUg2Ae3fvqdUplUq5HxGBkxqdLtVceP78udIieVG5cP4CthUr8ueff9KpXXu2bt5CVlYWgQEBSKXSXM+Q6cvvTBGpVEpERITaXSbVXFx4/uyZQt8deRu5gwIAzs7OaGpqcvfOHZU2OnfuTHNXV5o1bcqPP/7I27dvFffu3rmDjTz1UHBQELVq1aJGjRrs3LnzX6s5P65evYqGhgbtO3RQup4doLhXQF/u59MXl2rV/rZ/ZOPt6UkLV1eaNWnChPHjlYLVt2/fpoKNjYpPZ/vMvXuF+LSac8KcXYrm02/fvkVfX19pF+KFC7l8un17tm3Jx6c/oE2zv/+8ZZ2y/SPXM+rWq8fDBw9YtnQpz54+5fmzZ6xetYrbt28zaPBglWftDw7GtWlTatSoQYcOHTh0OIQ7dyNwdKyqZsxzlI15T5/na7PXr98QExOLs5Pq+TnVXBy5e+++4vP5C5cB0NXVod8gT5q4tqOxazu++2Ea8fEJ+T7jfYh48oaqlazQ1FQOWDpWsSY1LZPnL2OL1E58Ygqx8RLuPIhi9vJjANR1UU21t3b7eSzMDOns7qJyTx137t7D0cFeja2d5LbOf6dUwbZ24u7dCJXrK1atp4lrWxo2caf/IE/OnrtQJJ3ZqSJzpz1U7ctdHB0d1PTFWT5X5v8SimyujMXZWfUsoGouztxVM3elpqYSGxtHZGQkQcEHCAo6QI0a1fLdNfyp9eXl7du3au338uUr1q8PYNzYUf94x7NAIBAIBAKBQCAQfEpEijmB4COQmZkJyBYjfv/9d4yMjBgkT6vk4ODAd999pyhbp04dDAwMmDRpEpMnT8bAwIBHjx6xZcsWJkyYgJeXl6Js27Y5aXQWL16Mqakp69atU7xRXqdOHdzc3NixYwf9c+0uyI+oqCilHTF5yb4XFRVF3bp1FQvsLi4uWFhYqJTv37+/4rm1a9fm5MmTHDlyhJEjR5KVlcWcOXPo0KEDv/zyi6KOlZUVnp6ejBw5Ent7e8X11q1b88033xTah6ISHR2tNhBmaWkJwJs3b5Sen5s3b6KVyuatHx8fT3p6Orq6ukRHv6FkyZIqOy9yPycvbdu2UwT1zMzMsLKyonwF1TMrLK3ybwMgQa4jP50A0W/eYCRPQ1VUnj17ipamFjOmTmPg4EHsDwomIzODtavX8O7dO36YJAtqWRXQR0BhJ7X6rKwUdY2MjIiOjkZLS0vFz3R0dDA1NVV6homJCb1796ZGzZro6uhwJSyMHdu3czM8nMBNmyhRogTR0dFYWllhYmKCR5s2VK5UidevX7N27VpAtoOkhZpziD6nZnXExcURGxuLhYWFyveYW486iuIfb/6Gf+jr69O5c2fq1q9PCSMjbt++zabAQIYOGULg5s0YV6nCmzdv1D63ZCE+k6255N/06WfPnhF64gSt3d2VdpA9e/oULS0tZk6bxoBBgzgQHExGRgbr1sh8+kd5oPZD2vR9/GP4iBFEvnjB2jVrWLN6NSCz82z5SwO5qVGzJh4eHpQtV47E+Hg2b97MDz/PREdHhzq1a6rRVVKuKxp7u8pq+/Um+q1S2bz14+MTFGPe02cvAPju+6k0adyAoUP6c+/eA9at30RU1BvWrV703jvR8vI2VkJNx7Iq10uayXZ4RMcmU9lG9TvIS49R68mQ7zYyKaHP2MGu1KuhfGbNgyfRBB0LZ/Z3nVXOBMuP6OiYQmz9Fnu7Kir34f1sraGpSeNG9WnVsjmlSlny4kUkGzdtZ/TYb/GbPwvXZo0L1Ll69WpKlChBs6b5l4uOfkudOqpnbuX4czT29naF9EXd70G5L9ls3rKdRYuXKj43aFCPaVPyT3/4qfXl5krYVa5fD2f4MNXz5OYv8MfBsSrt2nrkq10gEAgEAoFAIPh/QfMf/htQ8GkRASKB4AOTfah7NlpaWixdupTKlWULcVlZWWzYsIHt27fz/PlzpZRAz549o2rVqpw7d46srCx69OiR73P+/PNPOnTogJaWliIgZWJigrOzM+Hh4R+pdwXTrFnOOTaGhoaULVtWkZrp0aNHvHjxgh9++EGhF6BBgwZoamoSHh6uFKDJuwj6T0lLS1O76KOnp6u4n39dWToydfV1dfWU2k9LS1M5UFz2nOxyqSr3Fi9eRFpaOo8ePeLw4cO8ePFCvVbdgrVmX9fRKVjn+5IiSUEqlTJq7BgGDxnC4UOHqGJnR1ZWFlu3bGHs6DGUKFECXb2Cn6HQp9aOyn1LS01Va0eQ2TL3M/r166d0383dnWrVqvHjDz+wY/t2vho6VPb96OiwYsUKQHaWD8gW17t9+SUnTpxQe9bV59SsjuxzlEpZW6vcy6snL6kK/1DVWFjdgvBo0waPNjnnobRs1YrGjRszYvhw1q5Zw6xffyU1NRXLf+DTan97hfhbakoKP3z3HXp6ekpnK4EsPZdUKmXUmDEMGjKEI4cOUdnODrKy2LZlC+PGyH36A9o0LS0N7Xz8QzePf+jo6GBja4ubuzutWrdG+u4de3bvZvJPP7Fk6VKq16ihKLs21/lNxkZGdO/enS+7fsH9B4/UBjgKs7nsnixgrVtIv3R1dUmRpADg7OzILzN+AsC9dQv09fVYtGQV5y9cplHDevk+qyikp2eio616Ho2ujuzP2LT0oqWYm/NdZ9Iz3vHkRQx/nLlHSlqmShn/DadoWMuW+nkCRwXxz+aXbB9XY2s9ZVuXKW3N0sXzlMp07NCW7r0GMX/BkgIDRGvWbuSvv/5iypQpGBsbF9wXdXNYkfxG3he1fqM8V2bTrp0Hzs6OxMbGcfr0Gd7GxBT6jE+pL5uYmBh++HEy5cqWZchg5TPALl68zLHjJ9i4YU2+zxYIBAKBQCAQCASCfysiQCQQfGD09fUJDAwkKyuLx48fM2/ePL777juCg4MpVaoUGzZsYPbs2QwfPpyGDRtiYmLCjRs3mD59umLxIi4uDm1tbUqWVH2jOJvY2Fg2bNjAhg0bVO7lt0idF2tra+6oSXuVzcuXLxXlikLeRScdHR3FzpjYWFkKoFGjRhX4rGwK6ntBpKenEx8fr/ickiLB3NwcPT09tan3shdC8zvXQ3ZPX9G26vPSlOrr6empPTsh+7vNbis39evXB6BZs6a0b9+eNm3a8PyZakqitPSCtWZfz8goXOf7oKenR0pKimIHm56ePunp6XTs3Imzf/3F7du3qV+/PulpBT9DoU+tHZX7pqevn+8ZFGlpaYX2o3379iyYP5/z58/z1dChsu9fTXtS+VkpaWlp3L59m9q1ld9M/5ya1REcHIympiYl1OyYyasnL/oK/1DVWFjd96VW7dpUq1aNC+fPy56tr6/WhkX1abW/vQL87d27d/z0ww88evgQP39/rOQ7gXK3m5KSQptsn5br69gpj09/QJvq6emRmY9/pOfxjzmzZxN+4waBmzcrUml5eHjQq2dP5s6dy4aAAEXZjIwMxZiXKk9B2rNHF2bN9uO1fPdjbgqzueyebIFc3W9G1e9lZdu1dVMq176dO4uWrOLa9ZtFDhBlZL4jIUk5iG5mYoCurjYZmapBoPQMWYBHT1c1eKSO2vJ0cg1r2dK0XmW++mYzBvo6dGsrC7gdPxvBzXuvWPd73wL1act3e6UkvcXc3Owfzi/ZPq7G1kWob2pqwhed28t3bL3G2rqUSpkjR4+xZNlqevToQb9+/ZAkxcr9RjkFoKIv6uawIvmNvC9q/Ub977VsmTKUle9Wbt+uDTNmzsLbZwzbtwWSlpaOQYrsO05Jjv8s+kAWUB47/muSkyWsW7NC6WyizMxM5vw+n44d2uPiopw+MjMzU+mMxQ9BSkqK0v9/KLL79KH1wsfTDB9Pd3HUDMI/8iL8QxnhH8oI/1BG+Icywj9yKI6a4eP7tEDwX0MEiASCD4ympibVq8sOh65RowaVKlWiV69eLFmyhGnTpnH48GFat27NxIkTFXVyn9MDsjRjmZmZvH37Nt9AiampKS1atFDZiQAUOUVU/fr1OXfuHFevXqVWrVoq90NDQzE0NFTaEfV3yc7ZP3nyZGrkevs9m1KllBe1/m5KorCwMEU6v2wOHNiPpaWl4vyF3GRfy7uAnBsreWq3/Oqbmpoq3ji2tLTi4sVLZGVlKfWhKM8BsJGf0xIVFaX6rDcFt2Ei11FQPy0Leb46LK2sePb0KRZyX7S0tOTN69dYmMtSZWUvTr8ppI+mBemTL7hm17W0tOTdu3fExMQopeTKXgwvzI4gC2wmJCQo2nv9+rVKmTe5tCTkCiz+GzTn5eXLl1y6dIlSpUqpPasor568FMU/iqKxqFiXLq0428vKyorIPEFggLeFPDdb89v39OlfZ87kzOnTTJs5k3oNGqjcV+fTr1+/xtxC2ac/pE2L6h8ZGRns27ePQYMGKZ2zoq2jQ5OmTdm+bRsZGRmKFwGuXbuGt6en0rOn/PwtAG/fxqjR9VauK/+UbFbydGfZZfPWNzU1UYx52aklS1qYK5WzMDcDIDExMd/n5CX83ksmzNirdG2L/yBKmhvyNk71H47Z1yzN3y8tIkA5a1PsK1oR8uddRYBo+aY/adnIDm1tLV6+kf0Ok5JlgYc3b5O4eiuOqQuPADm7tg4EbcPS0iJfWwFYWeX/wsP72Do/SsuDQvEJiSoBonPnLvLzlF9xbdaYadOmKa5fu3adEV7KL2wcCN6NpWXJQvy5KH6jrn7R+uLu1prde/axa/deFvov+ez6MjIymPj1JCIi7rNksR92eVIF7j9wiMdPnvDjj98RGRkJgL6h7NyxyMhITp06hYmJyQcLvmfz+PHjD9pe3bp1Adl5cR+LD60ZPr7u4qgZhH9kI/xDPcI/ZAj/UI/wDxnCP1Qpjprh4/m0oHCKlqxb8G9BBIgEgo9M9erV6dixI7t372b06NGkqklDFRwcrPS5UaNGaGhosGvXLjzzLPxl07hxYyLkh6PnPlvjfejZsydr1qxh4cKFrFmzRmkx8sKFC5w5c4ahQ4cq0m5l61b3pnRhVK5cmdKlS/Ps2bMinY/0d3F0dGRdrpRLqamplCxZEgcHB8LCwpBKpUr9DA+/gb6+Pra2tvm2WapUKczNzbl1S/UPl/Dwmzg4VFV8dnCoyp49e3j48BFVqlTOVS5ccb8wdHR0SExMJCkpSeksmpvyNqrm04ampiZV7Oy4rUbnzfBwypUv997nywA4OTnx7OlT3rx+Tbny5alatSqXL13i+XPZIffZi905fVQ9bD1bn52dHbdu3VK5Fx4eTvny5RX6stu4dfMmzVxdFeVu3byJVCqlaj7PyCYrK4vIyEgcHGWHkVd1cODSpUsqNs2djtHM3Fylnc+pOS9HDh8mKyuLevXqcfjw4Xz7kt9zCutLuVx9+RC8eP5cYVNHR0fOnz+fv09XLcSn1fyj4WZ4OOXKqfq0v58f+4OCmDBxIm3btVPbrmMen7YvxKc/hE0V/nHrllI6zlu3bsn8Q26D+Lg43mVmIpVKVdrMlF9/9+6dYjyuWrUqS5YtA8BQPlaHX78IwIvIl2rGvNuyMc+mvNo+AZQqZYW5uRm3bt9V7dfNOzjkOuPFyakq7EVlt9KbN7KAh7k8UFQU7GwsmftDF6VrFqaG2Nlacv3OS6TSLDQ1cwLvt++/Ql9Pm/JlVH+7RSEtPVNpZ9Lrt0mE/HmPkD/vqZQd8cM2Kpa3YO4PXShp3xWAVEksJUta4FDVnrCr11VtfTPb1qpnymVTsK1v41BV/Xk6uXn+QhaYMDc3Vbp+I/wWvt/8hLOTA7NnTUNbO+fP/qpV7Vm21F+pfMmSJXGoWpWwq1fV+M1N+VyZf+q9nLlSdWdy+M1bOOTzO89NdtpGMzMzli31R99AtjM5NSXxk+uTSqX8NHkaFy5eYvZvM6lXV/Ucw1evXpGZmclXQ1X/Vjt9+jSnT59m/vz5tGrVqtC+F4WUlBQeP35MxYoVMTAw+CBt5sbJyemDt/mxNcOH110cNYPwj/wQ/iFD+Id6hH/IEP6hHuEfxVMzfBrdAsF/CREgEgg+ASNHjuTgwYNs2LCBJk2aEBAQQGBgIBUrViQoKEjxln02lSpVok+fPixcuJD4+HgaN25MamoqoaGhjBkzBmtra8aOHUuPHj0YNmwYvXr1UuyQuXDhAvXq1aNTp06F6rK2tuaXX37h66+/ZsiQIfTv3x9zc3OuXLnCypUrqVmzJmPHjlWUr1JF9ubspk2bcHd3R19fP99gQF40NDSYNGkSX3/9NRKJhJYtW2JgYEBkZCQnT55kwoQJVKpU6T2sqh5TU1OaNGmi+CyRyN7kdXd3IyQkhGPHjuPh4Q7I0t798UcIzZs3V3pr+Jk8vVuFCjmLem5ubuzfv59Xr15RunRpAM6fP8+TJ0+UAl4tW7Zk7tx57NixnUmTJgGyhf8dO3ZSqlQpataUHWSenXrGxMRESf/169eJi4sDYO/u3QyQ74ZKT09nf1AQ1apVw1r+/FcvX5KamkrFXHZr7e7GEv9F3Lp1C2dnWbqbJ48fc+niJfoPVD43oai4t/Hg6JEj7Nu7j5GjR9Ha3Y3AjRsJ3LgRE1NTqlWrRnp6OkH79lGtenWFfV7K9eX+Xt3d3fH39+fWzZs4y3emPX78mIsXLzJw4EBFufr162NqasqOnTuVgi07du5EX18f11zXYmNiFDs/FOV27CA2NlbhC+7u7mwMCGD37t2KHWbp6ens27sXXV1dDA0NcXZ2/ldpzsuhQ4coW7YsgwYN4sCBA+zZvZuBufoSLPeP0gX6hzuL/f2V/OPx48dcuniRAbn68j7ExsZinie4dubMGW7fvk2fvrJUXe3atWPt2rUqPh0cFIRLYT7t5saSRYu4fesWTrl8+vKlS/QfoOzTGwMC2LRxI0OGDqWPmt2V2Xh4ePDHkSME7duHz6hRtHZzY9PGjWzK49Mf0qb15P6xa8cOpQDRzh070NfXV/iMuYUFxsbGnDhxAm8fH0UgSCKRcPrUKSpWrKgI2mfbvmHDhoDsDKKkpCQm//wjhoYGJCQkcuzEKTzcWsrKx8Xxx7FQmrs2Vh7znr8AoEL5coprbq2bs3//EV69ek3p0rJdKecvXObJ02f075dzPl7L5k35fd4igoIP8UWndopF+z37DgDQqEHRzx8yLqFPveqqwZQWDe04ef4Bpy4+oGVDWcAkLiGF0PMPaFynEro6OS9JvIiS7f4qZy0LlmS+k5KSko5xCeX0nrfvR/Hw2Vvcm+YEBWb4dlB59vGzEZw4G8EPI92xsihBbZfylKkj+41KEmU7Pd3dWhByLJRjx0/h4d4SkNs65ATNXZsUwdYt2L//MK9eRVG6tCyla46teynKxcTGKXZmZfP69Rv2BR3E3r6KYjcXwMNHjxk77jvKlimNv99s9PWVd7CYmJjQqKHq7jp391aEHDvOseOheLi3lvUlNo4/Qo7TvHmzPHOlLKBaoUJOsNGtdUv27z+Ypy8XefLkKf379cnVl1gs1ATl9+4LQkNDgzp1amFToQKGJWRlJEmxn1QfwOw58zh6NISffpyEW2v1AZ62bTxUAkt6BiUYNWoULVq0oFevXtSoUeODpyMxMDD4KClOPmbalI+lGT6e7uKoGYR/5EX4hzLCP5QR/qGM8A9lhH/kUBw1w8fVLRD8lxABIoHgE1C5cmU6dOjAli1bCA0NJTY2Fn9/2Zu7bdu25aeffsLb21upzuTJkylfvjw7duxgw4YNmJmZUb9+fcXb6La2tuzYsQM/Pz+mTZuGRCLBysqK+vXrFzloA9ChQwfKlSvHsmXLmDx5MhKJhHLlyjF06FCGDRum9LaFs7MzY8aMYceOHaxevZoyZcpw/PjxIj+rffv2mJiYsHz5csWuqXLlyuHq6oqlZf5pYT4E7u7uVK++malTp/Lw4UPMzc3Yvn0HUqkUHx9l23t5yT4fPHhAcW3YsKGEhITg6elJ3779kEgkBAQEYG9vR5cuXyjKWVtb079/PzZsCCAzMxNnZxdCQ08QFhbGr7/+otjtlZKSQrt2svOGqlSpgoGBPvfv3ycoKBgTExOcnJ1ZsngxMTGxVKhQgQP79xP5MpIfJ09WPGvq5ClcuXyZC1cuK6716NmTfbv34Dt2HP0HDkRbW5vNmwKxsLCgf54AwOmTp7gXIXtTPjMzk/sREaxZvRqA5s1bYF/VHoAWLVtSv0EDNqxbR3xcHPZV7bGwsOBlZCQNGzViz5497Nmzh5cvXzJ5yhRF+5N//pnLly9zJSxMca1nr17s3rOHsWPHMnDQILS1tdkUKNOXO9iir6+Pz8iR/DZrFt9+8w2NGzcmLCyMgwcOMGr0aExNc96U79ixIx5t2mBvZ4eunh5Xw8I4cuQIDg4OdO/eHZDt5KtcuTJ+CxZwLCSESpUqcfHiRcXZV5OnTEFHR+dfpTk39+/fJyIiAk9PT2rVqoW7hweLFy8mJiaGChUqsH//fiJfvuTnXP4xefJkrly+zKUrV3L60rMne3fvZvzYsQyQ+8emTZuwsLBQCRCdOnmSexERCv+IiIhgtdw/WjRvjr18UXTokCE4ODri5OREiRIluHPnDkFBQViXLq04S6lmzZq4ubuzdPFiYmNjKV+hAgf37+dlZCQ/5dI8bYrMp89fzvHp7j17sm/PHiaMy/HpLXL798ulOfT4cRYvXEgFGxsqVqrEoYMHlfrToGFDRcrO5rl8Oi4uDnt79T79IW2qr6+Pt48Ps3/7je++/VbhH4cOHmTkqFEK/9DS0mLAwIEsW7qUIYMH07FjR6RSKfv27iUqKooZM2cq2ty+bRsnQ0Nxbd6c0qVLkxAfz+7du4mMfMn0KZPYvmsfU6fP5uHDJ5ibmbJ9517ZmOf5lZJtvEb6AnAwaJvi2rAhAwgJCcXTZzx9+/RAIkkhIHAr9naV6dK5vaKcpWVJhn01kGUr1jJq7Le0atGMexEP2L13P+3auuHikrMjLvLlKw4cPAqg2DGzdOlSAIwy7tDGVf3uuRYNq+Bsb83s5cd48jwGU2MD9v5xA6lUylc9lIMcvjP3ArBt0WAAUlIz6Dl6A60b21GxvAX6ejo8fPaWwydvU8JQl0Ff1lfUda1fmbzcfyJLM9igpi1mJurfPnR3a0n16juZOn0WDx89ltl6h9zWXsrniXn5TJDZOnh7jq2/ktvaW27rlBQCNm6R2fqLHFsv9F/Gs+cvaFi/LlZWlkRGvmLX7iBSUlL5dmLOyxzJyRJGjf6ahMREBg3sw+kzZwHQ1Ze9kFDKypyaNarn05fWVK++janTZvLw4SO53+xGKn2Hj9eIPH0ZLevL/r05fRk6hJCQ43h6jaJv314yv9m4CXu7KnT5IufFlTVr1nP12nWaNG5EmdLWxCckcOx4KDdv3qJP757YVFC/6+pT6du0eSvbd+yiRo3q6OvrceDgIaW2W7eSveRSqVJFKlWqqHQvO6hVvnx53N3d1fZDIBAIBAKBQCD4L6PJ3zs2QvB50MjKysr63CIEAoHgY5G9gwggISGBBQv8CA0NJTU1FRcXFyZMmKBysHSHDh0B5QARyM6KmjdvHmFhV9HR0cHVtRm+vr4q50RJpVLWrVvPrl27iI6OxsbGhqFDv6JDh5y30zMyMvDz8+PixUuKXStWVlY0bdoUHx8fdA0NWLF0GYcOHSQxIRE7e3u8fLxpnGt3ifcIT5UAEUBUVBQL5s3j/LlzZEmzqFO3LhMmTqRCnjRH06ZM4UDwfrV2mzx1Cp2+yAl8SSQSli9Zyh9/HCUhPoEKFSpQpmwZ7ty5Q2JCIg4ODnh5eyvtfhkxfLhKsCVb37y5czl37hxSqZS69eoxceJEbGxUUwPt3r2bwI0befHiBdalS9O7d2/69eundL7TjOnTuXbtGlFRUaSlpVGmTBnc3NwYNny4Uvqx06dP89usWbx69YqsrCw0NTWp6uDA+PHjaSA/p+bfpjmbRf7+rFu3jqCgIBwcHIiOiWH50qUcPHSIxIQE7Ozt8fHxUfIPzxEjVIIZ2X2ZP28e586dI0sqpW7duvhOnEiFPH2ZOmUK+/Okv8xmytSpdJb7x9IlSzhz5gyRL16QmpqKpaUlzVxdGeHpScmSJTGW9yfq7VtWLFvG4YMHSUyU+7S3N41yafbx9FQJEGVr9sv26SyZT4+fOFFpl9+qFStYvXKlWr0AS1esoG69nN0sEomE5UuXEnL0KAkJMp8uXaYMd+/cITFR5tOeXl4f1KYAe3bvJjAwkMgXL7C2tqZX7970zeMfAIcPHWLLli08ffKE9IwM7O3sGDh4MG5ubooy586dY2NAAPfv3yc+Lg5DQ0Nq1KjBwH7daFC/DgkJiSzwX0Zo6BlS09JxcXZgwjgfXJyVAzEdvugNKAeIAB48eMQ8v6WEXb2Bjo42rk0b4Tt+JCVLKu9+y8rKYtuOPWzdtocXkS+xLGlBp45t8RwxGJ1cac0uXQ5jhPcEtd9PTaeyLJzcTe09gMSkVJZt/oszFx+SnpGJQ+VS+PRvimMVa6VyvcdsAHICRBmZ71i+6S+u3nrOqzeJpKVnUtLciLrVKzDwy3qUsTJReVZu1u08z4ZdF9m7YpgiQFSmzhggZwcRILP1wqVyW6fh4uzIhPEjVW3dWbYjKHeACOS2XrA4x9bNGuM7fpSSrQ8dDmHn7n08evSExIREShiXoE7tGgwfNggnx5wXQyIjX9JR/p2qo3OnDkyfNjnf+wkJCSzwW0Ro6ClZX1ycmDB+LC7Oyuk/OnTqKutLrgCMrC8PmTd/IWFXr8nmymZN8J0wVmmuPHfuPFu2buf2nXvExsaip6eLvZ0dX3b9gs6dOyp+D3l3EH0qfZOnTCd4v3KQOTcHgndTtmxZtfcMS5jj4OBA//79mTw5fzv/HSQSCbdv38bJyanYvA0rNH86iqNuofnTURx1C82fjuKoW2j+NBRHzVB8df+XiEtK+twS8sUsV9p7gQwRIBIIBP9pcgeIigOGhrLF9Pjkf+9kmhdTI9nkmixRPUT+34qR/I/E4qQZcnQnJhcfv84OEP2b/0DMS/YfjMXJzpBja0nCy8+spOgYmpQB4OWVRZ9ZSdFRFyAqDhgay4JpuYMt/3bUBYj+7WRr/hgUx8UOofnTURx1C82fjuKoW2j+dBRH3ULzp6E4aobiq/u/xL/53/8iQKSKSDEnEPxHkUqlag85z0ZLS0vljXWBQCAQCAQCgUAgEAgEAoFAIPi7iOXG4oUIEAkE/1GWLFnC4sWL870/a9YsunXLP52PQCAQCAQCgUAgEAgEAoFAIBAI/ruIAJFA8B+lV69etGzZMt/75cuX/3RiBAKBQCAQCAQCgUAgEAgEAoFA8K9CBIgEgv8o1tbWWFtbF15QIBAIBAKBQCAQCAQCgUAgEAg+AJr8N3PMPXjwgJkzZxIWFoaRkRFdunRh/Pjx6OrqFlgvKyuLVatWsXnzZmJiYnBycuL777+nVq1aSuWioqKYOXMmZ86cQUdHBw8PD77//ntKfORzkzQ/ausCgUAgEAgEAoFAIBAIBAKBQCAQCATFlPj4eAYPHkxGRgaLFi1iwoQJbN++nd9++63QuqtWrcLf358hQ4awYsUKrKysGDp0KM+ePVOUycjIYPjw4Tx+/Jh58+YxdepUzpw5w8SJEz9mtwCxg0ggEAgEAoFAIBAIBAKBQCAQCAQCgUAtW7duJTk5mcWLF2NmZgbAu3fvmDZtGl5eXvlmcUpLS2PFihUMHTqUIUOGAFC3bl3atWvHmjVrmDp1KgBHjhwhIiKCgwcPUrlyZQBMTEwYNmwY169fp0aNGh+tb2IHkUAgEAgEAoFAIBAIBAKBQCAQCASCf4ymhsa/9n9/l1OnTtG4cWNFcAigffv2SKVS/vzzz3zrXblyhaSkJNq3b6+4pquri4eHB6dOnVJq38HBQREcAmjatClmZmacPHnyb+suCiJAJBAIBAKBQCAQCAQCgUAgEAgEAoFAoIaHDx8qBW9AtsPHysqKhw8fFlgPUKlbpUoVIiMjSU1Nzbd9DQ0NKlWqVGD7HwKRYk4gEPynMTQ0+twS/hamRh/3ALqPgZGh4eeW8N4UR80AxkbFz6/NPvKhih+D4mhnAEOTMp9bwntTps6Yzy3hvTE0Vp9C4N+OYQnzzy3hvSmOmj8GhoaG1K1b93PLeC+E5k9HcdQtNH86iqNuofnTURx1C82fhuKoGYqvbsGnwc3NrcD7x44dU3s9ISEBExMTleumpqbEx8fn215CQgK6urro6ekpXTcxMSErK4v4+Hj09fVJSEjA2Nj4vdv/EIgAkUAgEAgEAoFAIBAIBAKBQCAQCASCf4wGWZ9bguA9EAEigUDwn0aS9PZzS3gvDEuUBECS8OIzKyk6hiblAJAkJ35mJUXH0Ej2VoYkKfYzK3k/st+iL462TpZIPrOSopO9s6w42RlybJ0SfeUzKyk6BpZ1APhrQfPPrKToNJkgyxMtiX/ymZW8H4amtgBIEqM+s5Kik71LS5L45jMrKTqGxlYASBJefmYlRedj7jqUSCTcvn0bJycnDIvJrt3iqBmKp26h+dNRHHULzZ+O4qhbaP40FEfNUHx1Cz4N+e0QKgwTExMSE1XXCOLj4zE1NS2wXnp6OmlpaUq7iBISEtDQ0FDUNTExISkpSW37Zcp83Cwh4gwigUAgEAgEAoFAIBAIBAKBQCAQCAQCNVSuXFnlLKDExETevHmjcnZQ3noAjx49Urr+8OFDypYti76+fr7tZ2Vl8ejRowLb/xCIAJFAIBAIBAKBQCAQCAQCgUAgEAgEgn9OlvTf+7+/SfPmzfnrr79ISEhQXDt8+DCampo0bdo033p16tShRIkSHDp0SHEtIyODo0eP0rx5TiaN5s2bc+fOHR4/fqy4dvbsWeLi4mjRosXf1l0URIBIIBAIBAKBQCAQCAQCgUAgEAgEAoFADX369MHIyIhRo0Zx5swZdu3axZw5c+jTpw/W1taKcoMHD8bDw0PxWU9PDy8vL9auXcuGDRs4e/YsEydOJC4ujmHDhinKtW3bFnt7e8aMGcOJEyc4ePAgP/zwAy1btqRGjRoftW/iDCKBQCAQCAQCgUAgEAgEAoFAIBAIBAI1mJqasmHDBmbMmMGoUaMwMjKiR48eTJgwQamcVCrl3bt3StdGjBhBVlYWa9euJSYmBicnJ9asWUOFChUUZXR0dFi9ejUzZ87E19cXbW1tPDw8+OGHHz5630SASCAQ/N+QmJiI38IlHD9xitTUVKq5OOM7YQxOTg5Fqv/w0WPmzVtI2NXr6Oho49qsCb6+Y7EwN1eUef3mDQsXLuHmrTu8eRONpqYmtrYV6NWzO507tUdDQ0Ol3SNHQ9i0eRsREQ/Q0dHBzs4O7xH9aVC/jlx3En7+KzgeeobU1DSquTjiO94bJ8eqRdT9hHnzlxJ27QY6Ojq4Nm2I74SRWJibqZR99vwFS5ev4/yFK0gkEkqVsqKNe0tGj8x5q6F2/db5PqthwwYsX7ZUZms/f46fOCGzdTUXfCdMwMnJsWiaHz5i3rz5hF29KtPcrCm+E32VbA2wevUaboSHEx5+k5iYGLw8R+Dt7ZVvu0eOHGXT5i3cv38fbW1tKlWqyCgfLxo0qCf3j8UcP3Eyl3+MLbrmR4/k/nFNrrkJvr7jlDQ/evSYfUHBnD13gefPX2BoYICjowPe3iNwcXZSr/noH2zavI179yKQSqVkZWWhqalJjRrVP4pNpVIpAQEb2bFzF9HR0dja2PDV0CG0b9dOpc2tW7exbdt2nj57BoCGhgYODlUZM3oUjRo1UpR78uQJs2fP5sKFC2RkZODo6IjPyJHY2toyb+5czp49S1ZWFvXq1WPi119Tvnx5lWft3bOHgI0biXzxAmtra/r27Uufvn1Vyr1+/brQNl+9esW+ffs4c/o0T58+RUtLiypVqjB8+HAaNmpEQkICv//+O0ePHkUikWBgYICWlhZJSUkYGxvjULUqI0YMo1atWp/M1keP/kFg4CYePX6s0Dtk8CBcXZspyjx48IBdu3Zx+mQIz19EYWioj2PVivgM64GLUxVFuYTEZPyWbubEqYukpKZTzakKE8cMwMmhktr+5ObGrfsEHTxJ+K0HRNx/Sua7d1z9c0u+5d/GxLF09U5O/XmF+IQkSlqY0rBeNaZ+n//vVB1aeiWwdfWmZJXmaOrokfTqNo9PLSX59b1C69q1+Z5SLu1VrktinnB1w0CV63qmZbFpMgwzm3po6hqSnviGt/eO8/Sv1fk+IzExCb9Fqzge+pd8/HDEd5wnTo72Rerfw0dPmbdgOWHXwuXjdAN8x3upjNNvot+yfGUA585f4W1MLFaWJWnRvDHDv+qHmZmJotzkab8TfOAPledUqlSJ3Ts2yDUn4ue/XD4nplHNxQnfCSNxcnyPOXH+YsKu3pDNiU0b4+s7Wu3cks3BQ0f58eeZGBgY8NfpIyr3t27bxfYde3j+4iVmZqZ07NiJcePGKZWR6V7K8ROn5bZ2wnfC6PfU7Z9LdxO57txzeTQL/Zdy8+Zt3kRHo6mpha1NBXr16kbnju1U5vLDR0LYELCZh48eY2RkROvWrRnlPRBzM7NcmldwPPR0rnl85HvO44tzzeON8J0wSsnWkZEv6dhFdUwEmPXLz7Rr46Z07egfJwjcvJ1Hj5+ira2Dvb09w4cPp2XLlkXSJBAIBAKBQCAQ5M/fT+X2b6ZKlSqsX7++wDIbN25UuaahoYGXlxdeXgX/O9ja2ppFixb9E4l/CxEgEvxfsmjRIhYvXqz4bGZmRuXKlfH29v7oeR3/DufPn2fQoEHs3LmT6tWrF3qvdevWtGzZksmTJ38OuUXiU2uUSqWMGfc19+7dZ/CgfpiZmbF9x25GeI1iU+A6bG0qFFg/Kuo1w4aPxLiEEaNHeZGSkkLAxs1E3H9IYMBqdHR0AIiLiyfq9Rvc3VpSunRpMjMzOXf+AlOmzuTJk6eMGe2t1O7yFatZuWod7m6t+KJzRzS19Lh37x6v30Tn6B7/PfciHjB4YG/MTE3ZvnMfI7x92RSwHFsb1YV0Zd1vGOY5XqZ75HCZ7sDtRNx/ROCGpQrdAHfv3me49wRKWVkysH9PTE1NePXqNVFRr5XanDnte6XPugbmhIeHExAQQONGjWSax47j3r0IBg8aKLf1TkZ4erFp00ZsbWwK0RzFsOEjMC5RgtGjR5EikRCwMZCI+w8I3LhBSfOSpcuwtCyJo4MDf509W2C7y5evYOWq1bi7u9GjRw8yMzO5dSuc12/eyP3DV+4f/eWadzHCaySbAtcXQfNrhg33kWke5Z3LPx4QGLBWoXnP3iD27gvGrXVLevXsTlJSErt27WXwkOEsXrSARg0bKGtesYqVq9bi1roVsbGxREW9xsHBgUoVbbl1+85HseniJUtZt2493b78EhcXZ0JDT/LDDz+hoaFBu7ZtFeUWLvRn/YYAxVbqqlXtuXfvHk+fPmPM2HGsXLGC2rVr8fLlS3r37o2mpiaDBg/GwMCAoH37GOnjQ0lLSzIzMhg6bBja2tps3rSJEcOHs2XrVszkC6sAO3fu5NdffsHNzY0BAwYQduUKc+bMITU1lSFffaUoJ5FI8BwxgqSkpALbDA0NZcP69bRs2ZJOnTvz7t079u/fj4+PD5MnTyY4OJi7d+8yaOAAHj95yqlTp2Rte45AV0eHAwcPMWy4J/4L/WjatMlHt/WWrVuZM2curs2aMXbsaNLT0gkK3s/YceOZ+/sc3NxaK+y0c+dO3JrXpVc3D5KSJOzad4xBXpNZMm8SjepXl/n6N3O4d/8Jg/t1wszUhO27jzJ89Aw2r/0F2wplCvSlM2evsif4BFWr2FCubCmePHuZb9lXUW8Z4jMFgJ5d3SllZc6b6FjCbz0o8BmqaODUdTZGllV4cXkrmSnxlK7ZFZceC7m+eQSpcc8LbUGamcb9P+YoXXuXnqxSztDKjmo9FpKeHE3k5W1kpMajZ2yNnnGp/NuWShkz4SfuRTxk8ICemJmZsn1nMCN8vmHThiXY2pQrUFtU1BuGeU2Uj9NfkSJJJWDTTtk4vX6RwmckkhQGDxtPSkoqvXp0xrqUFfciHrJtRxCXLl9jc8ASNDVzskfr6uow+cect9l0DSwxNjbO0TzuO/nc0keueS8jvMaxaeOqos2JI8bIx7wRpEhSCAjcSsSDhwRuWKHk59lIJBL8/JdjYGCgts2F/stYH7AFd7eW9O3Tk4ePHhMYGMj9+/dZ5PdbLt3fci/iPoMH9pXr3sMIrzFs2rimiLpHy+dyT7nuLUQ8eEDghlW55vI4oqJey+dyazIz33Hu/EWmTP1FNpePyvmH3fade5j12zwaNKjLxAmjiYlLJiAggOvXr7JxnWyelc3j92W2Vszj49kUsLII8/hrhnmOlfvHCPk8vk3298eG5Sq2btfWjWZNGipdq1HdRenzlm27mTPXH9dmjRg72pMsDX327NmDl5cXixYtok2bNgVqEggEAoFAIBAIBP8dRIBI8H+Lvr4+GzbI3qJ9/fo1y5cvx9vbm02bNlGnTp3PrO6fsXjxYkxMTAov+Bn51BpDQk5w7doN5syeiYe7bDHVw6M1Xb/sw/Llq5n167QC669Zu4HUlBQ2B66lTJnSALi4OOMzchxBwQfo3q0rAFXt7Vi9colS3T69ezBu/Dds2bqDkT4j0NLSAuD6jXBWrlqH74QxDOjfBwDDEiUBkCS8kOk+dopr128y57cpeLi1kOtuSdfug1i+cj2zZv5UsO51m0hNSWXzxuWUKS1byHdxdsRn9DcEBR+he7dOgGzR7acps6hU0YaVy+ajr6+Xb5sdO3gofTY0KceFCxdki9rt2hIScoxr164zZ85veLi7yzS38aBr124sX76CWb/+UrDmtetITU1h86bAHFtXc8HHZxRBQcF0795NUfbA/iDKli1LbGwcrd3c823z+vUbrFy1Gt8J4xkwoD+GRrJFUklSLABHj4bI/ePXXP7hRtcve8n9Y3ohmtfL/WN9Hv8Yq+Qf7dq1wdtrOIaGhoq6Xb7oTLcefVixYrVSgEjmH2vxnTCWUlZWhBw7zsKFC2nXrh2S5ERiYmM/uE1fv37Nxo2B9O7Vk0mTvgPgyy+7Mmy4J35+/ni4u6OlpcWbN9EEbtpE06ZN+PPPv5gwfhyDBg1k69ZtzJ7zO5aWJfFb6M+G9WtZuXIliYmJbN+xg4oVK8rb/JK2bdrwOiqKjYGBuLjIFi+bNm1Kr5492bhxI2PGjAEgNTWVpUuW0MzVld/nzgWgW7duSLOyWLVqFd26d1eMJdu3b+fp06eFtlm/fn0OHDyIea4dAz169KBPnz4sXLiQ+Ph4Fi5cSHNX2UGT2bZ+8OABs379hZ49e9L5iy5s3rxFJUD0oW0NsHXrdlxcnFm4cIFi50KXLl/Qtl0HgvfvVwSIOnbsyOjRo9FMuavQ07VTS77s9zXL1+6iUf3q/HHiPNdu3OP3mePxaCVbRG7TuhFd+vqybM1Ofps6pkBf6vWlO18N+AJ9PV1mzVtXYIBoxpzVaGlpsWn1TMxMjQtstyBKVm2JSdnq3N3/M28jTgIQfe84dYZspkLjr4g4NKPQNrKk74i+o7qjRhkN7Nv9RErsU27uGIf0XXqR9IUcO82167eYM+snPNxkh4x6uDena4+hLF8ZwKyZ3xdYf836LbJxOmAJZUrLAlEuLg74jJ5E0P6jdP+yIwAnT53l5cso/OfPwLVZTgDA1NSYlasDuRfxEEcHO8V1LS0tOrbPGRcNTW0BkCRGEXIslGvXw5nz23Q83FvKNHu0pmu3fixfsY5ZvxT88saadYEyzYGrc+YWFyd8RvkSFHyI7t2+UKmzak0ARoaG1K9XmxOhZ5TuvYmOJnDTdjp2aMvM6T8qrttXdWbGjBmcPHWGFs2bEXLsBNeu32DObzPwcG+VS3dflq9Yw6xfphaiO0A+Vq+mTOnssdoJn1ETCAo+SPduXYDsuXyxUt0+vbszbsK3bNm6k5Hew9HS0iIjI4PFS1ZQp04tli/xQ0NDA0NjK2rXro23tze79x6gpIW53NZT8XDLtnUrunYfwPKV65g18+dCNGfP4yvzzONfExR8mO7dOiuVd3Kwp2OHggM8W7fvxsXZkYXzZ8k0m5ShR48euLq6smfPHhEgEggEAoFAIBAI/o/QLLyIQPDfRFNTk1q1alGrVi3atGnDsmXLyMrKYu/evZ9b2j/G2dlZbYqmfxOfWmPIsROULGmBW+uWimsW5ua08WhN6MnTpKcXvBB47Hgorq5NFQu+AI0a1sfW1oajfxwv9PllypYhNTWVjIxMxbVNm7dRsmRJ+vXtRVZWFhKJRFX38ZOUtDDHrZVrLt1mtHFvSejJvwrXfeI0rq6NFItKMt11sbUpz9GQUMW1s+cucf/BIzyHD0JfX4+U1FSVnKn5kZ6eztGjR6lbtw7W1taEHDtGyZIlcWudk4pOZmt3QkNPFq752HFcXV3z2Lqh3NYhSmXLli1bJI2bNm+W2bpfX7KyskhOVt45kL9/uBF68lQR/OMErq7N8mhuoKLZ2clRKTgEYGZmSu3aNXn0+HEezVvl/tGbkGPHsbAwV1q0+xg2DQ09SWZmJj179VRc09DQoGfP7kRFRXH9+g0Arl+/TmbmO/T19dHS0qJbty8B2aGKABYWFly/fp1Xr15x6dIlnJycFMEhAAMDA3R1dQEwLlFCcb1SpUrUb9CAP/7IWci/dPEicXFx9OqZowmgV69epKSkcPr06Zx+hoTg4uKiCA7l12aVKlWUgkMAurq6NGvalPj4eEqWLFmgrQ0M9DE3NyMxMfGj2xogOTkZC3MLpbRWJUqUwNDQAD29nGButWrVMDIyUtJjZmpMnZqOPHosDzqHnqekhSluLern6p8JbVo3IvT0ZdLTM1T6lJuSFmbo6+kWWAbg0ZMX/HnuqnyXkjFpaelkZGYWWk/tM+1bkJ78lrcRpxTXMlPiib53AosqzdDQUt2tohYNTbR0DfO9bWZbHyPLyjw7tx7pu3Q0tfVAo/A/lUOOn5aP0znp/mTjdHNCTxVlnD6Da7OGiuAQQKMGdeTjdE6fk5Jlc4SFhbLvWpa0AEBPzffy7t07kpJUd0qFHDspH/Oa59HcitCTZ4ow5p3E1bVJnrmlHrY2FTgackKl/JOnz9i0eQe+E0YpAp+5uX79Jpnv3tG2jXIK0w4dOgBw5Ogxue5Que6c3d4W5ua0cW/9nrrzzOU2FTgaUoS5vIzyXH7/wUMSE5No69Fa6ffZqlUrDA0NOHL0eK55XJ2t/yyCf5zC1bVxkW0NkJKSQkZG/r/l5KRkLCzMVMYUIyMj9PX1CzaCQCAQCAQCgUBQGFnSf+//BCqIAJFAIMfa2hoLCwsiIyMB2dvd33//PW5ubtSoUYM2bdowf/58lX/IS6VS1q1bR/v27alWrRpNmzZl7NixSguHDx48wMfHh7p161KrVi08PT15+vTpR+tL69atmT49Z8dDREQEI0aMoGHDhtSsWZO2bduyatUqxf1JkybRqVMnTp48SadOnahevTrdunXj6tWrSu3u3buXvn370qBBA+rXr8/AgQO5fv26UplFixZRu3Zt7t69S9++falZsyadOnVSWsRVpxEgLCyMoUOHUqdOHWrXrk3Pnj35888/P4hN7ty9h6Ojg1L6HZDt8khNTeXJk2f51n39+g0xMbE4O6ue9VLNxYm7d1XPwEhNTSM2No7IyJcEBR8kKOgANWpUU9qZc+HCZVxcHNmydQet3TrQ1NWdZs2aERgYmEv3fRwd7dXodpTpfpp/aiWFbjVnLFVzceTuvfuKz+cvXAZkKYn6DfKmiWsHGrt24LsfZhAfn5DvMwBOnjxJQkIC7dvLzvi4c+eueltXc5HbOn/ff/36NTExMTg7qZ7HU83Fhbt376qpVTgXLlzExcWZLVu20trNnTp16tCsWTO2btsh03w3H80K/yhMc37+4azWP/Ly9u1bpZRqMs2XcHFxYsvW7Rw7HkpMTCzNmzdX8o8PbdM7d+9iYGBA5UqV8pSrJr9/B4D0DNk4GBkZiY2NDSXkQZ7shcX4+HgA7t69R3p6usqCo1QqJS4uDoDbt2+raHr+7JkiiHdHrs/ZRTlFkrOzM5qamty9c0fRZkREBM7Ozmr7mbvN/Hj79i0aGhqKtnNjZ2dHamoqf/11lkWLlnD//gMaNKivVOZj2Bqgbt06/HX2LFu2biUyMpJHjx4za9ZskpKS6KfmHKa8RMfEKXbw3Ln3BMeqlVT6V82pCqmpaQXuCHofzl8MB6CkuSmeY2fSsPVgGrUezKiJv/Hi5Zv3asvIqirJryOALKXrSa9uo6VjgIFZwWnFADR19Gk46hANRx2mvs9+KrWagKaOcqozU5t6AEjfZVCj30oajfmDRqOPUrXDFLT18t8BdefefRwd7VTHD2cHmU2fvsi37uvX0cTExOHspHoWTTUXB+7ezRmn69SujqamJr/PX8r1G7eJinrD6T8vsGbdZlq1aEKlisqpJlNT02jWqiuurb+khXt3pk2blut3dQ9HB3Vzi5N8binCnKh2bnHi7t0Iletz5y2ifr3auDZrrLbN7MBk3t2r2enobt++K9cdgaND1fzH6iLpzm+sVtWdmppGbJx8Lt9/iKDgg9SonjOXZ+vOHajNRk9Pj7t3I7hzJwJHR3WaP+w8ns2K1Rto0rw9DZu2of8gL86eu6hSpm7dWvx19gJbtu0mMvIlDx48YNq0aSQmJjJo0KB89QgEAoFAIBAIBIL/HiLFnEAgJzk5mfj4eMWultjYWMzMzPj+++8xMTHh8ePHLFq0iDdv3jBr1ixFvRkzZrBt2zYGDx5M06ZNSU5OJjQ0FIlEgrGxMc+ePaNPnz7Y29vz22+/oaGhwfLlyxkyZAiHDx9WvEVfFKRSKZl53sCWSguPfnt7e2Npackvv/xCiRIlePr0Ka9evVIq8+bNG6ZNm8aYMWMwMTFh1apVDBs2jKNHj1KypCzt2fPnz+natSs2Njakp6dz4MAB+vfvT1BQEJVyLXJmZGTw9ddfM2jQIEaOHMmqVasYO3Ysx48fV3lrP5vLly8zePBgatWqxcyZMzExMSE8PFwRsPunREe/pU6dWirXLS1LKvpvb19F5T7IUt/kLqtc35L4+ATS09OVvsvNW7axaPFyxecGDeoxbUpO2pyEhATi4uK4dvUGFy9ewWvEUEqXtmb/waPMmDEDaWYSPbp1lumuXUPNcy3kut9ib1c5H90xSmXz9ju37qfPZAuY330/nSaNGzB0SD/u3XvAuvWbiYp6zbrV/iqHcmcTHByMrq4uHu6yA7Cjo6OpU6e2WlvJNL/B3t5O5b5Mc7RS2bz14+PjVWxdGApbX7vGxYuX8PIcgY1tRXbv3s3sOfPQ1taW+0dBmqML0Py2AM0l1fpHbq6EXeX69XCGD8s5SyfHP65z8eJltLS0qFOnFgYGRjL/eJdJjx7dP7hNo99EU7Kkhcp3ndsOABVtKwKy83bsquQ8NywsDEARVHzz5g2VKlXi8uXLJCcnK3a3xMfHK8au16+Vz7iytLJS1DUyMiI6OhotLS0sLJT9WEdHB1NTU968eaNoMz09XX0/87SpjqdPn3L8+HE0NTUpVUr1vJmgoGAAJvhOREdHh+7duzFixHClMh/D1gDfffsNcXHxzJkzlzlzZGn2zMzMWL5sGTVrqo4Publy9Q7XwyMYMVi2yyv6bSx1a6kukFuWNJP3IRb7KgWfaVUUnjyXzTEz5qzCxakKs6eP5VXUW1as3YX3uF/YHjAbgwJSWeZG18iChBfXVK6nJ8t+e7olSiJ5+zDf+unJb3lxaQvJr+8BGphXbEiZWl9iZFWF8B3jIEu2W9LAXDb/O3ScStzjCzy/sAkjqyqUqz8AXeNShG8bpbb96OgY6tSqrnI9Z355i71dJZX7UMg4XdKC+IREhc9UqWzLT9+PY4H/KgYPG6co17mjB5N/9M3zbAsGD+yFk4Md0iwpf529xObNm7lz5w4rls6Vaa5dsxDN+c2Jb5XK5q2fd8w7feYs585dZOuWdWrbA6hYURbku3r1BvXr5aT5vXTpEgCv5b9z2ZxYkO7oD6YbYPPW7SxavELxuUGDukyb/IPis41NeTQ0NLh67QZdvuiouP7w4UNiY+MUz61TpzDN+c3jRdesoalJ40b1adWyGaWsrHjxIpKNm3cwetx3+M37RSk4993XY2Vjylx/5sz1B8Dc3Jz169dTu7bqXCgQCAQCgUAgEAj+u4gAkeD/muxgy+vXr/n9998xMjJSvDnp4ODAd999pyhbp04dDAwMmDRpEpMnT8bAwIBHjx6xZcsWJkyYgJdXzoHFbXMdLr548WJMTU1Zt26d4g3TOnXq4Obmxo4dO+jfv3+R9fbq1eu9+xgTE8Pz58/58ccfaS1P+dWoUSOVcnFxcfj5+dG4sWwBoUGDBrRo0YL169czceJEAEaPHq0oL5VKadq0KdevX2fPnj34+uYsTmUHiFq0kKWAqVSpEm5ubpw6dYouXbqo1fn7779ja2vLhg0bFOlnmjVrprbs3yEtLQ1dNYdm68kXgtLS0gqsC6Cro7rAr5urfu5FpXbtPHB2diI2NpbTp//ibUyM0jMkkhQA4uLj+W3WdNq2kZ0T8UXXHnTu3JnVawLp0a0zaWnpH1m3bGEpRa7H2dmRX2bIFr/cWzdHX1+PRUtWc/7CFRo1rKvSTlKSLCDaokULxeHneW2Ro1mvcM2paUr6lDTr5dR/nwBRduq+uLh4fpv1K23btsHQyJh27drRsWMHVq9Z94H8Q7W+rm7BmmNiYvjhx8mUK1uWIYMH5NKc2z9m8MOPU6hUsSLTZ/wi94+19OjR/YPbNC0tDR01/pKduiq7LScnR6pXq0b4zZvExMYSGRnJw0eP+PXX39DW1lbstExLS6Nv376cOHGCSd99x6jRozEwMGDdupyF4rzadfPYPC01Ve2B9zJdejnl5P+vo66fhXyPKSkpfPftt+jp6ZGRkaHWVt27d2PmL7/Su1dPIu4/IDMjQyUN48ewNch2ZlW0tcXauhSurs2QJEvYtGkzX3/zDWtWr8bGRv0OmpjYeL6ftohyZawY0r+z/Pnp6Oio/vmnpyezcWpa0c7dKYyUlFRAlpJu0e/fKnZPWJeyYNKURRw6+ifdvmhdUBMKNLX1yFJzHlD2GUGa2gUHmp7+uVLp89t7x0mJfYZtM09K2rfg7T1ZarHsHUVJr+4QcXgmADH3TyLNTMO2mRemNnWJf3pZpX3ZOKpu/NCR3/+b44ee8jgNUKqUJdWcHWjWtAFlSpfiytVwtm7bi5mZKb7jPBV1x44aptRWuzatsKtajQULFhBy7GT+47Tee4x5avqsq6c8J2ZkZDB3/iK6d+9ClcoV823TydGB6tWcWR+wmVKlrKhfrzYPHz3htzkL0dHRIS0tPVe7amz9gXVn066tB85OjsTGxnH6jOpcbm5mhod7a/bvP0SlSra0btmchOQnzJgxA21tbTIzM0lP/yfzi6zf6ucXZc1lSluzdNHvSmU6dmhD916Dme+3VClApK+vR0VbG6xLWeHq2phMqS7r169nzJgxbNq0CVtb23w1CQQCgUAgEAgEhSNSuRUnRIBI8H+LRCJROqdCS0uLpUuXUrmy7C3OrKwsNmzYwPbt23n+/LnSP+CfPXtG1apVOXfuHFlZWfTo0SPf5/z555906NABLS0tRUDKxMQEZ2dnwsPD30vz7NmzqVJF+c3YmzdvMmXKlHzrmJubU65cOebPn098fDyNGzemdK7c+9kYGxsrgkPZn5s0acK1azlvbT948ID58+cTFhbG27dvFdcf5zk7RVNTU6mt8uXLo6+vT1RUlFqNKSkpXLt2DV9fX7VnE7wP6enpivRWACnJsZibm6Gnp0e6mnz8afKFbHXpYbLJvpedVivv89TVL1umDGXLlAGgfbs2zJj5G94+49izeyv6+nqK8tra2ri7tSIjI4P4+AQMjKQ0b96ctWvX8vzFS/T0dD+ybtkCk578Tf52bZUXbNu3c2PRktVcu35TJUCUkZHB3qCDpKWl0aJFC6KjozE3N5fZWs2ZCmnpaYVrVqTtUaM5rfD6atvUk6U309bWpkWL5kRHR2MgkS1eN2vahICNm9DX1/8Adlatn15An1NSUhg7/muSkyWsW7MCQ0NDhR9kp4HS0tKiVcsWCv/V1NSkffv2LFq0iJcvX31wm8oCJGq+O/kipV6uHR9z586hS9du3L9/n46dvkBLS4sB/ftx+coVHj58hEQiQU9PjxYtWvDzzz8zd+5cRTq03GdHGeQ5kynvb0pPXz/fszTS0tKUtANkqOunmu9RZut43r17x7SpU3nw4AH+ixYx0ddXra1KWct2FTVv3pyJE33p268/k6dMZe7vcxRlPpatv/l2EtpaWixcuEBxrWXLFnTp2o0lS5Yye/YslXYSEpLwnjCLxKQUFs7+GklKKnp6uujp6SqdhZbzXHmKryKcL1QUshe/27RupJRay6NVI36avpRr4fdUAkQamtpo65soXctIiUOamYaGlqouTfk1aWb+C+z58fLKdmyaDMPMpp4iQJTdTvTdY0pl39z5A9tmXuhbOfH0zgXFrrWUhBjMzU1l47Sas5vSCkg/lk2B40ea8jh99dpNxvn+zIY1/rg4y1LStWrZlBJGhqxYHUiXzm2pUll5YV/m57KUt506dcLPz49z5y/mP06nvceYp6bP6XnqB27aTlxcPD5eQ/NtL5u5c2bw3fdTmTr9N0D2t0Tv3r25evUqT5484d27d3Ldamz9gXVnU7ZMacrKzxNr386DGb/MxnvkePbs2qJIM/fTj9+QlpbGAr8lLPBbAkCbNm0oaWHGn3+dQ0/3n/z9Ifvu1c8vhdc3NTXhi87tWbdBthvYWj6OfTNpqmxMWSAbOwxNyuDm5kabNm2YO3cus2fPzrfN9yUlJUXp/z8k2Wf6qTvD8Z9QHDXDx9NdHDWD8I+8CP9QRviHMsI/lBH+kUNx1Awf36cFgv8aIkAk+L9FX1+fwMBAsrKyePz4MfPmzeO7774jODiYUqVKsWHDBmbPns3w4cNp2LAhJiYm3Lhxg+nTpyuCRXFxcWhraytSsKkjNjaWDRs2sGHDBpV7+b0Vnx9VqlShenXlNDaFTaYaGhqsWbOGBQsWMH36dEVg7Pvvv6d+/VyHlFuoprcpWbIkDx48ACApKYmhQ4diYWHBpEmTKFu2LHp6evz0008qb7/q6+urvJksewNY/SJeQkICUqlUbVqn9yUsLEwlf/6B4F1YWpYkOvqtSvnsa1byFFTqsJKnfFJfPxpTU5NCd7S4u7Vi954grlwJo0mTRpiamqCnp4txCWO0tLQIC7vGCK/RSnUePX5agO4Yue78fc9KnrIou6xy/bdKuq3k6WtK5jn83EKeEjD3mVrZXLt+k3kLlgHw008/AXBgfxCWlpZER0erlM++VjRbq69vamr6XruHALmt9TA2LkF4eDgjPL1VypiZmRaiWTVlWI7mkgVofqvWPzIyMpj49SQiIu6zZLEfdvKUSNeuXWeEV04aq3fv3hEdHS33A1n72eNNQmLCB7eppZUlFy9dIisrSyn1mTo7lCpVipo1a/DiRSTTpk7BxqYClpaWeLRph5WVJU+ePFXoGjBgAO3at+fevXvo6Ohgb29Pk8aNeffuHbY2yunMouWL79l1LS0teffuHTExMUrjVHaAJ7tcdj/U9jNPmwDXrl3Dc8QIpXI2NjZYWloqAgB5bZXdho6ODi2at2Dd+vWkpqYqzlj6GLZ+/vw5f/31Fz//9KNSe6amptSqVZOr11RTr2VkZOI9YRb3Ip4AMGLMDAAO7PTHsqQ5b6LjVPW9jZP3QX0a0Pclu52SFqZK17W0NDE1LUFCoup5UMZlq1Gtp7/StctrepGeHIOukepYl30tPUl1jCwM6bt0MlMTlAJS6cky22dIlMfMDEkcAHefxjIhIBoCcna3HtgbgKWlBdFv1Y+z8A/G6bcxmJoYK3xm5+4DWFiYK4JD2bRo3pjlqzZy7fotlQDRteu3GOHzjdK116/fyDQXOCcWpLmkUtm89bPHvMSkJFavDaBXj64kJycrAt8SSQpZWVlERr5EX18fC/m8U6qUFevWLOHJ02f8+dd5fp/rz5YtWxRtR0W9LsJcXpSxumDdBSGby4O5EnaVJo0bAmBcogR+83/jyNEQJv0wFYCjR48CYGJijKmpyWfVXFoeFIpPSMTauhTPn0fy19kL/PzD10rlzMzMsLOz49KlSypnw30I8r5M9CGoW1f24srH0AvFUzN8eN3FUTMI/8gP4R8yhH+oR/iHDOEfqhRHzfDxfFog+K8hAkSC/1s0NTUVwZYaNWpQqVIlevXqxZIlS5g2bRqHDx+mdevWivRqgCJYko2ZmRmZmZm8ffs23yCRqakpLVq0oF+/fir38jsL40NTqVIl/P39ycjIICwsjPnz5+Pt7c2pU6cUGmJiVBen3r59q1hQvXr1Kq9evWLFihU4OuacX5GYmKh2R9L7YGxsjKampspZJH8HR0dHpfRVqSkJlCxpgUNVe8KuXkMqlSq9zR4efhN9fX1sbfM/5LxUKSvMzc24deuOyr3wm7dxqGpfqK5UeXAsKUm2QKapqUnVqvbcunWHjIwMqla1Y9nShegbmLB7926Cg4OpVLECDlWrEBZ2Q43u2zLdNuUL1y0/3FtZ9x0ccp255ORUFfYe4PUb5YXt7HNQzM3NVNqwsDBHQ0ODpk2bMmzYMFJTJZQsWRIHh6qEhV1V1Xwj29b5n29SqlQpzM3NuaXmj8TwmzdxqKp6kHthyGxdlVu3blGpUiWWLVuCvr7szZ8d27dy8NAR7O3suHX7dgH+UQTNav3jlopmqVTKT5OnceHiJWb/NpN6dXPO26ha1Z5lS2UL5HN+n8+TJ08xMTHBoWpVwq7KbJr9OzE3N//gNnWoWpU9e/by8NEjqlTOORMje7ejQ1Xlg9Idqjpw6dJlqla1p0SJEjx4+JDo6Ghsberw5MlTHBxy2jYwMKBmzZxzOIyMjEhMTKRmrVrKmsLDKV++vGJscnCQPfPWzZs0c3VVlLt18yZSqZSq8vuamprY2dlx69Yt1X7maROgatWquLu7ExISQs+ePWndurXcfx24Kre1Uht5bJ2WlkpWVhYSiUQRIPoYtn4rDzy8kyqnswNZmtS8ae6kUik/zVjKnXuP8PqqG7Vr5ozXlhamONjbEnbtjoqv37h1H319PWwrlFF5zt/B2VF25s7rN7FK1zMyMomLT8TczESlTvKb+9zcNUHpWnpyDMlvIjApVwPQALIU90qUceJdRgopcc/eW5+mjgHaBqZkpMTlPD/qHlQH3RLKAVfdErL53cbKgK87meHSXbaTKzU5Sja/2Fch7Gq46vhx847Mpjbl8tVRqpQl5uam3Lp9T+Ve+M27OFTNGadjYmKRvlNN1ZC9OzmvLwBUta/MssWyHTlZmiaMHDkS61JWGBkZEXb1uhrN2XNLEeZEtXPLbRyqys4lS0xIRCJJYX3AFtYHbFEp2/GL3rRs0YwF835Vum5rUwFzMzMqV6rI21gJP/30E23busvncrt8dN98D935jdVFmMtTs+fyJJV7jRs1YNmSBegbmpGcnMy4ceNo2KAuWVlZhIWp0fxB5nH1Z8/l5vkL2VmO2fP42xjZb1LdmKKvr4+GhgZOTk6FtltUUlJSePz4MRUrVsTAwOCDtZubD6kXiqdm+Pi6i6NmEP6RjfAP9Qj/kCH8Qz3CP4qnZvg0ugWFkCVSzBUnRIBIIJBTvXp1OnbsyO7duxk9ejSpas69CA4OVvrcqFEjNDQ02LVrF56enqijcePGRERE4Ozs/I/Tp/1TdHR0aNCgAZ6envj4+PD69WsqVZIt4iUmJnL27FlFarjExET++usvxRlJqampijayuXLlCi9evMDevvBFlYIwNDSkVq1a7Nu3j6FDh/4jO5mamtKkSTb6ewwAAQAASURBVBPFZ4n8zXJ391aEHDvBseOheLjL0hrFxsbxR8gJmjdvqvQG7rNnzwGoUCFn0catdSv27z/Iq1dRlC5tDcD5C5d48uQp/fv1VpSLiY1V7LrJzd59+9HQ0MDRKWeBvW0bd27cuElw8EG6detCo4b10dIpweTJk6lcyZby5cri3roFIcdOcezEaTzcZGc6xcbF88exkzR3bays+/kLme7yOYuRbq1d2b//KK9evaZ06VJy3Vd48vQ5/fvlpEZs2bwpv89bTFDwYb7o1FaxiLVn30EAGjVQfVPmr7MXyMrKYvjw4TRu3BhJsmyXkbubGyEhxzh2/Dge7u65bB1C8+auhdvarTX79+/n1atXiuDj+fMXZLburxpoLQpt23hw48YNTp48RbduX2JoZExaWho///QTlStXomPHdpw+86ca/zhO8+bNiuAfLdX4x0W5f/RR0jJ7zjyOHg3hpx8n4da6ldI9ExMTGjVsAED3bl2ZO8+Po0dD5P57nAMHDhAcHEzlypXR0db54DZt2bIFc+fNZ8f2HUyaJDuDLSsrix07dyl2DOXG3d2NgI0b2b17DwMG9Gehnz96enq8fPWS6tWqKZ4VGRlJTGysYry5dvUqiYmJZGVl8ezpU5zl6T4fP37MxYsXGThwoOIZ9evXx9TUlB07dyoFiHbs3Im+vj6uua65u7vj7+/PrZs3C2wTYM+ePYSEhDB02DCl89Xc5EGjo0eP0ty1KTExMWhoaCrZOjExkWPHj2NpWZLkZInSzqYPbesKNhXQ1NTk6NE/6NG9u2K3UVRUFGFhV6mVJ8A2Y8YMjhw7y0/fDqdHFzfy4tGyISEnznPs5EU8Wsl2QMTGJfDHifO0aFpH6XyWZ89laUErlLdWaacw6tV2xsLchINHzzBsUBdFqqx9B0/y7p2URvWrq9R5l5ak9oyftxEnsazaipL2zXkbcRIAbX1TLO1bEfvwL7Le5aTf0jOVpS9Mi5ctimto6aKhqYU0Qzm9RIVGg9HQ0CTu8XnFtZgHZ6jUcgylXNrz+uYhsoNR1tU6ASB9G45LeT3FHCOJl+3QcndzJeT4aY6dOIOHW3Mge5w+TXPXRnnGaZmuCuVz0iy6tXJl/4E/eBX1WrHb4/yFMNk43bebopyNTXnOnr/MpcvXqFc3J9h6+MgJABwdZMGktLR0MjMzMTIyxMTEmEYNZEHoxSu2AeDq2oSMjAxCjoVy7PgpPNxbyjXL50TXJkWYW1qwf//hPGPeZZ48fUb/frLzEs0tzJk/9xfysmXrTq7fuMmsX6Zgaan+5RoTE2Ma1K/DxG+nYmBgwLgx3ujp6eHu1kqu+yQe7q3y6G5aBN0t2b//kOpc/vTZ+83ljg4q92Tjd30Mja2YMmUKWVlZDB7Qh+cvIgk5dpJjJ07h4ZbL1sdCiziPN2f//iN55vFsW+fM4zGxcVjkeZnj9es37As+hL19FcVupAoVysnGlD9O0KPbF4ox5dWrV4SFhVG3bt2Pkj7FwMDgo6Vl+VjtFkfN8PF0F0fNIPwjL8I/lBH+oYzwD2WEf+RQHDXDx9UtEPyXEAEigSAXI0eO5ODBg2zYsIEmTZoQEBBAYGAgFStWJCgoiCdPniiVr1SpEn369GHhwoWK831SU1MJDQ1lzJgxWFtbM3bsWHr06MGwYcPo1auXIv3WhQsXqFevHp06dfqofbpz5w6zZ8+mQ4cOVKhQgaSkJFasWEG5cuWwyZXayczMjB9//JGxY8dibGzMqlWrZIsbgwcDUKtWLQwNDZk2bRqenp5ERUWxaNEirK3ff+FQHRMnTmTIkCEMGTKEfv36YWpqys2bNzE3Ny/wjKei4u7WiurVXZg67VcePnyMuZkp23fuRip9h4/XcKWyXj5jATi4f7fi2rChgwgJOY6n12j69u2FRJJCwMZN2NtVocsXHRXl1qzZwNVr12nSuBFlSlsTn5DAseOh3Lx5mz69e2CTa9G+e7eu7NkbxKzZ83jy9BmlS1tz6HAIkZGR+M2bKdfdnOpbnZk6fQ4PHz6R696HVCrFx3Owsu6RsnQxB4Ny3tQeNqQ/ISEn8fTxpW+fbkgkqQQEbsPerjJdOrdTlLO0tGDYVwNYtmIdo8Z+R6sWzbgX8YDdew/Qrm1rXFwcycvBw8ewsipJw4YNlW3t7kb1zdWZOnU6Dx8+wtzMjO07dsg0e3spa/b2kbV1ICf4OmzoV4SEhODp6U3ffn1ktg7YiL2dHV2++EKp/v79B3j56iWpKbK3uq9cCWPV6tUAdOzQkbJlZbshunfvxp69e5n122yePHmKja0t+/bt4+WrV/gt+J3GjRpSvfo2pk6bKdec2z+U05B5+ciCCQf3782leYjcP0ap8Y+c3/imzVvZvmMXNWpUR19fjwMHDym13bpVS8UbTjn+MZc+vXtStkwZvv32W/m5Z90Z4en5wW1qbW1N/3592RCwkczMTJxdXAg9EUpYWBi//jJTKXg75/e5pKel4ejoyEL/RWwM3ER0dDQ2FSoQ+TKS6dOmAfDixQs6d+5McnIykydP5sGDB+zatQs7OzskEgljx45l4KBBaGtrsykwEAsLC6Vgjr6+Pj4jR/LbrFl8+803NG7cmLCwMA4eOMCo0aMxNc1JYdazVy9279lTaJvHjx9noZ8fNjY2VKpUiQMHDijuSaVSRRrOQYMGsmfPXhITE8nIyKBKFTuWLltOUFAwb968wdTUBC9vn49qawtzc7p0+YI9e/bi5eVD69atSJZI2LFjJ2lpaQz9aoiizfXr17N582ZqVLPHQF+XA0dOK/tX8/q4t2pIje32TPllOQ8fPcfMzJjtu/9A+k6KzzDlsdZznGwcOrRrkeJa5Ks3HDgsa/fWnYcArFovGyvLlLaiUztZwE5XV4cJo/rz88xlDB01nU5tm/Ey6i2bdxyiTk1H3Fo0oKi8jQglMTIcuzbfY2BRkcyUeErX7Aoamjw9u1apbPbunitrZYv9ukYW1Oy/hui7IUhingJgbtsA88qNiX10jpgHZxR1MyQxPL+wEZsmw3HuNpeY+6cxtLLDunon3tz5g6Qo1Z0nAO6tXalezYmpM+bx8NFTzM1M2L4zWD5OK6c89RolCwYe3LdRcW3YV30IOXYKT59v6du7K5KUFAICd2JvV4kundsoyvXp9QVB+48wbuJk+vTqQpnSpbh85QaHj56gUcM6VK8me/vy7dsY+gwcSbs2LalYUbaj5uy5y5z58wKurq60bNGMrKwsqlffydTps3j4SD4n7tgr05znvCAvH9muroPB23NpHkBISCie3uPp26eHTPPGLbK55Yv2ABjo69OqpSt5ORF6mvCbd1TuzZm7kPS0dKo62JOZmcnhwyGE37zNb7/9Rhl5sNXdraVsLp/+ay7de+S6h+XRPU6ue2cu3QMJCTmBp/dY+vbpKde9WT5Wd1CUW7M2gKvXbtCkcUPZXB6fwLHjJ7l5S3UuX7t+Iw8ePKKaizNa2lqcPnOeM2fOMMpnGC4ujjg62svn8dm55nG5rT2/UtY80lemOWhbjuYhclv7yG0tSSEgcKt8Hm+vKLfQfznPXkTSsH4drCwtiXz5il27g0hJSeXbiTlBcAtzM7p0bs+efQfwGulL61auZLzTZvPmzaSlpeHlpTynCAQCgUAgEAgEgv82IkAkEOSicuXKdOjQgS1bthAaGkpsbCz+/rJ0T23btuWnn37C21v5/JLJkydTvnx5duzYwYYNGzAzM6N+/fqKVEa2trbs2LEDPz8/pk2bhkQiwcrKivr16ytSJ31MrKyssLS0ZMWKFURFRWFsbEy9evX4/ffflRZ7rays+Prrr5kzZw5Pnz7F3t6eNWvWYCk/U8PS0pKFCxcyZ84cRo4cScWKFZk2bRqr5Yvx/5R69eoREBCAn58f33//PZqamtjb2zN+/PgP0r6WlhaL/eexwG8JW7fuIDUtDRcXJ6ZN/YmKFW0LrV+6tDWrVy1h3nx//BctQ0dHB9dmjfGdMFbp7V/XZk14/vwF+4L2Exsbh56eLvZ2dkyb8iOdO3dQalNfX4+Vyxfht3Ap+4L2k5KSipOTEytWrKBuzco5uv1mscB/BVu37SY1LR0XZwemTfmOihXzTyuWo7sUq1csYJ7fMvwXr0ZHRxvXpo3wHe+tcm7BiGEDMDEpwdZte/h9/hIsS1ow7Kv+eI4YpNLu48dPuX37HgP69VRKmaPQvGghC/wWsnXrVlJT03BxcWbatKlUrFixCJpLs3rVSubNW4C//2K5rZvh6zteRfPeffu4fPmK4vPFS5e4eOkSALVr1VIEiPT19Vm5Yjl+C/3ZFxRESkoKTk5O+PvNo0mTRgAs9p/PAr9FbN26PZd//Pwe/rGMefMX4r9oqVxzExX/uHtXlkbq+vUbXL9+Q6WdA8E1FQEifX19Vi5fjN/CxQTvP4BEkoKZmRnp6ekEB+//aDYdO3YMxiYm7Nq1m6Dg/djYVOCXmTNo376dUjlHBwc2bd7C06dP0dLSIj4+Hm1tbYxNjFn4nR915anzSpQoodh5OGvWLEqVKkWfPn0YNnw4SUlJzJs7lzWrVyOVSqlbrx4TJ07EPM+ZaL169UJbW5vAjRs5efIk1qVLM/Hrr1VSdxoZGbFq1apC27x3T/Y9PH36lJ/l52flZtmyZRw7doytW7eSnCxBT1cXPT09Vq1aibGxCdWrV+PXX2by08+TP4mtf/h+ElXt7dm7bx+LFi8BwMXZmRnTpynsDLIXAgCuh0dwPTxCRduBnf6UK2PF4rnfsmDJZrbsPExqWgYuTpWZ/qM3FW3LqtTJy4vINyxZtUPpWvbnurWdFAEigM7tm6Ojo83ajUEsWLoZ4xKG9OjixhivPmhpKY8bBZIl5dbeb6noOpIytbujqa1H0qs7RBydRWpswenlMtOSiHn0F6Y29bFyboeGhiapcS94cmYFkZe3kjtlHcDz8wFkpiZRplY3KrYcQ0ZyDM/Pb+T5+fX5PkM2Ts9kgf8qtm7bKxs/nB2YNvkbKhaQvjSb0talWL18LvP8VuC/ZI3MZ5o2wHecl5LPVLStwOaAJSxZtp6Dh44R/TYWK6uSDBrQA+9cgShj4xI0b9aQcxeuEHzgD6RSKRXKl8XX15ehQ4eSkSpLW7h44RwWLFzK1q275JodmTb1+yLOLdasXunPvAWL8V+8Qja3NGuM7/hR731OXDaODlXZtGUHBw+HoKmpgYuLE+vXr6dRo0ZIEmXngmlpabF44e9y3Ttz6f7xPXQvkuteLtfdBN/xo5Xn8qbZc/mBXHN5FaZN+YHOndortWlvV4UTJ05x8tQZ3r2T4ujoiJ+fHy2a1srR7DebBf7L2LptV655fNJ7zOMLmee3FP/FK3PN4yOVNDdqVJ/nu4LYtmMviQmJlDAuQZ3aNRk+bCBOjsqpTn+YNIGqVauwd99BFi1ZBWhQvXp1Zs+erXQ+pUAgEAgEAoFA8PcQKeaKExpZWVlZhRcTCAT/ZSZNmkR4eDj79+//3FI+OJK/cXj558RQftaFJOHFZ1ZSdAxNZKlwslPMFQcMjYwBkCTFFlLy34VhCVnKo+Jo62SJ5DMrKTpG8jQExcnOkGPrlOgrhZT892BgKQtw/bWg+WdWUnSaTDgF5KSYKy4YmsqC3ZLEqM+spOgYGst2KWcHiIoDhsayM6wkCS8/s5KiY2jyYc4eU4dEIuH27ds4OTkVmxQvxVEzFE/dQvOnozjqFpo/HcVRt9D8aSiOmqH46v4v8W/+N0f2vzEEObzH65sCgUAgEAgEAoFAIBAIBAKBQCAQCASC/wIixZxA8JmRSqVIpflvvdTS0lIcICwQCAQCgUAgEAgEAoFAIBAIBP9askSKueKECBAJBJ+ZJUuWsHjx4nzvz5o1i27dun1UDb/99ttHbV8gEAgEAoFAIBAIBAKBQCAQCAT/LkSASCD4zPTq1YuWLVvme798+fKfToxAIBAIBAKBQCAQCAQCgUAgEAj+LxABIoHgM2NtbY21tTggTSAQCAQCgUAgEAgEAoFAIBAUd0SKueKE5ucWIBAIBAKBQCAQCAQCgUAgEAgEAoFAIPi0iACRQCAQCAQCgUAgEAgEAoFAIBAIBALB/xkixZxAIBAIBAKBQCAQCAQCgUAgEAgEgn9OlkgxV5zQyMrKyvrcIgQCgUAgEAgEAoFAIBAIBAKBQCAQFG8k8c8+t4R8MTSt8Lkl/OsQKeYEAoFAIBAIBAKBQCAQCAQCgUAgEAj+zxAp5gQCwX+aS9EvP7eE96KeZRkAXiXGf2YlRae0sSkAkoTiY2tDE5mdH8bFfGYl70dlMwsAbsW8+cxKio6zhRUAkuTEz6yk6BgaGQNwKurf+9aTOppby96EKk66szVLEouPTxsay3y6OI3TkGusLoa/xbikpM+spOiYlSgBQLJE8pmVFB0jQ0OgeGmGHN0fGolEwu3bt3FycsLwIz3jY1AcdQvNn47iqFto/nQUR91C86ehOGqG4qv7v4VIMVecEDuIBAKBQCAQCAQCgUAgEAgEAoFAIBAI/s8QASKBQCAQCAQCgUAgEAgEAoFAIBAIBIL/M0SKOYFAIBAIBAKBQCAQCAQCgUAgEAgE/5wskWKuOCF2EAkEAoFAIBAIBAKBQCAQCAQCgUAgEPyfIQJEAoFAIBAIBAKBQCAQCAQCgUAgEAgE/2eIFHMCwXuyaNEiFi9eDICGhgZGRkaULVuW+vXr079/f6pUqaIo27p1a1q2bMnkyZOL3P758+cZNGgQO3fupHr16h9Eb9OmTalTp47SdQcHB7799luGDRv2j58xcOBAoqOj2bdvH7q6ukr3xo4dy7Vr1zh48CBGRkb/+Fkfioz0dHauXseZw0dJTkzExq4KPUcMo3qDegXWi3zylGN7g3hw6zaP790jIz0Dv51bsCpTRqVseloah7bt5MyRo0S/fIWRsTH21V3oPnQI5StXKvA56enprF2+gqMHD5GYmEgVOzuG+XhTv1HDQvv25vVrFs9fwKVz55FmZVG7bl1G+06gbPlySuVa1Gugtr7n6FH0HzJY6dql8xfYuHYdj+7f5927d5S3saFb71607dhBbRuJiYn4+a/geOhpUlPTqObiiO/4kTg5Vi1UP8DDR0+YN38xYdduoKOjg2vTRvhOGIWFuZmiTGTkSzp26au2/qxffqZdGzela0f/OEHg5u08evwUbW0d7O3t6dSnNw2aNVWpn56ezsaVqzh+6DBJiQlUsrNjkJcXdRqqt1k2z5884cDuPdy9eZP7d++RkZ7O+j27sS6r6h8n/wjh/Jkz3A2/SeTz51SvU5s5y5YWwTrqyUhPZ8uq1YQePkJyQiK2dlXo5+VJrQb1C6z34slTjuzZy72bt3h4T6Z5xe4dlFLj02v9/LkZdpXXL1+Snp6OVenSNHNvTZd+fTEwNFTbfkJCAr///jtHjx4lNTWVatVc8J0wAScnxyL16+HDR8ybN5+wq1dlvtCsKb4TfbEwN1cqJ5VKCQjYyI6du4iOjsbWxoavhg6hfbt2Km1u3bqN7dt38PzFC8zMzGjTxoNRI30wMDDIV8e5o8dYM3MWegb6LAjezb41Gzh3NARJYiLlq1Sm6/CvcK5ft8C+XDl5movHQ3l85y4JMbGYl7KiRuNGdBo8AEPjEopySfHx/HnwMNf+PMfLJ0959y6T0jYV8OjZnfpurYpkt7xkpKd/VM0AF4+d4Npf53h06w6vX7ygaq0afOM//721ysaPpRw/cVrmMy5O+E4YjZOjQ5HqP3z0mHnz/Qm7egMdHW1cmzbB13e0is/k5uCho/z483QMDAz46/QfSvfCw28RtP8g4eG3iIh4QOa7d9y9e/dfNU6vW7GS9atWq5TT1dXlj7/OqG0jMTERPz9/jp848VF/m6tXr+FGeDjh4TeJiYnBy3ME3t5eKu0tX76CFStXqe3DsZMnWbl8OYcOHCAxMRE7Ozu8Ro6kYaNGhep8/fo1fvPmcf7cOaRZWdStV48Jvr6UK19eUSbq1SuCg4L488wZnj19iqamJlXs7Phq2DAaNFT/fV44f571a9dy5/ZtpFIpBgYGZGRkkJ6ezv/YO++wqI62D9/0LlVFFERFEbBSbIAF7L33GhV7iTGJKRo19t7F3jUoEXsFBY2xiyJi74qAiPSqy/fHwsK6u6Cx4fvNfV1eyc6Z8jtznjPszjPzjL29PUOHDaPOe+qbP28eZ8+eJTs7G1dXV34YP54y+fTlsicggM1bthD5/DklS5akR48edO8h/3fwxIkT+Pv7c+/uXRISEjA1NaVq1aoMGToUOzs7Wb7MzEyWLFlCwO7dpKWloaamRomSJfluwAC6dO36RTW/y7ChQzl//jxdu3VjwoQJctd27dzJxYsXCQ8PJyoqig4dOjBr1qwC6xMIBAKBQCAQfGlEiLlvCeEgEgj+A7q6umzatAmAlJQU7ty5g5+fHzt37mT69Om0a9cOgGXLllGsWLGvKZVly5ahr6+v4CDy8/PDysrqk7QxZcoU2rVrx9q1axk+fLgs/dSpUxw9epTly5cXKecQwKrps7hwMoTmXTtjaV2GU4eOMHf8z/y2dCH21aupLHc3/AZH/XdT2rYsVmXL8vjuPZV5V0yZzpV/ztCobWtsu1Xkdewrju/ewx9DRjBry3qKW1qqLDtz8lRCgoLo0rMHpa2tOXLgAD+PGcuiVSupVqOGynKpqamMHTqMlOQUeg3oj6amJru272D0kCGs27YVYxMTufyutWsrOHkq2ss7cc6EnOK38T/iVLUq/X0Go6amxsnAQGb8MZmE+HhGDx0ml18ikTBq7C/cuXuPfn26Y2JszE7/vQweOpZtm1dT1kZxAik/0dExDPQZjZGhASOHDyYtLY3NW/24e+8BWzf5oqWlJZe/eTNvPOrJT+BVq+ok93mH327mzFuCp0cdRo/0IVtNl4CAAP74YTy/z5qJe6OGcvkXTJ3GPydO0L57N6ysrQk8eJBJ349j1orlVKlRXaX2m9fD2bdzFzblbLG2LcuDO3dV5j24ezf3bt2mkoMDiYkJBfbJ+7Bk2nTOngimdbeuWFmX4cTBw0wbN56py5fgWF215tvh4Rzc5U8ZW1vKlC3Lw7uqNd+9eROHGtXwat0SLW1tHt65w+4t27h28RLTVy5HXV1+Y7JEIsHHx4fbt2/Tt09vTExM2LnLn8E+Q9i2bQtlbWwKvKfo6GgGDhqMkaEhI0eOIC01lc1btnL33n22btkkZwvLlq9gw4aNdOzQAScnR4KDQ/j1199RU1OjebNmsnyLFy9h46bNNG7sTY+e3Xnw4CF+fn48uP+AFSuWKdWRnprG376r0dHTBWDDzLlcCT6Fd5eOlCxTmn8PH2PJT7/yw+J5VKym2rG/Zd5CjM3NqdO0MWYlS/D8/kNOBuzl+rkLTFy3Em0dHQDu37hJwJoNVK1Ti1Z9e6GhocHlkNOsnjKdyMdPaPddP5VtqOJzawYI3rufx7fvYlvZnuTExA/WCDnjx5ifcsaPHpiYGLPTP4DBQ0axbcs6ytpYF1g+OjqGgYNHSsePET6kpaaxeesO7t6/z9ZNaxTGD5COm4uWrFDpIPznzFkC9hygYsUKlC5txeMnT4GiNU7nMm7Cz3LO2nffyVwkEgmjRo/hzp279Ovb57O+m8tXrMTCwpzK9vb8e/ZsgfUC/PrrBPT1pPegraOLhoYGUydP5kRgIN179sTaxoaD+/fz/ejRrFi1iho1a6qsKzU1leFDhpCcnEz/775DU1OTHdu2MdTHh63bt8v6+lRICJs3bqRBw4a0bN2at2/ecOjgQUYNH87vf/xBm7Zt5erdv28f06dOpVbt2gwbOZKD+/Zx69YtatSsSYf27QkICGD0qFGsWr2amoXo8xk8mOTkZL4bOBBNTU22b9vG4EGD2PHXX5jkswV/f39mTJ+Ot7c3vXv3JvTKFebMmUN6ejr9BwyQ5bt39y7FjIzo2bMnJiYmxL56xb69e+nbpw8bN26kkr3U0Tpp4kSOHTuGuro6devW5enTpzx//pyZM2eSmJSkcgHR59Ccn6CgIMLCwlT22caNG0lNTcXJyYnY2FiV+QQCgUAgEAgEAsH7IRxEAsF/QF1dnRr5Jn/c3d3p2bMnPj4+/Pbbbzg7O2NtbY2jo+PXE1kINQqYvPpQypcvz5AhQ/D19aVNmzZYW1uTkZHBn3/+ibe3N40bN/5kbX0K7kfc5GzgCXqOGEqrnt0B8GjelAl9BrBjxSomr1qusqyLpzu1GjZAz0Cfg9v/Uukginv5koshp2jVoxs9R+Y5UOyrV2PG6O+5FHyaFt27KC0bFhbGiWPHGDZmNN379AagWauWDOjWA98lS1mxfp1KfXt2+fPsyVN8N23EwUlqf7Xd6zGgWw/8tm3HZ8RwufzWNjY0bdlCZX0Au3fuwtzCgoW+K2Q7xNp07EDfzl05cuCAgoMoMCiEa2HhzJk1mSbeDQFo0qQR7Tv1xnf1BmZOm1hge+s2bCM9LZ3tW1ZTyrIkAE6OlRk2cjz79h+hU8c2cvkd7CvSqmXTAuv8a+dunBwrs3jBTNTU1NAvVorOnTvj4elJ4MFDcg6i2zduEHL8OANHjaRz714ANG7ZgqE9e7F+2TIWrFVc4Z5LHU8PdgUeQ9/AAP+t2wp0EP04+Q/MixdHXV2doT16Fai/MO7ciOCf40H0Gzmc9r16AtCwRXPG9OrL5mUrmbXGV2VZNw8Pth47gp6BPnu2bS/QQTRz1UqFNMvSpdm4dDl3IyKwr1JF7trZEycJDQ1l8eLF1PeU7tRq0rQJ7dt3xNd3FTNnTC/wvtat30B6ehrbt22lVCmpQ9WpihPDho1g3779dOrUEZCuZt+yZSvdunZhwoSfAejQoT0DB/mwaNESmjRujIaGBi9fxrJ12zZatWrJtD+nytopa2PD7DlzCQk5RYMG9RV0HNy8FV19fexr1uDKqdNcDDpJ52E+NOshXWVft1lT/ug/iL9XrmHCyiUq72fo1EnY16whl2ZjX5ENM+Zw/ngQnq2lTgAr27JM374J8xz7B2jYoS0Lvv+JI9v/onmPrugUsNvpXR5G3PrsmgEG/jYBk+IWqKur80e/Qe+tLz+BQSe5FnadObP+pElj6W6pJk28aN+xB76r1jFz+uQCy6/bsJn0tDS2b11LqRwnvJOTA8NGfM++/Yfo1LGdQpk16zZhoK+Pm6szJ4NPK1zv0rkD/fv1RldXh1mzF/D4ydMiN07n0qCxt9wEvSoCA4O4di2MOXNm0STnb/TneDcBDh7Yh5WVFa9fx+PlXfj3gcbejTHN2S2qb2BEWFgYx48eZdSYMfTu2xeAlq1a0bNrV5YtWcLaDRtU1vX3rl08ffKEDZs34+gkXThQt149enbrxratWxk+ciQALq6u7Dt4EJN8u586du5Mnx49WO3rK+cgioyMZO6sWXTp1o0ffvyRG+HhzJs9W6bPxNCQ9u3b07JVKxYvWsTGnAVFyti5cydPnjxhy9atOOXoc3d3p2uXLmzZsoVRo0YBkJ6ezorly/Hw9GTuvHlSfR07IsnOZs2aNXTs1Em2IMlniOLurA4dOtCieXN27drFb7//Tnh4OMeOHQPg94kT6dWzJxkZGbRs1YqkxETWrllDhw4dMDMz+yKac8nIyGDhggX079+flSsV/94ArFm7llKlSqGmpoaHu+IOYIFAIBAIBAKBQPBhiDOIBIJPhI6ODhMnTiQrK4tdu3YB0hBzU6fmTUKGhoYydOhQPDw8qFGjBu3atWPPnj1K64uLi2PkyJHUqFEDDw8PfH0VJ3jv37/PsGHDcHFxoUaNGvj4+PDkyRPZdfucVaJz5szB3t4ee3t7zp8/L7u2bp38BFZwcDDdu3enevXquLm50adPHyIiIt7r/n18fLCysmLKlCkA+Pr6EhsbKwuvFxUVxfjx46lduzbVqlWjV69ehIeHy9URFBREx44dqVmzJq6urnTs2JGQkJD3av9DOH8yBHUNdRq1y3M0aOvo0KB1K+6G3+BVdIzKsobFiqFnoDyUVn7SU1MBMDaTD7VjaiGdbNHS0VYok8uRI0fQ0NCgTYf2sjQdHR1atmvLjbDrxERFqywbEnSCyo6OsklHgLK2tji7uRJ8PFBpmYz0dDIyMlTWmZqSgpGRkVz4QE1NTYxNTNDR0VXIH3giBHMzU7wb5U20m5ma0LRxI4JDzpCZmamyLYCgk6fw9Kwrcw4B1KntSlkba44FnlRaJi0tjaysLJV1piSnYGZmgpqamizN0NAQXT09uR0QAP+cOIm6hgYt2reXpWnr6NCsTRtuXg/nZbTq/jcyNkb/PXfLFS9ZUuXq/g/l7Mlg1DU0aNo+b/JbW0eHxm1aczs8nNgCNb+fTasiNxRdSlKywrV/TwZjYWFB06Z5DjwzU1OaNmlMcHBI4bYQdAJPT0/ZBDRAndq1KVvWhmP57Dk4OIQ3b97QpWue01VNTY0uXToRHR1NWNh1QOp8ffPmLc2ayTsUm+XsMDqaM2Gan+inzwjctZuuI4airqGB5O1b1DXUqd+2lSyPlo42Hq2ac/9GBHEFjB/vOloAnOt7APDiUd7YXdyqlJxzKPd+anjW401mFi8jX6hsQxmXQ059ds0AZiVLfLRNBwYFY25uhrdXg7x6TU1p2tiL4JB/CreZEyF4etaTOYcA6tR2yxk/Tijkf/zkKdu272Tc96PQ0NBQWqe5uRm6uvLjRFEbp2VkZ5OSnEx2dnaB2QKDgjA3N8fby0uW9jneTeCDdytnk01yvnvI7ev2HfOcTjo6OrRp147rYWFER0WprOtEUBCOTk4y5xCAbblyuLq5EXQ8L5Rg+QoV5JxDIA1tV8/dnZjoaFJSUmTpAf7+SCQShgwdCsBRFfrat2tHWFgYUQXoCwoMxMnJSeZoAShXrhxutWpxPJ++SxcvEh8fT9cu8gtLunbtSlpaGqdPKzo282NmZoauri5JSUkABAYGyv4e5o5/uZoTEhLIyMggODj4i2vetHEjEomEPjmOQGVYWVnJ/S0XCAQCgUAgEBQ91LKzi+w/gSLCQSQQfELs7OwoWbIkoaGhSq9HRkbi7OzM9OnTWblyJU2bNuX3338nICBAIe/EiROxtrZm6dKltGnThoULF7Jjxw7Z9adPn9K9e3cSEhKYNWsW8+bNIy4ujv79+8smdvz8/ADpGUF+fn74+fnJ/aDPz6FDhxg6dCjm5ubMnz+fefPm4ezsTHQBE8v50dbWZurUqZw+fZoVK1awdu1axowZg6WlJQkJCfTs2ZNbt24xceJEli5dip6eHv369ePVq1cAPHnyhDFjxlCxYkWWLVvGwoULadGiBQkJHx96610e37mLpbW1wkR+BUfpuQsFhY17X0qULo1ZieIc+msnV/75l1cxMdyPuMn6uQsoblWKuo29VJa9efMmZWxsMDCUP98jdzLx7p07SstJJBIe3LuHvaODwjUHJyeeP3tGar5JLoAjBw7QzLMBTd096dulG8ePHFEoW8PFmYcPHrBupS/Pnj7l+bNnbFq7jts3b9Kjbx+F/Ldu36Vy5UoKE8VOTpVJT0/n8ZNnKu89JuYlcXGvcXRQPGukilNlbt9RfDar1m6iXv0W1HZvSq++Qzh77qJCHheXGvx79gI7/HYTGfmC+/fvM2XKFFKTk2nfXf6shft37lDa2hoDQ3n7qJTT//dV9P/X5OGdO1gpsemKObbwsICdTB/K2zdvSIyPJ+5lLFfPX2DbqjXo6etTUcmOyYd37uLo6KhoC1WcpLbw+IlCmVxiYmKIi4vD0UHRnqs4OXH79m3Z51u3b6Onp0f5cuXeyVcl5/otADKzpGOj7juOTV1d6eebN28qtOW3dAX2NatTta40jKFEkk3JMmXQe6evy+Wc2/L03n2V96SMhFdxABiaFB6ONDHutTSvsfEHtfHk7r2vpvlDuXX7LpXtlY0fjjnjx1OVZfPGD8UzdKo4OXL7tuJ7MG/+Etxca+LpUfeDdBa1cTqX7u060LKhFy3qN2TaxEnE5fyNfZdbt25TubL9Z383/wtt2rTDs35D3D3qM378eK5du4a1jQ2G7/S1U86OxTsF9PW9u3dxUKLT0cmJZ8+eyTl+lPHq1St0dXVlYwTAhQsXKGtry5kzZ2jdogV+O3aQnZ3N1s2bkUjyYq3n6lPVHxKJhLt37yrdbV7FyYlnT5/K9N3KqcPxne9wuePr7Vu3FOpISkridVwcd+/eZeqUKSQnJ8vOU7p96xaGhoZoaGjIhQN0yrcL9KaSBUKfU/OLFy/YuHEjY8aMketvgUAgEAgEAoFA8HkRIeYEgk9MqVKlVMZEb9Uqb/V2dnY2bm5uREdH4+fnR4cOHeTy1qlTh59/loZK8vT05NWrV6xcuZJu3bqhrq7OsmXLMDY2ZsOGDejk7IBwdnbG29ubXbt20atXL1kYuVKlShUYUi47O5vZs2fj7u7O8uV54dUaNGigsowyatWqRceOHVm8eDFOTk706SN1HmzatInExER27dqFubk5AHXr1qVZs2asW7eOn376iYiICLKyspg4caJsEsjT0/OD2n9f4l+9wjRHR35MctJef4KY9pqamoydPpXlk/9k/s+/ytLL2Vdisu8yDIyMVJZ9+fIl5haK+swtLAB49fKl0nKJiYlkZmbK8uXHLCct9mUsNjmTxFWqVaNRk8aUsrIi9uVLAnb5M+33SaQkJ9O+c2dZ2b6DBvIiMpIt6zewed16QDqhPnX2LDwaKtpIbOwrnGsqnnljkXNPL1/GUtGuvPJ7j30ll/fd8gkJ0nvU1tZGTV2dunXcaNTQgxLFi/P8eSRbtu9i5JifWTR/utyE78/jRxMfn8CceUuYM08aTsvU1JSZy5fiUFX+/JW42FeYKWnfzFzah3Evi96ZB3EqbNo05z7iPuE5Dfdu3WLC4KGyz6VtbPh17iyMjBWdBa9fvaK4kgPeLXLs8eXLl1SsaKdwHeBljmYLJfZsYWFBQkKCzBZiX8Zibm6msKo8rx1pXbZlbQG4eu0qbm6usny5Tv2YGPl3K+zsOSIuXmbShtV5idnZGCvp69y0+FjlE/KqOLLdD3UNdVyUhLbLT0piIqcPHKJitaqYKLHPgkh4FfdVNP8X3m/8qKC07IeMHwCn//mXc+cu8NeOjR+ss6iN00bFitGhaxecqlVFW0ubsKtXCdi5i5s3brB68yYFR1ZsbCzOzopn43zqd/NDKFasGN26daV6tWpoaWsReuUqO3ftQk1NjSpVFc/JMs+nVRmJOTqU9bWFrK9fqjwj8enTpwSfPIlXTohKWfqTJ2hoaDBtyhR69+3Lwf37ycrKYsO6dbx9+5bffvkFgOKF6MvtJ6X9WLy4rKyBgQGxsbFoaGgohHzT0tLC2NhYaRv9+vbl0aNHAOjr6zNo0CDa5+yMjY2NxcTEhKSkJK5fvy4L1VY8n5YYJXV+Ts0LFyzA3t6eZs2bK9QtEAgEAoFAIBAIPh/CQSQQfGKys7NVhr5ISEhg6dKlBAUFER0dzdu3bwGUnhfQpEkTuc/NmjVj7969REVFYWVlxZkzZ2jZsiUaGhq8efMGkE6uODo6KoRuK4wHDx4QFRUlc0h9DD4+PuzevZsBAwbIJlTOnDlD7dq1MTY2lmlVV1fHzc2N69eloZ/s7e3R0NBg/PjxdO3aFTc3N4wKcKJ8DJkZmWgqOag8dzIr833C+LwHBkZG2FS0o1ajhthVcST62XP2bdnGkt8nM2HRPIXQZrmkp6djplVciT5pflVhhjLTpenKDmHPvbf8ZZevXyuXp2W7tgzu3Zc1y1fSonVrdHJW8GppaWFtY0MDby/qN2qERCJhf0AA0yb9wfzlS7Gs5yFXT0ZGJtpKNOgo0fAuGRnSHR7Kyue/B21tbUpZlmTF0rlyeVq1bEqnrv1YsGiFnINIV1cH27I2lCxRHE/PuryRaLNx40b+/PkX5q1aiZV13sH3GRkZaGkpTmxq6xSu/2uRmZGBlrZin2nJbLrgcFEfgnW5ckxevJD09HRuX7/OtYuXSEtNU6lL2SSxTiG2DJCRY8/Kyue+O7m2oOqZ6eQ+s5y6HBwqU7VKFTZu3EyJ4iVwc3PlwcOHzJgxC01NTTk9mZmZ+C1dSf12rbGyLStLzwal40du/2d9gH2cPx7EPwcP06xHN0pal1GZTyKRsPbPmaQlp9Bj7Mj3rj+XrIyML675vyJ9pkrGj/d4/3KvKSuf//3V1tYmKyuLeQuW0KlTeyqUL6eQvzCK2jjduUd3uXwNvL2o7OTItN8nscf/b3r17yd3PeMLvZsfQs+ePeQ+N/b2xtnFhfHjx8t2G8trLdgm8uyhYJ3KSE9L49eff0ZHR4cROWfq5JKWloZEImHEqFH07d+fo4cPU97ODrKz8duxgzGjRmFoaFhoG7npWsr0vXNvGenpSm0GpKHhlLXxx+TJpKSk8PzZM/bt20dGRgZv375FXV2djIwMSpUqxevXr5kyeTKTJ0+mbNmynDiZF8Y1Iz39i2m+ePEiQUFBbN6yRWl+gUAgEAgEAsG3hqTwLIIig3AQCQSfmKioKGxtbZVemzBhAqGhoYwYMQI7OzsMDQ3ZsWMHhw8fVsj77orL/Kt6pYc9v2bTpk1sUnL4saof5KqIj48HoESJEh9UThm5befX8Pr1a65evao0vJ2NjQ0gjV/v6+vLqlWrGDlyJOrq6nh4eDBp0qQPPr+gMLR1tHmj5Lya3NB8qhw3H0JqcjJTh4+iVc/utOrRTZZevrI900aO5dShIzTuoHhYOkh352RlKU7oZ2ZKJ1N0VOjTzjkjQ9lZPLn3pqosSJ9Zx65dmD9zFrdv3aJazq6zxXPmEhEezpqtW2ThiBo1aUzfLl1ZOHM21dZLw8GlJb3C1NQEHR1tMpVoyHgPDbmTwMrKv889GBsXo22bFmzYtJ3o6BhKlpTa9I8TJqOpocHihTMB0C9WCm9vbxo3acIm31X8Mn1aPg06yvs/o/D2vxbaOjpkZSr2WZbMpj9sorYg9A0MqF7LDYDa9T05dfQYM3+awB+LF2KTb6K9mIkJ2jo6Ss8yySjElgF0cuxZWflcJ25ueVXPLNfhqJPv/Jh58+bw84RfmDxFej6choYGvXv15PKVKzx69FiWb+PGjSQnJNLuO/mJdTVQOn7k9r/We9rHnWvX2TR7Pk61XOkw+LsC8+5YtIzw8xf57refsVaxe6YgtHR0vrjmwniTlUVKYhIv1aUOjrTk3PFDh0wltpzxHu9f7jVl5d99f7du8yM+PoFhQwb+J/1FbZxWRpPmzVm+YBHn/jlD89at0EjPDbGoldPPn//d/FjatGnDzz//zOvXrxWuFfY3Jc8ePkzn27dv+f3XX3n44AGLliyheHF5R6COjg5paWk0zT27R1eXrMxMWrVuzdl//+XmzZu4ubkV2he56VnK9L1zbzq6uirP2cvIyFDaRvXqeTvxmjVvTqecM5K+HzdOml9NjYWLFjHx99/57jvp+6yvn3ceXf7//5ya37x5w9w5c2jVqpXKMMiFkZpz7uOnIi0tTe6/n5Lcfv3UmuHz6f4WNcPn0/0tagZhH+8i7EMeYR/yCPvI41vUDJ/fpgWC/zWEg0gg+ITcvXuX6OhohXBxgOzA3wkTJshCrwFs375daV1xcXFyn3PD1uVOVBgbG9OgQQN69uypUFZVuBRV5O5giolRfVD5x2BsbIynpydjxoxRuJZ/ZW/9+vWpX78+ycnJnDp1ipkzZ/LLL78odYJ9DCbm5kpDbsXnrFA2VRI65UO5EHyKhLjXuHi4y6U71KyBnoEBd8Kuq3QQFS9enOcvFA+hf5Wj2by44qp1kO4g09bWluXLT+79WhQv+N5KlCwJQFJCIiCdxDy4dx89+vaRO6tCU1OTCnYVOXXyJB4eeTuIDu7dgYWFObFKQlblphUvQEPxnJBNqsobGxcrdFW6ZY5TKCExiZIlS/DsWST/nr3AxF/Hy+UzMTHBqXp1blwLk0s3szAnNkYxtE7cK2kfmhXSh18DM3NzXikJffc6px/NPoFNq6JOwwYw5U8mjx4rl75q9y5Mzc2Vhj56dzxTRm6oI2UhO2NjYzE2NpbZgkVxCy5euqSwgzOvnbz7L1GiBBvWr+Pxkye8in2FjY01FhYWNGnanLJlpQ7rpKQkVq5ciWe7NqSlpJKWIv3RkpGWBmpqxEVHk/j6NcXyHWqfkDN+vE/4t6f37rP8l4lYlbdl6NQ/0NDUUJl334bNBO/ZR8chg6jbrInKfAVhbG5GvBL7+Fya34f74TeYN0b+nTy4b9cXGT+SkpNZu34TXTt3ICUlRXZmSmpqGtnZ2URGvkBXVxczM1OFemRtFaFxuiAMjYwIu3qVjs1bytIOHtiHhYWFyncLPt27+SnQ09NTupvlVSFai+XoUNbXsbK+Viw7Y9o0/jl9minTpuFaq5bCdYvixXn65AlmOSEaLSwsiImJwTRnYU/u2YkvC9GX209K+zFn3Mwta2Fhwdu3b4mLi5NbQJSVlUVCQkKBzwukdufm5sbhw4f5ftw4mWYXFxf2HzggPfsqNZWYly8Zm/NdzaZsWYV6PofmAwcO8OjRI3777TciIyPl6kxNSSEyMhJTU1P09PRU3p+y8+M+Bbkh+j4lLi4uwOfTDJ9e97eoGT6/7m9RMwj7yEXYh3KEfUgR9qHIt6gZPp9NCwT/awgHkUDwicjIyODPP/9EW1ubLl26KFzPzMxEIpHI7axJTk7mxIkTSus7fvy4XJi5o0ePUqJECSwtLQHpGT65BwXnj43/LlpaWoWGxCpfvjyWlpbs3r2bli1bFpj3v1CvXj327dtHhQoV3mvFhaGhIS1btiQsLIwDBw58cj1lK9oRERpKakoK+vmcafdv3JRd/1gScg6Tl0jeyqVnZ2cjkbyVhRdURuXKlTl//jwpycly50ZEhN8AoGKlSkrLqaurU86uArcjFL9gRYTfwKp0abn7VUbk8+cAGJuaANIzHN6+fSt38HYuBkZSbatWrUJbW5v0lFeYm5thX8mO0NAwJBKJnFMpPPwmurq6lLVRHZaqRInimJqaEHFT8VDv8Bu3sH+PZ/PsuXSCyTTnHl7lPIu3EsU+f/PmDZJ3nkX5ihW5dvkKKckpGBjm9dftG9L+r6Ci/78mthUrcv2Kok3fuSE9ZLxcpYqfre2srCyys7Nx9ahH63xjn4mZGbYV7Yi4Hq5gP+HXb0htIccho4wSJUpgampKhJIfDOE3bmCf7znYV6pEQMAeHjx8SIXyeedb5YbbtK9kr1BHWRsbyubsYLz/4AGxsbG0bdMGkE7wpqamcnSHH0d3+CmUjXkeycaZcxk9Z4Ys7UGE9MD1wnb4xDyPZPH4XzAyNWHMnBno6que9Dy5ey/7N2ymcZeOtOjVXWW+wrC2q8Dt0KukpaSgl88+Pofm96WMXQW+XzCbaqZSh256anze+HFVyfhxI8dmbKxVVZlv/LilcC38RgT2Oe9BUmISqalpbNy8nY2bFRdptGrbhYYNPFk4f6bKtorSOK2K7OxsEuLjqeRQmSEjR2KmL63X3Nwce/tKhIZeVeznT/xufizZ2dm8efOGzMxMkpOTZWcUAtzIeb8rFdDXFezslE463AgPp3Tp0goLapYsWsSBffv4/ocfVJ6FU9nBgadPnvAyJobSZcpQsVIlLl+6xLNnz4C8HeCy8cdecfzJ1WdnZ0dERITCtfDwcMqUKSPTl1tHxI0beOQ7nzHixg0kEgmVVLSRn4yMDJKTkwGoZG/PpUuXZH3q4OAgvf+lS2X5ays5P+5zaI6KiuLNmzcMGDBAoc4DBw5w4MAB5i9YQKNGjVTeW67+T0VaWhqPHj3C1ta2QMfUx/CpNcPn1/0tagZhH7kI+1COsA8pwj6UI+zj29QMX0a3oBCyRYi5bwnhIBII/gMSiYSrV68C0u2wd+7cwc/Pj6dPnzJr1izKlFGcADcyMqJq1aqsWbMGMzMzNDU1Wb16NYaGhgq7hQDOnTvH7NmzcXd358yZM+zdu5dJkybJJnJGjx5N586dGThwIF27dpWtBr5w4QKurq60bt0akDp/goKCcHV1RU9Pj3LlyslNsACoqanx888/M27cOEaNGkW7du3Q1tbm6tWrVK1atcAf5e9D//792b9/P71796Zv375YWVkRFxfHtWvXKFmyJP379+evv/7i6tWreHp6Urx4cZ7lxMx3d3cvvIEPpFajBhzc4cfJvftp1VM66ZqVmUnIocNUcHTAPGcHSmxUNJkZ6VgpWUVbGKVyzuY4G3iCTgPzJj0u/3OGjLR0bAuYsG/evDnr169nf8AeuvfpDUgdjIf3H8CxShVKWEpXj0dHRZGenk7ZfCENG3p5sWrZcm5FRFDZ0RGAJ48eE3rpEt1695Lli3/9GhNT+dXxqSkp+O/4C2MTE+xzvqSZmJpiaGTE6ZPBfDd0iMzBmZqayqXz57GxtaVhw4bStETpavrGXg0IDAoh6OQpmnhLr72Oj+d4UDD1PevKrSx/+kw60WldprQszdurPgcOHCUqKgZLS+mzOH/hMo+fPKVXz7xD2eNex2P2zgRpTMxL9u4/TMWKFWS7CaytS6Ours6x4yfp3LGtbIdJVFQUN65dw6l6Nbk6PLy8+Hvbdg7v2UPnnD7LzMzk+P6D2Ds5UTxn9X5MVBQZ6elYqwgp+SWp59WQvdt3cGzPXtr3ku4qzMrM5MTBQ1RycsQiR/PLqCgy0jMoY/vhNp2SlISOnh6amvJfHQL37Qegdv36stBzeboacfZkMMeOHaO+p/Rdfv06nuOBgdSv7ylvC0+lk6vW+c618fb24sCBA0RFRcmc4+fPX+Dx4yf06pW3e7JhwwbMm7+AXTt3MWGC9Cy17Oxsdvn/TYkSJaj+zjPOj0QiYfGiJejq6tK5cydAOoG+fPlybsTLr5IP8g/g3vVw3r55Q/F8oS+zMjP599BRyjlWxixn/HgVHU1megal8k20J7yKY9EPP6OmrsbYebMwUnL+XC4Xg06yY8lyajfxpuvIYSrzvQ8uDetz7K9dnNp3kGY9un42zR+CgZERjq4u1CspdfikJkl3HzT2bkRgUDBBJ0Jo0lj6t+d1fDzHA09S39P9PcaPhhw4cJioqGgsc8bK8xcu5Ywf0nCfpmamLJiX59zLZcdf/oRdD2fm9MlYFLKrqiiN06ry7vH/m8SEBPp8NwDX2rWwNDLOqSOJxt7eBAYGEXTiBE0aN5b282d4Nz+EuNevMXvnHrZv3056zu6hPbt307tvX0Da1/v37cOpShVK5rQf9eIF6enp2JbLC3Xp5e3N8qVLuRkRgUNOXz9+9IjLly7Rq3dvuba2bN7Mti1b6P/dd3RXsjs7lyZNmnD86FH27d3LsBEj8PL2ZtuWLWzbsoVixsZUqVKFzMxM9u3dS5WqVWX98yJHX7l8+ho3bsySJUuIuHEDx5zwao8ePeLixYtyu83d3NwwNjZml7+/nLNll78/urq6eOZLe3fHDkBkZCQXLlyQTcA0btyYLZs3s3v3bvrm69M9AQFoaWlha2tL7dq1v4jmZs2aKXWi/TBuHB4eHnTo2JEqVaqofB7w+cK96Onpfba6P2eIms+l+1vUDMI+3kXYhzzCPuQR9iGPsI88vkXN8Hl1CwT/SwgHkUDwH0hPT6dbN+lEk76+PmXKlKFu3bosW7aMChVUr8SeP38+kyZNYsKECZiYmNCnTx9SU1NZv369Qt6pU6fi5+fHjh07MDAwYMyYMfTqlTdxVLZsWXbt2sWiRYuYMmUKqampFC9eHDc3N7kf2pMmTWLGjBkMHjyY9PR0Nm/erHRVaMuWLdHV1cXX15dxOfHpHR0d5XYx/VdMTU3x8/Nj0aJFzJs3j/j4eMzNzalevbqsfnt7e06ePMnMmTOJj4+nePHitGrVSmlYuo/FzsmR2l4N8fNdQ8LreCzLlObU4aPEvohi8C8/yfL5TpvBzdBrbDsTLEtLTU7mqP9uAO5cl64OPvZ3APqGhhgYGtK0szTGv7NHPcqUsyVgw2Zio6Kxc3Ik+tlzjv0dgIm5OQ1bq96pVb16dRo29mb1suW8joujtLU1Rw8cJCoykp8n/ibLN2PSZK5euULIpQuytPZdOnNgz14mjB1Ht9690NTUZOe27ZiamclNPAbs3MU/ISHU8/SkhKUlr2JjObxvP9FRUfw2dYrMEaShoUH33r1Yu9KXYf2/o1mrlkgkEg7u3cfL6Bh+/3Oqgv7G3g2o+pcjk6fO5sGDx5iaGLPTfw8SiYRhPvIrhIcMHwfAoX15uzQG9u9NYGAwPsPG0qN7Z1JT09i89S8q2pWnXZsWsnyLl/jy9Hkktd2cKW5hQeSLKP7evY+0tHR++mGkLJ+ZqQnt2rQgYO9Bhgwfh1cjT7LearJ9+3YyMjLo2q+vnKbKVZzw9PZi44qVJLx+TakyZQg6dIjoFy8Y+/uvsnzzpkzl+pVQDp8/K0tLSU5m385dAESESUPX7du1C0MjIwyMDGmbb4fN9dBQwkOvApDw+jXpaWnsWL8BgCo1a1C1Zk2FvlVFJScn6nk1YuvKVSS8jqdUmdKcPHSEmBcvGPHrhLw+mzqNG6FXCTj7j5zmQ7v8AbgZdl36PHb9jYGRIQaGRrTsInWahF8JZe3CRdRt1Agr6zJkZWVx81oY54JDsHOoTIPmzRR01W3UkBo1avDLL7/Qt28fTE1M2Llrl9QWhg6RyztkqNQJcujgflnawO8GEBgYiI/PUHr07C61hc1bqGhnR7u2bWX5SpYsSa+ePdi0eQtv3rzB0cmJ4JPBhIaGMmP6NLldlnPmziMzI4NK9va8efOGI4ePEH7jBlOnTKZUKelErp6eHo0bN0Y7+qmcxtDTZ9C8pUkNz3qE7N2Plo42JUpb8e+R47yKiqLfzz/I8q6fPps7V8NYcypQlrbox194GfmCZj26ce96OPdyxhCAYqamOLpJQxY8jLjF+hlzMCxWDAeXmpw/HiSno0IVRzkHVWGUd3TApVF9AlavIyk+/rNoBrhzNYw7OSEbk+LjyUhL58CmrQBUql6NSjVUO+pyaezdkKpVnZg8dQYPHj6Sjh+7AqQ28855QUOGSf8+HNrvL0sbOKAPgYEn8Rk6mh7du5CalsbmLdupaFeBdm2l466eri6NGtZXaPtk8GnCb9xUuBb5IoqDB48AyHYnnTlzhnLly7Nq6bKvPk4DdG3dlkZNm1C+QgW0dXS4fvUqJ44dx65SJdp26qjYz429qbq9KpMnT+XBg4ef7d0EOHDgIC+iXpCeJt3NfOVKKGvWrgWgVctWWFmVkv5/q9Y0bdIUu4oV0NHWIfTqVY4ePYaDgwMlLS1ZsWwZr1+/poy1NYcOHOBFZCS/T5oka2fKH39w5fJlzl++LEvr1KULewMC+H7MGHr16YOmpiY7tm7FzMyMnvmcGcEnTrBs8WKsbWywLVeOw4cOyd1Drdq1Mc8JKVe/YUPcatVi04YNxMfHU7FiRczMzHgRGUntOnUICAggICCAFy9eMOmPP2R1TJo4kcuXL3MlNFSW1qVrV3YHBDB69Gj69O2LpqYm23L05Xe26OrqMmz4cGbNnMlPP/5I3bp1CQ0N5dDBg4wYORJjY+M8W+jShVq1alHJ3p5ixYrx5MkT9u7Zw5s3bxg9ejQAVatWpUmTJixauJDA48epUKECFy5c4MWLF+jr6zNt+nTU1dW/iOZy5crJOaDyY1W6tMIipZCQEO7euQNId7Devn2bFStWAODl5UXlypWV1iUQCAQCgUAgEAiUIxxEAsEHMmrUKEaNGvVeed8NH1e2bFml5+nkr6927drcvi0Nr5W7M0MVtra2LFq0qMA8rq6u7N69WyE9t438eHl54eXlVWB9hVGmTBmldRcvXpzp06erLFezZk1WrVr1UW1/CEN//wX/kiU5c/QYKUlJWFeowPi5M3GoUb3AcilJSfivkXfoHdqxEwALy5IyB5GmlhaTViwlYONmrv57jrOBQejq6+Na34OuQwYXugr/1ymTWV9qFccOHSY5KYnydnbMWrSA6s7OBZbTNzBg0aqVLFuwkC3r1iPJzqaGizMjx30vt7q8SvXqhIdd58CevSQmJKCrp4eDkyM/T/odZzf5XSB9Bn6HZWkr/t7hx8Y1a8nKzKRCxYpMnT2LBt6K9qKhocGyRbNZuGQlf/n9TXpGJk6O9kz5YwK2tqrDFuViaVmCtasWM3/RCpYsW42Wliae7nUYN3a43Kr2OnXcePb3Pvx27SEpMQlDI0Oca1Zn0MA+OFSWDzn064TvqVSpAnv2HmLp8jWAGlWrVmXsxN+VOmLG/zGJzZarCTp8hOSkJMrZVWDKgnmFOm2SE5PYvGq1XNru7TsAKFHKUs5BdO3SZbatXSeXN7dsr0EDP8hBBDBm0u9sX72WkCNHSU5KomyFCvw2bw5ONWsUWC4lKYntq9fKpe3d8RcAxS0tZQ4imwoVqOLszIXTp6VnG2VnU7JMabp+15/2vXrKTVbnoqGhwerVq5kzZw5//fUX6ekZODk5MmXKZGzfY+eVpaUla9esZv78hSxZsgwtLS08PTwYN26swhkno0ePwqhYMf7+ezf79h/Axsaa6dP+pEUL+TBRle3t2bZ9B4cOH0FdXR0nJydW+a7Ezc21UD25DPx1AntKbuDc0UBSkpMoU748I2dPK9QB8uzefQClYesq1agmc7ZEPn7Mm6wskuLj2ThrnkLe/r/8+EEOoi+hGeDWlVD2b9wil2fvuo0AtOnf570cRBoaGixbPJeFi1fw11/+pGdk4ORYmSmTf3vP8aMka1cvZf7CZSxZ5isdPzzqMW7syP98Lk7k80hW+Mq/I4sXLwageIkSRWKcbtyiOTfCwjh14iSZGRmULFWKHn370Oe7Aejq6ipo0NDQYNnSxSxctPizv5t79u7l8uUrss8XL13i4qVLANSsUUPmIGrRogXXroURdOIEGRkZlCpVikGDBjF06FBSMjJYtXIlhw8eJCkpCbuKFVmwaBE1C+lrAwMDVqxezaL589mwdi3Z2dk4u7gw9ocfMM3X13fv3gXg6ZMnTJ44UaGeFatWyRxEampqzJk/H98VKwg8doyD+/djbW1NZQcHbt+6xbRp07C3t2fR4sWFxqk3MDBgzZo1zJ83j3Vr1yKRSHBxdeWHH36QnWmUS9euXdHU1GTrli2EhIRQ0tKSH8aPVziLsnOXLvxz+jT//vsvqampmJqaUqdOHb4bOJCKFfN2L0/980+ePXtGREQE4eHhaGho4OrqyqQ//lC6E/5zav4QTgQFsX9/nrMyIiJCFvLO0tJSOIgEAoFAIBAIigQixNy3hFp2dnb21xYhEAgEn4tLsYqHiBdlXC2kE2VRSQlfWcn7IwtblPjt9LV+MWk/P4hXDO9YlClvIp18i4h7+ZWVvD+OZtKDyFNTkr6ykvdH38AIgFPv7CAq6tTPCdf2Lemu/06IuW8BfSOpTX9L4zQgF2LuWyH3XYzPOTvnW8AkJ4xvSmrqV1by/hjkhF75ljRDnu5PTWpqKjdv3sTBweGbCkvzLeoWmr8c36JuofnL8S3qFpq/DN+iZvh2df8vkRaneGZlUUHPzPFrSyhyiB1EAoGgUN6+fUtBvuR3zyQRCAQCgUAgEAgEAoFAIBAIBAJB0UbM6goEgkLp378/Fy5cUHk9KCiowHAkAoFAIBAIBAKBQCAQCAQCgeD/AdkixNy3hHAQCQSCQpkyZQopKSkqr5coUeILqhEIBAKBQCAQCAQCgUAgEAgEAsHHIhxEAoGgUMqXL/+1JQgEAoFAIBAIBAKBQCAQCAQCgeATIhxEAoFAIBAIBAKBQCAQCAQCgUAgEAg+ASLE3LeE+tcWIBAIBAKBQCAQCAQCgUAgEAgEAoFAIPiyCAeRQCAQCAQCgUAgEAgEAoFAIBAIBALB/zNEiDmBQCAQCAQCgUAgEAgEAoFAIBAIBB9Ptggx9y2hlp2dnf21RQgEAoFAIBAIBAKBQCAQCAQCgUAg+LZJi736tSWoRM+ixteWUOQQIeYEAoFAIBAIBAKBQCAQCAQCgUAgEAj+nyFCzAkEgv9p0l5e+toSPgi94q4ApCa++MpK3h/9YqUAiEpK+MpK3h9LI2MA0l7f+8pKPgw9UzsA0uIivrKS90fPzBGAlNTUr6zk/THQ1wcgNSrkKyv5MPQtGwDflu5czd/i+PEtjdOQN1Z/k+9i8uuvrOT90Tc0BSA1JekrK3l/9A2MgG9LM+TpHu+t95WVvD/zgtI+W92pqancvHkTBwcH9HPenaKO0Pzl+BZ1C81fjm9Rt9D8ZfgWNcO3q/t/CxFi7ltC7CASCAQCgUAgEAgEAoFAIBAIBAKBQCD4f4ZwEAkEAoFAIBAIBAKBQCAQCAQCgUAgEPw/Q4SYEwgEAoFAIBAIBAKBQCAQCAQCgUDw8WSLEHPfEmIHkUAgEAgEAoFAIBAIBAKBQCAQCAQCwf8zhINIIBAIBAKBQCAQCAQCgUAgEAgEAoHg/xkixJxA8JEsXbqUZcuWAaCmpoaBgQFWVla4ubnRq1cvKlSoIMvr5eVFw4YNmTRp0nvXf/78efr27Yu/vz9Vq1b9JHrd3d1xdnaWS7e3t+enn35i4MCBH91GbjvLli3D1dWVbdu2yV2bPn06QUFBnDhx4pO09TEkJqWwaMUOTp6+RFp6JlUcyvPDyF442JcrtOz1iPvsO3SK8Ih73L3/lDdv33L1n20K+fYeCuGPGatV1jN90nBaNXVXeT0pKYlFS1ZxIvg06ekZVHGqzLixw3GoXOm97vHBw8fMX7CM0GvX0dLSwtO9DuO+H4GZqYksT2TkC1q166G0/MzpE2ne1Fv2edLkmew/eFQhn7WNDR4NG3Ds0GGSkpKoYGfHwGFDcatTu1CNL2NiWLZgIZfOnUeSnU1NFxdGjvseqzKl5fI1cK2ltLzPyBH06t9PLu3S+QtsWb+Bh/fu8fbtW8rY2NCxW1eatWpZqJ7CSExKZtGy9ZwMOUtaegZVHCvxw+hBOFS2K7Ts9Ru32XcwkPAbt7l775HUbs4d/GhN8vpSWLR8EydDzufoq8gPo/vjYF+h0LLXb9xh36GThN+4w917j6X6zgYo5EtPz2DW/DVcj7hDdPQr3kokWJe2pF1rL9q3acyaDbs4eCSYxKRU7O3tGTpsGHXq1Cm0/ZiYGObPm8fZs2fJzs7G1dWVH8aPp0yZMgp59wQEsHnLFiKfP6dkyZL06NGD7j3k7TgoKIhjx44RceMGr169omTJknh6ejLYxwcjIyO5vPPmzePK5cu8ePGCjIwMSpUwoamXK327NUVfX1eh/aSkVBb5/s2J06GkZ2RSpbIt40Z0waFS2QLvUSKRcODoOYJOXeH23ackJKVQupQFzbzc6NutKTo6WnL5d+4J5uKVW4TffEhUzGvaNK/L1F8GFNqXH8KXuhdVZGZmst53VZEYPzasWs3GNWsV8mlra3P833+U1vGtjNOWlpYcOny4UD1f8z0ESElJYc2aNQQFBhITE4OJiQnVqlXhzyl/8OZNFosWL+PEyRDS09Op4uTIuO9H4+BQudD7Anjw8CHz5y8m9Oo1aV971GPcuDGYmZrK8jx8+Ii9+/Zz9twFnj17jr6eHpUr2zN06GCcHB0U6jx3/gLr1m3k3r37vJVIsLW1pWuXzrRu3QrIsY9FSzhx8qRUcxUnxn3//ftrfvCQ+fMXEHr1ao5md8b9ME5OM8Dateu4Hh5OePgN4uLiGOIzmKFDhyjUd+LESfz9/+buvXskJCRgZmZGjRo1GDRwAHZ2dkVSc1DQCY4dO86NiAhevYqlZMmSeHl5M3z48EK16BoY09pnOlU82qKto8+T25fY7zuB53evvte9VG/QifqdR1PCphISyVuiHkYQ7LeAm+ePyOUztypPq8HTsKvZEE0tHZ7fvcqRjVO4f/XUe7UjEAgEAoFA8L+DCDH3LSEcRALBJ0BXV5dNmzYB0kmNO3fu4Ofnx86dO5k+fTrt2rUDYNmyZRQrVuxrSmXZsmXo6+srOIj8/PywsrL65O1dunSJ8+fPU7t24ZN8XxqJRMKon+Zy594T+vVohYmxETsDAhk0ahrb102nrLVlgeX/OXuVgAMnqVTBhtJWJXj89IXSfC7VHZg+cZhC+la/w9y5/4TaLk4Faxz7C3fu3qNfn+6YGBuz038vg4eOZdvm1ZS1UZysy090dAwDfUZjZGjAyOGDSUtLY/NWP+7ee8DWTb5oaclP3jZv5o1HPflnVa2qoj5tbS0m/faj9P/1TKT3s2M7O7dtp0vPHpS2tubIgQP8PGYsi1atpFqNGio1pqamMnboMFKSU+g1oD+amprs2r6D0UOGsG7bVoxNTOTyu9aureDkqWgvPwl7JuQUv43/EaeqVenvMxg1NTVOBgYy44/JJMTHM3qo4vN4XyQSCaPGTebOvYf069UJE5Ni7Pz7IIOGT2D7xsWUtSldYPl//r1EwL5jVLKzpXRpSx4/ef6ftajU98M07tx7RL9e7aV2vfsIg4ZPZPvGeZS1Lvg9/+fsFQL2BVLJriylS5fk8ZNIpfkyMjK5//ApHnVdsCpVAnU1Na5dv828xRvYsmM/sbFx9OzWGrvKLgQEBDB61ChWrV5NzZo1VbadmpqKz+DBJCcn893AgWhqarJ92zYGDxrEjr/+wiSfLfj7+zNj+nS8vb3p3bs3oVeuMGfOHNLT0+k/IM95Mn3aNCyKF6dly5ZYWlpy7949/Pz8+OfMGbZv346ubp7jJ+LGDWrWrEnnzp3R0dEh7FIgG7Yf4fzlm6xb8iPq6nkbryUSCaMmLOXO/Wf0694UE2NDdu4JZvCY+Wxb8xtly5RUeZ/p6Zn8MWsjVR3L07ldfcxMihF24z6+G/Zx4fJNVi/6ATU1NVn+jTuOkpqajlNlW2JfJRT4/P4LX/JeVDFz8lRCgoKKxPiRy7gJP6Onry/7nP/556eojtPq6mqAGvXquGFubsbVsAiePn1KaGhokX4Pk5KSGDxoEDExMXTr1g0bGxuio54TGnqNjIx0xo77kTt37tGvby9MTEzYuetvBg8ZzratGylrY1N4Xw8ahpGhISNHDJX29Zbt3L13n62b18v6OmDPPvbs3Y+3V0O6dulEcnIyf/+9h379B7Fs6ULq1M5zNgaHnGLcDz9TrVoVhgwZhI6uAYcPH2bipD+Ij4+nZ88ejBo9hjt37tKvb58czf4M9hnCtm1b3kNzNAMHDZZqHjmCtNRUNm/ZKtW8ZZOcfSxfsRILC3Mq29vz79mzKuu8e+8eRsWM6NmzOyYmJiQmJvP333/Tp28/Nm7cQEU7uyKnedr06RS3KE7Lli1kNrR161ZCQkKonK2Ghlq20nJqamoMnBGAVYWqBPstJCXxFfXa+jBs/lEWDatH7PP7Bd6Le/thdBi1gIhzhzi0Zgua2rq4NuvNwBkBbPyjO+H/7AXAuHgZRi0NRiJ5S/DOhWSmp+LWrA8+sw+wanwLHlw/U2A7AoFAIBAIBALB10I4iASCT4C6ujo18k1gubu707NnT3x8fPjtt99wdnbG2toaR0fHryeyEGoUMAH3X9HX18fOzo4VK1YUSQfR8ZMXuHb9LnP/HE2TRlJ9Tb3q0K7HD6xc58+sySMLLN+1Q2MG9G6Dro42MxdsVOkgKlO6BGVKl5BLS8/IZMb8Dbg5O2JhbqKyjcCgEK6FhTNn1mSaeDcEoEmTRrTv1Bvf1RuYOW1igRrXbdhGelo627esppSldJLXybEyw0aOZ9/+I3Tq2EYuv4N9RVq1bFpgnQAaGhqyfPrFShEWFkZY6FWGjRlN9z69AWjWqiUDuvXAd8lSVqxfp7KuPbv8efbkKb6bNuLgJH1HarvXY0C3Hvht247PCPnVwdY2NjRt2aJAfbt37sLcwoKFvivQ1tYGoE3HDvTt3JUjBw58lIPo+IkzXLt+k7kzfqGJlwcATb09add1MCvXbmPW1J8KLN+1Y0sG9OmMrq4OM+et/OQOouMnznLt+i3mTv+RJl71cvS5067bCFau+YtZU8cVoq85A3p3yNG3WqWDyNjYiC1rZ8uldenYnIzMTI6f+Bef77oyfHAP9Mwcad++PS1btWLxokVszHGmK2Pnzp08efKELVu34uQknfB2d3ena5cubNmyhVGjRgGQnp7OiuXL8fD0ZO68eQB07NgRSXY2a9asoWOnTjJn/Jy5c3F1dZVrx8HBgUmTJnH40CE6dOwoS1+/YQMABjlOgdb1S1KmdHEWrvAn/OYjqjmVl+UNDL7CtfD7zJkyhCYNXQBo0siV9r0m4rt+PzMnDVJ5n1pammxY/jM1quTt6OrYxpNSlhb4btjH+cs3qeOa9/di7eLxlCpphpqaGvWaj1JZ73/lS96LMsLCwjhx7FiRGT9yadDYW84ZooqiOE6/jo9HIsnm+9FD6NunOwAaOma0bt26yL+Hy5Yu5cWLF2zfsYNKFSsCkJr8mgH94dixQK5du86c2TNo0tgLgCZNvGnfoSu+vmuZOWNqgf2ybv1G0tPS2L51I6VKSReBODk5Mmz4aPbtP0inju0BaN68KUOHDEI/n4OwXds2dOzcnVWr1so5iPz8/LGwsGC173K0tbXRNzSlW7duNG/WjH37D1CiRAmuXQtjzpxZNGncWKq5aRPat++Ir+8qZs6YXojmDaSnp7F929Y8zVWcGDZsBPv27adTp7y+O3hgH1ZWVrx+HY+Xd2OVdQ7xGSz3Wd/AiC5dutCgQX127fKnlptbkdM8d85sBRuqUaMmP//8M4am+pQ1SFFarlr9jpSrUpfNU3oSdkq6G/Za8N/8vCmMpv0msn1G/wLvxaPDMJ7cusT63zrJ0i4c2cREv/u4Nu0lcxB59fgBPUMT5g104eWzuwCcP7ienzZco+3wOSwapnqnuEAgEAgEAoFA8DURZxAJBJ8JHR0dJk6cSFZWFrt27QKkIeamTs2bvAgNDWXo0KF4eHhQo0YN2rVrx549e5TWFxcXx8iRI6lRowYeHh74+voq5Ll//z7Dhg3DxcWFGjVq4OPjw5MnT2TX7e3tAZgzZw729vbY29tz/vx52bV16+Qn4YKDg+nevTvVq1fHzc2NPn36EBER8UH9MHz4cM6dO8eVK1cKzPf8+XNGjx4t0z5w4EBu3779QW19KIHBFzA3M8a7gZsszcy0GE296hD8zxUyM7MKLG9uZoyujvZ/ajvknyukpKbTsoDQcgCBJ0IwNzPFu1H9fBpNaNq4EcEhZ8jMzCywfNDJU3h61pVNOgLUqe1KWRtrjgWeVFomLS2NrKyC7x3g7du3JCdLJ2SOHDmChoYGbTq0l13X0dGhZbu23Ai7TkxUtMp6QoJOUNnRUTa5C1DW1hZnN1eCjwcqLZORnk5GRobKOlNTUjAyMpI5hwA0NTUxNjFBR0cxVNiHEHjyH8zNTPBuWE+WZmZqTFNvT4JPnSvcbsxN0dXV+SgNBev7N0dfXjg3M1Njmnq5E3z6wnvYtclH6XsdnwhAA/e8iTwdHR3at2tHWFgYUVFRKssGBQbi5OQkm5QGKFeuHG61anH8+HFZ2qWLF4mPj6drly5y5bt27UpaWhqnT5+Wpb07oQjQyEs6sfzw4cNC78fK0hyApORUufTAkMuYmxXDu37eTgwzEyOaNnIh+MzVAvtZS0tTzqGSi5dnDamux/J9ZGVp/l67cP4rX/JelFHUxg8Z2dmkJCeTna18Z0IuRXGcfvFC2mft2rWUjdM6Ojp07ty5SL+HSUlJ7Nu3j46dOlG6dGkyMzPl+i8w6CTm5mZ4ezWUpZmZmtK0iTfBIacK7+sTJ/H09JA5LQDq1K5F2bI2HMtnL44OleWcQwAmJsbUrFmdh48eyaWnpKRQrJji3xsTExN0dXQIDArC3Nwc75z7zdPcmODgkMI1B53A09PzHc21FTQDH7UT3NzcHF1dXZKSkoqkZmU21DjHeZWcpTqUZbX6HUiMi+L66T2ytJSEWK6F/E2Veq3R0Cr4e5yOvhHJ8TFyaRmpSWSmJZOVmS5LK1fVnef3rsmcQwBZGWlEnD1ImUrOWJQuPMSrQCAQCAQCwf8M2ZKi+0+ggHAQCQSfETs7O0qWLEloaKjS65GRkTg7OzN9+nRWrlxJ06ZN+f333wkIUDzvY+LEiVhbW7N06VLatGnDwoUL2bFjh+z606dP6d69OwkJCcyaNYt58+YRFxdH//79ZT/k/fz8AOjTpw9+fn74+fnJTQDl59ChQwwdOhRzc3Pmz5/PvHnzcHZ2Jjpa9USdMho1aoSjoyPLly9XmSc5OVnmfJoyZQpz587l9evX9O7dmxcvlO/K+RTcuvuIypVsFcIGVXGsQHp6hsodQZ+Cw8fPoKujLeecUqrx9l0qV66koNHJqTLp6ek8fvJMZdmYmJfExb3G0cFe4VoVp8rcvnNPIX3V2k3Uq9+C2u5N6dV3CGfPXVRad3p6Bh4NW+HZqBW1atXi4MGDWJUpg4GhoVy+3Enbu3fuKK1HIpHw4N497JWc6eDg5MTzZ89ITZFfFXzkwAGaeTagqbsnfbt04/iRIwpla7g48/DBA9at9OXZ06c8f/aMTWvXcfvmTXr07aNUy/ty6/YDKtvbKbGbSlK7+cQ7gj6UW3ceUtm+vBJ9FXP0Kd8R9F/JysridXwiUdGxnAg+x7Xrt9DU0MC+Unm5fE5VqgCodPxKJBLu3r2rdKdlFScnnj19SkqOLdzKqcPxnfHL0dERdXV1bt+6VaDmV7GxAEp3h7x584a4uDiio6M5e/EGK9buxUBflyoO8ueS3br7lMoVbRTfTYdypKdn8vjph42VAK/ipM41E2PDQnJ+Wr72vdy8eZMyNjZFZvzIpXu7DrRs6EWL+g2ZNnESca9eKc1XFMfphMQkAJq36opno1Y08G7DlClTqJizI6eovoehoaFkZGRgbW3Nj+PHU6NGDapVq0b/7wZz+/Ydbt2+TeXK9kr62lHa14+foIqYmBhpXzsqnqFTxcmR27eV25mc5levFMYNFxdn7t9/wPIVq3jy9ClPnjxh+fLlRNy8Sb9+fbl1S4XmKk7vqTkORwdFG6/i5PTRC2mSkpKIe/2a27dv89tvv5GcnELtWrWKtOb8xObYkLa66h/6VnbVeX73qoKj9+mtS2jrGVC8TMUC27h/7TT2bk1xbz8M05I2FLeuRIfRC9E1MOaf3XnfbTW1dMjKSFMon5khXVxQppKzwjWBQCAQCAQCgaAoIELMCQSfmVKlSsl+wL5Lq1atZP+fnZ2Nm5sb0dHR+Pn50aFDB7m8derU4eeffwbA09OTV69esXLlSrp164a6ujrLli3D2NiYDRs2oKMjXf3v7OyMt7c3u3btolevXrIwcqVKlSowpFx2djazZ8/G3d1dzrHToEGD/9IFDBs2jFGjRhEWFka1atUUru/evZvIyEgOHjxIhQrSFZZubm40atSITZs2MWHChP/UbmHEvorHpbriRFFuyLeXsfFUrFBwnP3/QkJiMmfOh9HI0wUDfb2CNca+wrlmdUWNFtJdDS9fxlLRrrzCdYCXsa/k8r5bPiEhkczMTLS1tVFTV6duHTcaNfSgRPHiPH8eyZbtuxg55mcWzZ+Op0ddubL9+nTHoXIlJNkSLlwKJyAgAANDQ968eYOmZt6fFnMLCwBevXypVGNiolRDbr78mOWkxb6MxcbAAIAq1arRqEljSllZEfvyJQG7/Jn2+yRSkpNp37mzrGzfQQN5ERnJlvUb2LxuPSA9K2zq7Fl4NPxvdpxL7Ks4XGoqOlYtLMwAab9XtLP9qDY+hthXr3GpoTi5a2EhPRj8ZWwcFe3KfrL2goLPMWHSAtlnHR1tKlYsi6amhly+4jnP86UKW0hISCAzMxMLJbZgUby4rKyBgQGxsbFoaGhgZmYml09LSwtjY2OVbeSyceNGNDQ0ZKvP8xMREUH/fv1kn21tSrJoxgiMixnI5YuNS8C5uuLEooW5sVTrqwQqVij47BkFXTuOYmigi0ftKh9U7mP52vfy8uVLzJWMU19r/DAqVowOXbvgVK0q2lrahF29SsDOXdy8cYPVmzeBkbFcW0VxnH7z5g2lLEsydvRQJNkS/v33Atu3b5ctWCmq72HurudlS5dSpkwZZs+eTVJSEsuWLcVn6EgyMzNxdlY8P8lCNr7EUrGindL28vpayb2909fKuBJ6lbCwcAYNHCCX7jP4OyIjI1m3fiNr10nDVOrp6TF37mwaNWzIxEl/FKL5ZQGaYwvQbCF7Xqo0F0bffv159OgxIA0LPGjQQNq3b8e8+QuKrOb8rFmzBg0NDUrpparMU8zckgfX/1FIT3wVlXO9FFEPb6gsv3fZDxgUM6fDqAV0GCX9W5cc/5JVP7bkccR5Wb6XT+9Qrqo7OnqGZKQly9LLVZHuNja2+PTnfAoEAoFAIBAIBJ8C4SASCD4z2dnZKkMDJSQksHTpUoKCgoiOjubt27eA8lXtTZo0kfvcrFkz9u7dS1RUFFZWVpw5c4aWLVuioaHBmzdvAChWrBiOjo6Eh4d/kOYHDx4QFRUlc0h9LE2aNKFSpUosX76cVatWKVy/dOkSFStWlDmHQNoH9erV4/Lly59EgzIyMjIVDv8G0NGWpqVnFBxC5b9y/OQFsrLeFBpeDqQatZVq1M65rjpMUkaOfmXltfOV19bWppRlSVYsnSuXp1XLpnTq2o8Fi1bITTyOHukjl69j596cOHGChIQEQoJO4N0s72wMbW2dAnVmpkvTlT0HbSX3uHz9Wrk8Ldu1ZXDvvqxZvpIWrVujk3PQuZaWFtY2NjTw9qJ+o0ZIJBL2BwQwbdIfzF++FMt6Hkr1vA+q7Uaq93PZzfuSkZGJlvaXs2s3l6r4Lp5MUnIKFy6FsffACYVV5wDaOgXbQm66lpJJw3dtISM9XekzAGkYrYLei8OHD7Nnzx769e+PTVlFR1n58uXZsGEDqampXPxHeoZOappifdJ3U/FrVG4/Z3xgP6/bcojzl2/yy/c9MTLSL7zAJ+Rr30t6ejpmWsUV0r/W+NG5R3e5fA28vajs5Mi03yexx/9vfhg1Wu56URynDQ0MKFvWmqZNGgHQvKk3dpUcWbhwYYGavvZ7mJaaN9Hvu2qVzLFcvpw1/foPQk1N7SP6WnpNeV/n2Zoyx0VcXBy//jaJ0lZW9O/XW+6alpYWNjY2NPb2wsurIZpauuzcuZPff5/EyhXLVdapU4h9A2Tk2Liy8vnH1P/qbJn8xx+kpKQQ8zKW3bt3k5GRwdu3kiKtOZfDh4/g7+/PoEGDiD4ySWU+LW093mYq6n2TEx5OS6fghTqZ6am8fHaHhNjn3Dx3GB09Qzw7j6Lf5B0sH9uYV5EPADi7fw1O9VrTe+IWDq+fTGZ6CvXaDpHtHNLU/rjwtgKBQCAQCATfFiKU27eEcBAJBJ+ZqKgobG1tlV6bMGECoaGhjBgxAjs7OwwNDdmxYweHDx9WyPvuCt38qzilh/u+ZtOmTWxScvC0qgkcVcTHxwNQokSJDyqnCjU1NYYOHcq4ceO4cUNxlWZiYqLSlabm5ubcvXtXIf1Dycp6Q0JislyaqUkxdHS0lZ7hkJFz3sZ/PV+oMA4fP4NxMUPc6+StOM/VqIt0xXVa0itMTU3Q0dEmU6lG6aRi7m4xZejk6FdWPvM9yhsbF6NtmxZs2LSd6OgYSpZUbQ+5q4IvX7gg5yDKzJmUUdWOds5ZN8qew/to1NLSomPXLsyfOYvbt25RLWdn3OI5c4kID2fN1i0yZ0WjJo3p17UbS+ctwHt34Q6irKwsWZimXExNjAuwG6nez2U3yvWpsGslZ8Z8Lrs2NzPBvJYJAE286hEUfI7wiLvEvnqNhbmpLF9mRsG2kJuepeRsi3dtQUdXV+X5KxkZGSrbuHLlClOnTKFuvXqMGDFCaR5DQ0Pq1ZOu+K5XRYv9R/5l7K/LWDn/eyrYSleAm5oY5bybbxTbz+lnnQ/o56MnLrJ83V7at/Kga/uG713uQ5GOM/Ih14rCvejq6pKVpey5f53xQxlNmjdn+YJFnPvnDC+79wCK9jitbBzo378/ixYtIjs7u8i+h7lOOg9PT1JTU2W7kKxKlcLKqhRRUdEf0dfSa8r7WrWtpaWlMXrseFJSUtmwbpXC2USz5szn+vVwNm9cS1JSMnoGxri5udGrVy/mzJ2Ljo6O0jN7MgqxbwCdHBtXVr6wMfV9cHR0ICEhgeo1alK7dm169eqFRCIp0poBrlwJZcrUP/Hw8OD7779nwpFJaGhqoW8k/105OeElWZlpaGgrtpfrsFEWFi4/ff/YhuTtG9b/nrfLMPzfA0zYfJ0W301h6zRp2NpbF44RsOR7Wg7+k3GrzgHw8tk9jqyfTOshM8hMkx97U/M5Qz8VaWlpcv/9VOTa/LekGT6f7m9RMwj7eBdhH/II+5BH2Ece36Jm+Pw2LRD8ryEcRALBZ+Tu3btER0crhIsD6eRJcHAwEyZMoE+fvDNRtm/frrSuuLg4uc+5YeuK54R8MTY2pkGDBvTs2VOhrIGBgUJaQeTuYIqJiSk44wfQokULli5dyooVKxQOJDY2NlZ6WPyrV68wNjZWSP9Qrl6/w+DR0+XSDu5ahIW5CS9fxSvkj81JK25h8tFtv8uLqFiuXLtNp7aN0MoXik2pxr07sLAwJzZW8dyL3LTixRUda7kUzwlZpKq8sXGxQlfwWuZMNiYkJhXoICpZsiQPHz4kMTFRLj33jAnz4oq7A0C6y01bW1uWLz9xuWFqCrhHgBIlpQe7JyVI287KyuLg3n306NtHbieLpqYmtevVI2DnrvcKb3M17CaDR/wil3Zw93oszM14GftaIX9srPQdLa4kVNTn4Or12wweMfEdfauwMDfl5Stl+l7n6DNTuPYpsS5jSdzrBIJPXaBzh2ay9JfvjFnvYmxsjLa2ttKQnLE5k8S5ZS0sLHj79i1xcXFyzvOsrCwSEhKUtnHn9m2+HzuWChUqMHfuXLlQiAVhbmZMdjYMHbdQlnbwrxlYmBkT+ypBUWtOWnHz9xu7zl2MYOKMDXjWqcpv43q9V5n/yrXw+wweO18urSjcS/HixXmu5Ly5rzF+FIShkRFhV6/i4ZHnYC6q47SFhTkxL+X7RVdXF0NDQ5KSkorse5hb5k1WFk3f2TltX6kiLzVilWuTjS/v09fKyivv66ysLH4YP4G7d++xfNki7OwqKFzfu2cf/fr15vr1cAYPkXd4RUZGUqZ06UI0K38WUs0WBWiOlT2v/8q1a9cY7DNULu3QoUNYWFgUWc2379xh7PfjqFChAkuWLJHZkK1THYYtOCaXd3pPexJfRVHMzFKhnmLm0rTEV6rPmzQrZUvlWs3YNX+4XHpa0mseXv8X2yp15dLP7PXl4tHNlCpflTdZmUTev0atFv0BePlMfsHTzZs33++G/wOPHj36pPW5uLgA35Zm+Py6v0XNIOwjF2EfyhH2IUXYhyLfomb4fDYtEPyvIRxEAsFnIiMjgz///BNtbW26dOmicD0zMxOJRCK3uyc5OZkTJ04ore/48eNyYeaOHj1KiRIlsLSU/sCtW7eu7GBpDQ0NpXWAdMV0QaFBQBpiydLSkt27d9OyZcsC874v6urqDB06lAkTJlCrVi25ay4uLhw9epQHDx5Qvrz0nIaEhAT+/fdfunXr9tFt29uVxXeh/ES/hZkx9nZlCQ27jUQikXMkXL9xD11dHcpal/rott/lSOBZsrOzFcLL5WrUMakEQHrKK8zNzbCvZEdoaJiCxvDwm+jq6lLWRvW5ICVKFMfU1ISIm4oHQoffuIW9ivMD8vPseSQApqYmBearUKEC//77LwYG8ofMR4RLd4xVrFRJaTl1dXXK2VXgdoTil8KI8BtYlS6NfiEOzsjnzwEwztGYmJDA27dvkUgUtzS/efMGiUSi9Nq72Fcsh++SaXJpFuam2FcqR+jVG0rs5rbUbmxKF1r3p8DezhbfxZPl9ZmZYF/RltBrNxX1RdzJ0fd5z0GwKVOKa9dvE/s6Xi49N9Slvb290nLq6urY2dkRERGhcC08PJwyZcrInN25dUTcuIGHp6csX8QN6XOp9E4bT58+ZeTIkZiZmbF06dIPWvllay11INSvW40enb0AqdPI3q4ModfvKb6bEQ/R1dWmbE65grge8YBxE1fiaF+W2VN8FM5t+tRUsivDyvlj5dKKwr1UrlyZ8+fPk5KcjIFh3hjyNcYPVWRnZ5MQH08lh8r88pM0/GpRHqftK9lx6XIoyckpGBpK+yA5OZmkJOmuyKL6Hjo4OAAgkUhYuXIlujk7itLTkpg8eRpGRobcuqX4dzs8/Ia0r8uqPjewRIkSmJqaEhFxS/HebkRg/46dSSQSfp80hQsXLzF71jRcXZwVysXHJ/Dm7VvevpVQqVJFVq5Ygq6eEQAbNqzn1KnT2FW0IyzsuqLm6x+gWcnESfiNGwqaP5RKlSqxcuVydHWlz2LRooXcunULFxcXQkOvFjnNT58+Y+TIUZiZmbJ06WK5BVCR96+z6kf576xJcdFE3g+jXNV6qKmpkZ2dLbtmU9mNzLQUBcdNfoxMpWOfurrieKahqYW6ku/bmempcmcTVXL2IjM9lUc3zsrly7X1T0laWhqPHj3C1tYWPb2CQ+f9F75FzfDpdX+LmkHYhyqEfUgR9qEcYR/fpmb4MroFhZAtQsx9SwgHkUDwCZBIJFy9ehWQbo+9c+cOfn5+PH36lFmzZlGmjOLkkJGREVWrVmXNmjWYmZmhqanJ6tWrMTQ0VNgtBHDu3Dlmz56Nu7s7Z86cYe/evUyaNEn2w3306NF07tyZgQMH0rVrV9nqzwsXLuDq6krr1q0BqfMnKCgIV1dX9PT0KFeuHIaG8pP6ampq/Pzzz4wbN45Ro0bRrl07tLW1uXr1KlWrVqVRo0b/qZ/atGnD8uXLOX/+PKVL502id+zYkY0bNzJkyBDGjh2Ljo4OK1euRFNTk375Dov/rxQrZkAdN8WD0ps0qkVg8AWCQi7SpFFtAF7HJ3H85HkauNdEO985Lk+fRwNgXbrwidKCOHz8X0qVNKdmNfmJs1yNesVdAUhNlK5obezVgMCgEIJOnqKJd8McjfEcDwqmvmdduVW4T59JJzqty+T1rbdXfQ4cOEpUVAyWltKV5ecvXObxk6f06pkXLiXudTxm70yQxsS8ZO/+w1SsWEG28jojI4M3b95iYCA/sZcbljA735eAzMxMDu8/gGOVKpSwlPZbdFQU6enplM0XdrGhlxerli3nVkQElR0dAXjy6DGhly7RrXfeLoT4168xMc0LWQaQmpKC/46/MDYxwT7ni6WJqSmGRkacPhnMd0OHyJywqamp/Hv6NDa2trJJx4IoVsyIOrUUD+lu0siDwBNnCAr+lyZe0p0Er+MTOH7iHxp41Ja3m2fS52hd5tM7G4sVM6ROreoK6U286hF48ixBwedo4lUvR18ix0/8SwMPt0+m73V8IibGRgpnrKWnS8MKxb7MG8cyMzPZt3cvVapWlTm1X7x4QXp6OuXKlZPla9y4MUuWLCHixg0cnZwA6aqvixcvyu20dHNzw9jYmF3+/nIT07v8/dHV1cUzX1psbCwjhg9HTU2N5StWYGqmfAdVUlISurq6CiE5A09dAaCRZw3quDrmaW3oQmDIFYJOhdKkoUtOnyRxPPgy9etVe2f8kO7GtC6dtwvvwaMXjJ6wFCtLc5bMGvlFQhMWMzKQu4dcvva9NG/enPXr17M/YA/d+0jPd/la44eqvHv8/yYxIYE+3w2QhSAsyuO0e73abN7qx+6A/fTtIz1TaenSpQDY2NgU2ffQ1taWSpUq8e+///LzhAmUyfmuEHT8CNExMbRo0YzDh48SdCKYJo2lDtvXr+M5HniC+vU95Pv66TNpX1vnfQfz9mrIgQOHiIqKxjLHrs5fuMjjx0/o1VP+7KnZc+Zz7Fggv/82AW8v5d97zMxMMTIy4mRwCMOH+VCndi30DU1JSUnh9u07lLO1pVnTppw8GUzQiRM0adw4n+ZA6tf3LFyztxcHDhwgKipK9tzOn78g1dxLcdf4+5C766tYsWLUqV0bfQMjnj17xr1793F0dKKxtzeBgUFFSnNsbCzDR4xATU2dFcuXYfbOO5qWHM/dKycVyoWdCqB6g45U9WxP2KkAAPSLmVOtQUdunDvE23zhLc1LSd+DVy+ku9pjn99H8vYt1Rt15uyBvDPMjC1KU66qO4/C/y1Qc1nHOlTxbMfZfWtIT5Hfpfg5Q9To6el9lvq/Rc3w+XR/i5pB2Me7CPuQR9iHPMI+8vgWNcPn1S0Q/C8hHEQCwScgPT1dttNFX1+fMmXKULduXZYtW0aFChVUlps/fz6TJk1iwoQJmJiY0KdPH1JTU1m/fr1C3qlTp+Ln58eOHTswMDBgzJgx9OqVN/lVtmxZdu3axaJFi5gyZQqpqakUL14cNzc3uZXCkyZNYsaMGQwePJj09HQ2b95M7dq1Fdpr2bIlurq6+Pr6Mm7cOHR0dHB0dJTbxfShaGho4OPjw++//y6XbmhoyJYtW5g1axYTJ05EIpHg7OzM1q1bKVXq00+s59K4YW2qOR3hjxmrefDoOSbGRuwMCEQikTBsYCe5vD5jZgBw2H+xLC0y6iUHj/wDQMQt6SHFazZKJx9KWVrQurmnXB33Hjzlzv0nfNe7jcKkukqN3g2o+pcjk6fO5sGDx5iaGLPTf49Uo88AubxDho8D4NA+P1nawP69CQwMxmfYWHp070xqahqbt/5FRbvytGvTQpZv8RJfnj6PpLabM8UtLIh8EcXfu/eRlpbOTz+MlOV79SqO7r0H07ypN7a20hXEFy6FERISgpm5OYFHjmJqZkZpa2uOHjhIVGQkP0/8TVZ+xqTJXL1yhZBLF2Rp7bt05sCevUwYO45uvXuhqanJzm3bMTUzk5vgDdi5i39CQqjn6UkJS0texcZyeN9+oqOi+G3qFNnEvoaGBt1792LtSl+G9f+OZq1aIpFIOLh3Hy+jY/j9z6nv1fcqn4mXO9X8KvPHtEU8ePgEE+Ni7Nx9CMlbCcMGy4fV8hn5KwCH92yQpUW+iOHgYelOwYib0pXLa9b/BUCpUiVo3cLr4/Q1qku1KpX4Y/pSHjx8iolJMXbuPizVN0h+AtRn1B9SfQGr5fUdCZHqu3Vfqm/DLqk+y+K0btEQgINHQvAPOEqjBrUobWVJamoa/54P5dyFaxS3MGXP/iAMDPSpYO9MQEAAL168YNIff8jamTRxIpcvX+ZKaKgsrUvXruwOCGD06NH06dsXTU1Ntm3dipmZmdzEtK6uLsOGD2fWzJn89OOP1K1bl9DQUA4dPMiIkSPlQlOOHDGCZ8+e0a9/f0JDQwnN1565uTl16tQB4NKlS8ydMwdvb2/s7OzIysri/JkjnDgViqN9WVo1rSPfzw1cqOoYxORZG3nw6AWmxobs3BssfTcHtJXLOyQnPN0hv5kApKSmM+LHRSQmpdK3ezNOn70ul7+MVXGqV8n72xFy5hp37ksnYd+8ecvd+89Ys/kgAA3cq1OpguodKu/Dl7wXZVSvXp2Gjb1ZvWw5r+Pivur4AdC1dVsaNW1C+QoV0NbR4frVq5w4dhy7SpVo26mjYv8VwXF6/M+TKFPaisXLVvPPvxd4/fo19+4/RE1Njd8n5oWmLGrvIcAP48czfNgwBn73HT169CApKYkNG9ZTtqwNv/w8nmfPnjN5yjQePHiY09e7kUjeMmzIYPm+Hibtk0MH9uT19Xf9CQw8gc+QEfTo0VXa11u2UdGuAu3atpbl27b9L3bu+ptq1aqiq6vDwUPyZ0N6NWqInp4eGhoa9O3Tk+UrVtG330Bat26JhqYO/v7+REdHM33anzRu7E3V7VWZPHlqjmYTdu7aJbWPoUPkNQ8dJtV8cH8+zQMIDAzEx2coPXp2l2revIWKdna0ayv/fh44cJAXUS9IT5PuFL9yJZQ1a6WOjVYtW2FlVSrnGXenVi037CtVolixYlJb+vtv3rx5w+jRI6lapUqR0zxi5GiePXtO/359CQ29SmjoVbR1pIs9XqbrUlw3HWWEndrNo4iRdP1xFSXLViYl4RX12vqgrq7BsY1/yt/LPOlzntGrMgApCbFcOLKJOq2+Y+i8w1w/vRcdfUPqtR2Clo4eJ7bPlZU1LWFDn0lbufHvAZJeR1PS1pG6rQfx4sF1Dq+bpFSbQCAQCAQCgUBQFFDLzr/XXiAQCP7HSHt5qcDriYkpLFyxnZOnL5GekYVT5fKMG9kTp8rl5fK16DwGkHcQXbwSoXBuUC4uNRxYt0zeEbbE9y/Wb93Prk0zqVhBeXiWd3cQSTUmsXDJSoKD/yE9IxMnR3u+HzMMJ8fKcmVbtpU6KfNPPALcv/+Q+YtWEHr1Olpamni612Hc2OGYm+et4D58NAj/v/fx8NFjkhKTMDQyxLlGNQYN7IND5bxwMElJScyeu4Sw8AhevnyFRPKWsmVtadOmDU3atWHT2nUcO3SY5KQkytvZMXDYEGrVzYvRP8ZnqMIEL0BMdDTLFizk0rnzSLKzqeHizMhx31PG2jqvv8+d568tW3lw7x6JCQno6unh4ORIz359cXZzU+jL40eO8PcOP54+eUJWZiYVKlake5/eNPD2wtJIOnGZ9vqe0udQGImJSSxcup6Tp86RnpGBk0Mlxo0eiJNDRbl8LdpLJ4fzO4guXg5TONsoF5eaVVm3cpbKdvVMpeGm0uIUwz/J60tm4bJNnDx1XmozDnaMG9UfJwf5cFUtOvhI9eVzEF28Eq5wtlGePifWrZCG3btx8x4btwYQHnGXV3HxaGhoYGtjRctmDejYtgmr1vtx6OgpEpNSsLe3Z8jQobKdFwCDBw1SmJgGiI6OZv68eZw7dw6JRIKLqys//PADNjaK78zu3bvZumULz58/p6SlJd26daNnz55yDljnmoq7wGT34+Iim4h8+vQpa1av5urVq8TGxpKdnU0ZK3MaN3CmX/dm6OkpHnKemJTCwpV/E/xPaM74Ycv3wzrjVNlWLl/LbtLnnetUiXwRS6vuv6rU1aZ5Xab+kudYmDRzA/uPnFWad8qE/rRtIe1XfcsGAKRGhaisWxVf6l7eJVfz49gY1vuuKhLjx5xp07kRFkZMdAyZGRmULFWKBl6N6PPdAPQNDGTjR1Efp69dv8GLF9G8ffsWNTUoUaIkU6dOxS1fmNei9h7mcv7cOVasWMGdO3fQ09PD3b0uY0ePxMLCnMTERBYuWkpw8Cnp+OvkwPdjR+PkKB+epGXr9tK+zucgkvb1A+YvWEzo1WtoaWnh6VGPcd+Pxtw87/y4SX9MZf+BQyo1H9y/W+48xcOHj7J9hx+PnzwlKysLe3t7evfuSWNvb4AczYsJDg4mPT0DJydHvv9+LE6O8jv6WrZqI9Wcz9ki1Xyf+fMXEnr1ao5mD8aNGyunGWDQYB8uX76iVPOa1b64ukq/Y/j6ruL0P2d49uwZqakpmJmZ4+bmRr++faiYE9awqGmu6eyqNA+AuXY69UqoPjdTz9CE1kNmUMW9DVraejy9fZn9q37h2R35dn/dJg0/mOsgAml4ubptBlOrRT/MS0ud3c9uX+b41pncv3pKro1uP63GprIr+kZmJMRGci3kb4K2zSYjLVmWb17Qpz/kO5fU1FRu3ryJg4PDN7NaWmj+cnyLuoXmL8e3qFto/jJ8i5rh29X9v8R/+U36pcj9DSrIQziIBALB/zSFOYiKGsocREUd/WLS1b1RSYqH3BdVPtZB9LV4XwdRUULPTDqZmJKa+pWVvD8GOT8iivKXWmV8jIPoa5Gr+VscP76lcRryxupv8l1Mfv2Vlbw/+obS0GepKUlfWcn7o28gPTfpW9IMebrHe387ZwsIB5E8QvOX41vULTR/Ob5F3ULzl+Fb1Azfru7/JYryb1LhIFJEhJgTCAQfzNu3bynIt6ypKYYWgUAgEAgEAoFAIBAIBAKBQCAoyohZXIFA8MH079+fCxcuqLweFBREmTIfdyaGQCAQCAQCgUAgEAgEAoFAIPi2yJZIvrYEwQcgHEQCgeCDmTJlCikpKSqvlyhR4guqEQgEAoFAIBAIBAKBQCAQCAQCwYciHEQCgeCDKV++/NeWIBAIBAKBQCAQCAQCgUAgEAgEgo9AOIgEAoFAIBAIBAKBQCAQCAQCgUAgEHw02dlvv7YEwQeg/rUFCAQCgUAgEAgEAoFAIBAIBAKBQCAQCL4swkEkEAgEAoFAIBAIBAKBQCAQCAQCgUDw/wy17Ozs7K8tQiAQCAQCgUAgEAgEAoFAIBAIBALBt03S06NfW4JKjKybfW0JRQ6xg0ggEAgEAoFAIBAIBAKBQCAQCAQCgeD/GZpfW4BAIBB8ThJSkr+2hA/C2MAQgJTU1K+s5P0x0NcHIDUl6SsreX/0DYwASEpJ+cpKPgwjAwPg27Lrb9mm45K/HZsGMDOU2nVMUuJXVvL+lDAqBkBq8quvrOT90Tc0B8T48SXIHT++pb4W/fzlyO3r1MQXX1nJ+6NfrBQAL64s/cpK3p9SzqM+W92pqancvHkTBwcH9HP+9hZ1vkXN8G3qFpq/HN+ibqH5y/AtaoZvV7dA8LUQDiKBQCAQCAQCgUAgEAgEAoFAIBAIBB9Ndvbbry2hSHDixAkWLVrEw4cPsbKywsfHh06dOhVYJiwsjB07dnDp0iViYmIoWbIkzZo1Y9iwYXIOz6VLl7Js2TKF8pMnT6ZHjx4fpFM4iAQCgUAgEAgEAoFAIBAIBAKBQCAQCD4Bly5dYuTIkXTu3Jlff/2Vc+fO8dtvv2FgYEDz5s1Vljt8+DCPHz9m0KBB2Nracu/ePZYsWcK1a9fYvHmzXF5dXV02bdokl2Ztbf3BWoWDSCAQCAQCgUAgEAgEAoFAIBAIBAKB4BOwcuVKqlWrxtSpUwGoU6cOT58+ZcmSJQU6iAYPHoyZmZnsc+3atSlWrBjjx48nPDycKlWqyK6pq6tTo0aNj9aq/tE1CAQCgUAgEAgEAoFAIBAIBAKBQCAQSCRF998XIDMzk/Pnzys4glq2bMn9+/d59uyZyrL5nUO5ODo6AhATE/NpheYgHEQCgUAgEAgEAoFAIBAIBAKBQCAQCAQfyZMnT8jKyqJ8+fJy6RUqVADgwYMHH1Tf5cuXARTqS09Pp06dOjg6OtKyZUt27tz5n/T+T4SYy38ok5qaGgYGBlhZWeHm5kavXr1knZ+Ll5cXDRs2ZNKkSe/dxvnz5+nbty/+/v5UrVr1k2h2d3fH2dlZLt3e3p6ffvqJgQMHfnQbue0sW7YMV1dXtm3bJndt+vTpBAUFceLEiU/SVn6ePXuGt7c3ixcvLnDb3OcgMDCQESNGEBQURJkyZT66PmXP/lM/p//CzZs3ad++PZs3b6Z27dr/Wdfu3bv55ZdfOHv2rFIv9YeQmJjIpk2baNGiBXZ2dh9V16ckMzOTVSt9OXzwIElJSdhVtGPo8OHUrlOn0LIxMTEsnD+f82fPkZ2djYurK9//MI7S79iW/65dXLp4kRvh4URHRdOqTWv+mDJFZb0Xzp9nw7r13Lp1E8lbCXp6emRlZZGZmYm9vT1Dhw2jznvqmz9vHmfPniU7OxtXV1d+GD9eqe3vCQhg85YtRD5/TsmSJenRowfd3zm4rlXLlrx48UJpW9bW1uzdt0/2edfOnVy8eJHr168THR2NtrY26urqVKnixLjvv8fBoXKh+gEePHjI/PkLCL16FS0tLTw93Bn3wzjMTE3l8kkkEjZv3sIu/7+JjY2lrI0NA77rTwslY8yxY8fZunUbDx89QkNDgwoVKtC/X188PT1kee7fv8/Wbds4fOgQ8fHxZGdnY2hoyPARI+jarVuhumNiYlgwfz7ncvrexdWVcT/8oND3/rt2cfHiRcLDw4mOiqJ1mzZMVmIbsS9fsmPHDsLDw7kZEUFqaiq+q1fj6uqqkLeo2fTNiJus9vXl5s2bpKWmYmVlhZm5GQ8fPCQpKemr2vSjR4/w9/cn/Pp1bt26RWZmJgcOHsTKykqhvnnz5nHl8mVevHhBRkYGJUqWxNjEmMhnz0lKTsbOzo4hw4dR6z3vY/H8BVw4dw5JdjYuri6MGSffz+np6cyfM4eInD6WSCSULlOG1m3b0qlLFzS18r6mXbxwgaOHDxN29Rox0dGYW1jg4uqKz7BhWBS3kGs7MzOTdb6rOHroEElJSVSws2PwsGG41aldqO6XMTEsXbCQizm6nV1cGDXue6wK+HsadvUqIwYNBmB/4HFMTEzkrgcePcb2zZt5/PAhevr6eNSvz9DRoxTy5ZKUlMSixcs5cfIU6enpVHFyZNz3o3BwsC9UP8CDh4+YP38xoVfD0NLSxNOjHuPGjZYbU2JevmTx4uXciLjFy5exqKurU7asNV27dKJN6xaoqanJ8vquWsuq1esV2tHS0qJHz54ckr2HFRk2fPh72/mnHD8unD/P4cOHuXb1KtExMViYm+Pq5sawYcOwKF5cLu/nHj+io6LYt3cfZ/75h6dPnqCuoU6FCnZ8N2ggtWrL2+CVy1fYtmULt2/fJv71awyNjLCzs8PUzJTLFy/Jxg+foUM/ab8C7Nmzh62bNxMZGUnJkiXp1qMH3bt3V8h3/vx51q9bx71793j75g02ZcvSrVs3WrVurVLHpUuX6NWrFwBm5uakJCcXuXG6dOnStOvQns5du8rly8zMxHflyiJh1+8y7c8/2RMQgIeHB4uWLFGaJykpiUVLVnEi+DTp6RlUcarMuLHDcahcqdD6AR48fMz8BcsIvXZd+p3EvQ7jvh+BmamJLE9k5AtatVN+8O/M6RNp3tRbLk0ikeC/ez9/797H4yfP0NPTo5yVASP6emJX1kJpPUkpGazafobTFx+QkfmGyhVKMry3O5XKlSj0Hg4E3eD4P7d5Evma5NQMzE0NqOFYmn6dalGqeDGV5cJuRTJ6ym4A9qwaiEkxvULbEggEAoFAIPjW8Pb2LvB6UFDQR7eRkJAAQLFi8t+9cj/nXn8f4uLiWLp0Kd7e3tja2srSbWxsGD9+PI6OjmRkZLB//34mTpxIUlLSB89X/084iED+UKaUlBTu3LmDn58fO3fuZPr06bRr106Wd9myZQoP6EuzbNky9PX1FRxEfn5+SietPpZLly5x/vx5mSNB8HF8ruf0sXxtXYmJiSxbtoyKFSsWKQfR1D8mExQUSI8ePbG2seHA/v2MHT2alatWUaNmTZXlUlNTGeYzhJTkZPp/9x2amprs2L6NIYN92Lpju9zk5paNm0hJTcXJyYnY2NgC9ezfu49pU6dSq3Ztho8YyYH9+7h18xY1nWvSvl17AgICGD1qFKtWr6ZmIfp8Bg8mOTmZ7wYORFNTk+3btjF40CB2/PWXnD5/f39mTJ+Ot7c3vXv3JvTKFebMmUN6ejr9BwyQ5Rv/44+kpqbKtfPixQtWLF9Onbp15dI3btxISkqK7LOtrS0dO7Rn5y5/BvsMYdu2LZS1sSmwL6Kjoxk4aDBGhoaMHDmCtNRUNm/Zyt1799m6ZRNaWlqyvMuWr2DDho107NABJydHgoND+PXX31FTU6N5s2ayfDv++os5c+bh6eHB6NEjyczIZN/+A4weM5Z5c+fg7e0l65Odfn68ffuWWrVrY6Cvzz///MOc2bPJevNGNrmnqu+H+viQnJzMgBzb2L59O0MGD2bbjh1yfb9p40ZS38M2Hj1+zKaNG7GxscHOzo6wsDCVeYuSTd+MuMmgAQOwtrGhb79+6Orqsm7tGu7fv4995cqMHj36q9p0WFgYf+3YQfny5SlXrhy3b99W2X7EjRvUrFmTzp07o6Ojw6rVq7l+LQyL4sUZO24chw4eZNzoMSxftYrqNWsUeB8jhwwlOTmZft8NQENTE79t2xnuM4TN27dhnHMfGRkZPLz/gLru7pQqZYWauhrXw8JYvGABN8LDmTpjuqzOFUuWkpiYiFdjb6ytbXj+/Dn+O3dy5p9/2Lx9G+YWeZOMMyZPITgoiC49e2Btbc3hAwf4ccwYlqzypVoB8YlTU1MZPXQYKcnJ9B4wAE1NTXZu386oIUNYvy1Pd34kEgmL5sxFT0+PtLQ0hesB/v4smDUbl1pujPx+LDExMfjv+ItbN2+yauMGMFKsb9SY8dy5c49+fXtiYmLCzl27GTxkBNu2bqCsTcEHbkZHxzBw0HCMDA0YOWIIaWlpbN6ynbv3HrB181rZmBIfn0B0zEsaezfE0tKSN2/ecO78Bf6YPI3Hj58wauRQhbp//eVH9PX10NYxBGDL1q1s27aNnj16yN7DMaNHs+o93sNPPX4sXbKExMREvBs3xsbGhufPnrFz507+OX2abTt2YJHPPj73+BESHMLmTRtp0LAhrVq35u3bNxw6cJCRw4Yz8Y8/aNOurazOJ08eo6auRsdOnTC3MCcpMZH169aTnJSEl7c3DRs0ICAg4JP369/+/sycMQMvb2969e5NaGgo83LHj/79ZflCQkIYP24cVatVw8fHBzU1NQKPH+ePSZOIj4+nV+/eCjokEgnTpk1DQ0ODt2/f4uXtRcWKlYrcOP3vv2eYP3cez549Y+rkPOfM5D/+ICgoqEjYdX4iIiLYv38/Ojo6KvNIJBJGjf2FO3fv0a9Pd0yMjdnpv5fBQ8eybfNqytoUvHAsOjqGgT6jpePH8MHS8WOrn3T82OQr950EoHkzbzzqyf+2qlbVSaHeyVNnc/hIIK1aNaNvvwGkpqZy+Z/dxCekKuSV3kc2v8zZz73Hr+jeuibGxXTZeyycsX8GsHp6N8qUMinwPu4+eolliWLUcymHkYEOL14mcuBEBGevPGLdrO5YmBkqbXPJxlPo6miRnpFVYP0CgUAgEAgEhZGd/fZrS/jkJCUlvVeIN2vrgn+zfghZWVmMGzcOgMmTJ8tdy+/rAGjYsCFZWVmsXLmSvn37Knx3LYj/GQfRu4cyubu707NnT3x8fPjtt99wdnaWPaDcuH1FkU9xsNS76OvrY2dnx4oVK/5nHETp6eno6up+1jays7PJylL+A+lzPKdPQVHV9TW5ER7OsaNHGT12DL379gWgZetW9OjSlaWLl7Bu4waVZf137uLpkyds3LIZRyfpD/567vXo0bUb27dsZfiokbK8vmvWYFnKEjU1NRq4e6iqksjISObMnkXX7t344ccfuREeztzZs2X6jA0Mad++PS1btWLxokVszHF8K2Pnzp08efKELVu34pSjz93dna5durBlyxZGjRoFSN+XFcuX4+Hpydx58wDo2LEjkuxs1qxZQ8dOnWRO80aNGim0s3bNGmm/tWghl75m7VquX7/OLxMmoK2tjb19Jbp160qTpk1o374jvr6rmJlvglsZ69ZvID09je3btlKqlCUATlWcGDZsBPv27adTp46AdFXyli1b6da1CxMm/AxAhw7tGTjIh0WLltCkcWM0NDQA+OuvnTg5ObJ48ULZLoB27drSrHlL9h84IHMQVapUiTdv3jBm7Fj65NhGTEwMrVu2ZNXKlQU6iHbl9P2mLVvk+r5b165s27KFETl9D7B6zRosS5VCTU0NT3d3lXU6ODgQdPIkxsbGBAYGEvbTT0rzhYWFFSmbDvj7bwBWrV2DsbExN8LDeRnzEqvSpXn27CndunX7qjbdoEEDQk6dwsDAgM2bNxfoIFq/Qdp3Bvr6hIWF8ezpU9w9PTlz+jQV7SuxrE1renXtxrIlS1izQXFHSS67d0n7ed3mTbJ+rlvPnd7durF96zaGjRwBgLGxMWs3bZQr27FzZwwNDfH328mYcd/LHD+jx31P9Ro1UFfPiw5cp15dhg/2wX/nToYMHw5I7SPo2DGGjxlNjz59AGjWqhX9unVn5ZIlrFyvWnfALn+ePXnC6k0bccjRXce9Hv26deevbdsYMmKEQpl9uwOIiY6mdft27Nrxl9y1rKwsVi9fQXXnmixcvlz2PlapVo0J349jf8Aehg8eLFcmMPAk165dZ87saTRpLH1XmzTxon2H7vj6rmXmjIJ3Gaxbv4n0tDS2b12fN6Y4OTJs+Bj27T9Ip47tAahU0Y61q5fLle3erTNjxv7Ijr92MXzYYNmYkktj70aYmpqgb2hOWFgY18PC5MaPVq1b061LF5YsXsz6jRtVavwc48f348ZRo2ZNOfuoW68ePoMHs9PPj+E5z+5LjB8ubq7sP3gQk3w7tjp27kzv7j1Y5esr5yBq36ED7Tt0kH2+ER5O8qLF6Onrk5qamjd+tGz5yfo1PT2dFStW4OHhwZy5cwHo0LEj2RIJ69asoWPHjrLxY6efHxYWFviuWoW2trb0Xjp1onPHjhzYv1+pg8jPz4+nT5/y9q30R7HPkCGYmJoWqXEaoGPnTgwZNJgD+/fLHEThOd+Ziopd55Kdnc28OXNo1aoVFy9cUJkvMCiEa2HhzJk1mSbeDQFo0qQR7Tv1xnf1BmZOm1hgO+s2bCM9LZ3tW1ZTyrIkAE6OlRk2cjz79h+hU8c2cvkd7CvSqmXTAus8dvwk+w8eZf6cP/Fq5Il+sVIANK2aqLJMyPl7hN+JYvLY5jSsLV1w1ahORXqP28oG//NMHNVMZVmA7wc2VEjzcC3PkN92cvT0bXq1c1G4vj/oBjGvkmnVyJG/j1wrsH6BQCAQCASCb5n/ukPoyJEj/P7774XmO3TokOw7d1JSkty1xETpd8Dc6wWRnZ3Nr7/+SlhYGNu3b6dEicJ3krdo0YKjR4/y5MkThYhqBfE/fQaRjo4OEydOJCsri127dsnSvby8mDp1quxzaGgoQ4cOxcPDgxo1atCuXTv27NmjtM64uDhGjhxJjRo18PDwwNfXVyHP/fv3GTZsGC4uLtSoUQMfHx+ePHkiu25vLw2RMmfOHOzt7bG3t+f8+fOya+vWrZOrLzg4mO7du1O9enXc3Nzo06cPERERH9QXw4cP59y5c1y5cqXAfM+fP2f06NEy7QMHDixwMq0w0tLS+PXXX3FxcaFWrVrMnDmTN2/eyOW5ffs2AwcOpEaNGri4uDB69GgiIyPl8tjb27N69Wrmzp2Lu7s7dXN2MmRlZTF9+nRq1aqFi4sLv/76q9yOhlwyMzNZsGABjRo1okqVKrRo0YL9+/fL5ZkwYQKtW7cmJCSEtm3bUrVqVZXh9959Tn369GHIkCEcOXKEZs2aUbNmTfr27Sv33N9XhypWrFiBu7s7NWvWZOTIkbx69apQXcHBwQwYMIC6devi7OxMly5dOHXqlNL6nzx5Qt++falevTpeXl74+/sr5AkNDaVv376yZ/XDDz/IdOSGFQQYM2aMzLZzD157n3u/e/cugwcPpnbt2lSvXp1mzZqxJsc58V8JCgxCQ0OD9h07ytJ0dHRo274d18PCiI6KUln2RFAQjk5OsgkaANty5XB1cyPw+HG5vKWsSsmFJFLFbn9/JG8lDBkqXZ1+9MgRpfrat2tHWFgYUQXoCwoMxMnJSTYRA1CuXDncatXieD59ly5eJD4+nq5dusiV79q1K2lpaZw+fbpAzYcPH6Z06dJUf8cBaWVlxYmgICwsLOQmUs1MTWnapDHBwSFkZmYWWHdQ0Ak8PT1lE7kAdWrXpmxZG44dD5SlBQeH8ObNG7p0zbsHNTU1unTpRHR0NGFh12XpKSkpmJmayT0PQ0ND9PX15FYe3717Fw0NDTrk6/sSJUpga2tLampqwX2fYxtO79iGm5ubXN8DlLKyei/bMDAweK8vCUdU2MzXsumUlBS0dbQxMpJuBcl95+zt7dHR0ZXp+1o2bWxsjIGBQaH38S65/ezdpDEg/WKno6NDm3btCH+PfnZwcnynn21xdXMj6J1+VkapUlY5bSbL0mo6O8tN/uemFTM25tHDhwq62+abdNfR0aFVu7aEh10vUHdIUBAOjo4y5xBAWVtbnN3cOJnvfcwlMSGBtStXMnDoEAwNjRSuP7h/n+SkJLybNJGzJXdPT/T09Qk6dkyhTGDQSczNzfD2aihLk44pXgSHnC58TDkRjKen+ztjilvOmFJ4SN1SVqVIT08nK+uNwrVssklOTiE7O1vWzx3eeQ/btW9fuJ1/hvHD2cVFwT6cXVwwNjbmoRL7+JzjR4UKFeScQwDa2trU83AnJjpa6fe0XHLHD0vLkiTn/Jj61P166dIlEuLjFUKrdckZP/7JN36kJCdjVKyYzDkEoKmpiYmJidKdLAkJCSxatIiqVasqPLeiNE7nYmFhIRunQToGFyW7zuXgwYPcv39f5uhUReCJEMzNTPFuVF+WZmZqQtPGjQgOOVP4+HHyFJ6edWXOIYA6tV0pa2PNscCTSsukpaWpXFAGsHX7Tqo4OeDVyBOJRKKwS1sZIefvY2qsT323vB/1JsX0aFTHjjOXH5KZ9eErci2LS599cmqGwrXE5HTW7TzHd11qY2igrXBdIBAIBAKBQABdunTh9u3bhf6rUKECNjY2aGlpKZw1lPv53bOElDF79mwOHz7M8uXLqVz5/Y5w+K/8TzuIAOzs7ChZsiShoaEq80RGRuLs7Mz06dNZuXIlTZs25ffffycgIEAh78SJE7G2tmbp0qW0adOGhQsXsmPHDtn1p0+f0r17dxISEpg1axbz5s0jLi6O/v37y36U+Pn5AVKngp+fH35+fnI/pvJz6NAhhg4dirm5OfPnz2fevHk4OzsTHR39Qf3QqFEjHB0dWb58uco8ycnJMufTlClTmDt3Lq9fv6Z3794qzyQpjAULFpCdnc2iRYsYOHAgW7duZdGiRbLrL168oHfv3rx+/Zq5c+cyZcoUbty4Qe/evUlOTpara/PmzTx69Ijp06czN2fF54IFC9ixYwcDBw5k0aJFSCQS5s+fr6BjzJgx+Pn5MWDAAFatWoWnpyc//vgjISEhcvliYmKYNm0a/fv3Z82aNTg4OLz3vd68eZN169Yxfvx4Zs6cyZMnT/jxxx//k4532bp1K4sXL6Zt27YsWbIEa2trfvvtt0I1PXv2jEaNGjFnzhyWLl2Ks7MzPj4+ModkfsaNG4e7uzvLli2jdu3a/Pbbb3LOpNDQUPr06YORkRELFy7kzz//5Pr16wzPWbVeokQJ2Vlg48aNk9l2rof7fe596NChJCYmMn36dFatWsXAgQOVhiz6EO7cvo2NjQ2GhvLhNBydquRcv6O0nEQi4d7duzg4KtqAUxUnnj17VuAklyounL9AWVtbzpw5Q+vmLfhr+w6ys7PZunkzEokkXxtSfaoctBKJhLt37yrdEVnFyYlnT5/K9N3KqcPxnXHG0dERdXV1bt+6pVLvrVu3ePjwIc3f2T2U/7qjo6PCRI9TFSfS09N5/PiJ0nIgfd/i4uJwVPKeVXFykrv3W7dvo6enR/ly5d7JVyXnet49uLg48+/Zs+z46y8iIyN5+PARM2fOJjk5mZ75zqe5efOmUtvIzvnvnQL6/p6KvneqUuU/28b7okr317JpZ1cXUpJTmDl9Og8fPOR6WBgmJiacPnWK/gP652ujaNh0Ybx584a4uDiuXbuGRfHibFq/AX0DA1lbjlWk/71zR3U/3797DwcHxftwcHLiuZJ+zsrKIv51PNFRUQSfOMn2LVuwLFWKMtYFh0NKTU0lLTVVLvTbzZs3KWNjg8E79pHr9LlXkO5797BXYh+OTo48f/aM1Hd0r/X1xczcnLb5JpPl7ivne4+2kol0HR0d7t6+LTfuAdy6fYfKle0VnB1OTo45Y8pTpW0BxMS8JC7uNY6Oil+eqzg5cFvJu5GensHr1/FERr5g3/5D7Nt3kGrVqqCrq6i5TdsueDZogrOzM3v37qV06dIK72Hu97miMH6kpqaSmpoqF9rra44fr169QldXV+kO8OTkZOJfv+ba1asYGhry8MFDXGvVymvjE/Zr7vjwbl6H3PEjXxsurq48uH+flStW8PTJE549fcraNWu4efMmffv1U2jLd8UKiuec+aTM4V9UxukXkS/429+fkydOyI3Tt1V8Z/qadp2SksLSJUsY8N13cqESlXHr9l0qV66kZPyoLB0/njxTWVY2fig566yKU2Vu37mnkL5q7Sbq1W9Bbfem9Oo7hLPnLspdT05OIfzGLZwc7Vm6fA2ejVpRs2ZNvL29OXn2rkotdx+/pFK54qiry3+3qlyhJOkZb3j24rXKsvlJSErjdUIqt+5HM9tXulLWxUnx78r6necxM9GnTWPlv0cFAoFAIBAIPpRsydsi++9LoK2tTe3atTl69Khc+qFDh6hQ4f/YO++wqI4uDr9KFQtNFGxYQQFjA3sHSzTG3nsXe40ajS0aTSI27L13wd5B7F0siL03kCLS+35/7O5ll90FTGzkm/d5fBLmzsz9zezcs3fnzJwppfWMVFVWrlzJ+vXrmTNnjrRJIiscPnyYfPnyUSyT4x7S858JMZcRNjY2Gca3bt68ufT/MpkMFxcXgoOD2bFjB61VVuACVK9enfHj5eGN6tSpQ1hYGMuWLaNjx47kzJmTxYsXY2pqyrp166SVhZUrV8bV1ZVdu3bRtWtXKQyYjY1NhiHBZDIZf/75J7Vq1VJz7NSrV+9TuwAAd3d3hg0bxu3bt/nhhx80rnt5efH27VsOHTokbUNzcXGhQYMGbNiwgQkTJnzyPYsVK8bs2bMBeX/Fx8ezbt06+vfvj6mpKevXryc5OZm1a9dKExjlypWjefPmeHt7010RHgfkP7QXL14sTURHRESwdetW+vfvz8CBA6V7dOvWTc2BdunSJXx9fVmzZg21a8vDb9SqVYuQkBA8PT3V+vPjx4+sWrWKChUqSGkZrZZUJSoqir1792JhYQHIJ2YmTpxIUFAQ1tbWn6RDlZSUFFasWEHLli01xt6+ffsy1NRNJfRJamoq1apV4/Hjx+zcuVMj3GDLli3V+vHVq1csWbKEunXlqzA9PDxwcnJS+wzs7OykXVf16tWTHGq2trZqYzsrbQ8PD+f169dMmjSJhg3lYYWyciByZoSGhqqdzaFEeah7SEiI1nKRHz+SmJiodTJCmRYaEvLJOxNevXqJXk49fp82ne49e3Bw/wGSkpNYu3oNKSkp/DphIgBW+TPW9zEjfYrJqRCFvtDQUPT09KSxqcTAwABTU1Od9wA4cvgwIN+mqo3Q0FCqqkziSRpU9Jcpo/08qhCFXdbVx8o2GhoaEhoSiqWlhYYjKu0+aTZ+/C/jiIj4yF9/zeWvv+Thx8zMzFi+bBkVKqTZvpCQEI17+9+4wTPFio5/MzZC/sHYyCohISHf1Zhu1bo1T588xXvPHvZ575XSx/86kbbt2kl/fy9jOjMCAwPppTLxW8zWlr/neUiTvap9pY3Ij5EkJiZq/4x09LOfry9Tfk1z+pdzcODXKVPQ18/4NW3H1q0kJSXh1igtxJF8fFhq5LWU7q39fSgyUrduSxXdxRS6Hz96xH4vb/5auEAjFJuSIsWKkSNHDu7cuk3zn1XOnXn+nIgP8gnOjx8/Yq6y2yQ0NIzKlStq1JVf0Sa5TdG+VT7Npmi2X25TIiWbomTrth14Lk7bDV61qjPTp6ovwMiXNy8dO7ajQnknDAwNuBPwgI0bN2JkZER0dLTaZLrqWNXG17QfWxXjo3Hj9OPj69uPVy9f4ed7ioYq4UBV+XX8BC5dvAjId4e2btuWvv37qej7fP36KfajX//+vH3zhrVr1rBm9WpAfu7pn3//Tf369dXKP3r4EC8vL1auXMmcOXMwMTEhIiJCXct3ZKf19PQYO/4XNTsdGhqaqQ3+p7r/6bhevXIlxkZGdMkg7KuS0NAwKleqoJGeZj9CKVNa+2rNkNAwtbzpy6vajxw5c1KjugsN6temgJUVb968ZdPWXQwdMZ4FHrOoU1v+I/71m7fIZDKOHfdFT0+PEcMGYWlVmI0bNzLD8xgmuQypVtFW435hH2KpUFbzTFFLMxN5Oz/EULJYxs4ygHZD1pOk2G2UL48xw3vWwfkH9cmCJy9C2e8TwJ/jW6CX8z+/dlQgEAgEAoHgq+Hu7k6PHj2YNm0aP/74I5cvX+bgwYPMnz9fLZ+DgwOtWrXijz/+AODAgQN4eHjw888/U6RIEW7evCnlLVasmPQ7pk2bNrRq1YqSJUsSHx/PgQMHOH78OL/++usnnT8E/ycOIplMlmEYg48fP+Lp6YmPjw/BwcFSzHAzLYcxN2rUSO3vJk2asG/fPoKCgihUqBDnz5+nWbNm6OnpSaHU8uXLh4ODAwEBAZ+k++nTpwQFBUlOgX9Lo0aNsLOzY8mSJaxYsULj+rVr1yhTpoxajEIzMzNq1qzJ9evX//E9VWnSpAlLly7l4cOHuLi4cO3aNapVq6bW16VKlaJs2bJcv35dzUFUt25dtc/x4cOHxMfHa9yjcePGXL2atoLv/PnzmJmZUb16dbXwdjVr1mTatGmkpKRIkxVmZmZqzqFPoWzZsmqTDaVLyyfFlQ6iT9GhSlBQEO/fv9c59jIiKCiI+fPnc+HCBUJCQpDJ5HsjtO1Y09aPf/31FykpKSQmJnLjxg1++eUX6fkAKF68ODY2Nty5cydDx2VW2m5ubk7hwoWZN28eHz9+pEaNGlhbW+usM6skJMSrTQYqMVKkJSRohtpQTTcw0CxraGiUYdmMiIuNIzU1lSHDh9GzVy+OHjlCqdKlkclkbN+2jeFDh5EnTx5pxX2m+rS0zTBd2xLi43V+ORgZGem8R2pqKseOHaNs2bI6t78mJCTo6N/M+yghPkFNr1obVNpvaGhIQkKC1s/CyMhQrS6QT94Vt7WlYMEC1KlTm9iYWLZs2crYceNYs3o1xRSH3MfHx6v1X3h4OJMnTaKgtTXBQUE6tcdLY0OzT9P3/ZcgPj4eq+9oTOvp6VGkSBGq16iBayM3PBcsBGDuX39haWlJy5/kZzZ8D2M6K5QsWZJ169Yxbtw4DI2MyJUrF7GxaTsZM/uMExLiFfm0jA8j7WWrODuzcOkSoqOiuHblKo8ePSI+PuPdk/43brBm5SpcGzXCuaqLlB4fH4+lgZVG/rTxEa9dd7w8PavjY+Hfc6lWswZVM3Dkm5mZ0cDNjaMHD1K8RHHq1q9PSEgIC/7+G319fZKTkzX6IiEhAUMtn21m41v1mqHWNqSVV7U5TZs2wsGhHB8+fODs2QuEhYdr3KNLl45qf//csh2HDh0iLCyM3bt20at3b6330cbXsh83rl9n1cqVNGrUCBcVJ/63sB/xcXFMHD8eIyMjhg4fpjXP0OHD6Nq9G79NmkxqSgrJSUlq7xufs18TEhLQ12E/DNPZDwMDA4rZ2uLq5kaDhg1JTUnB28uLKZMns2TpUsqrLLj6+++/qVmzJrVr1yY+Pp6cWt7pvhc7bWhoyPFjxzTsdEJCQpZscHq+1Lh+8eIF27ZtY9bs2VrfFdKTkJD4L+yHYsdjJm0wNDTExrogSz3/VsvTvFlj2nboybwFSyUHkfK7I+JjJBvXLaW8kwMm+Wxo2LAhDerVZNPea1odRImJyRjoa44fQwP5T/eExKytfP1rfAsSk1J48SacE+ceEpegGTpz0YYzVKtoi8sPn7bKVCAQCAQCgUCQMc7Oznh6erJgwQJ2795NoUKFmDlzpsYC7JSUFLXIGufPnwdg//797N+/Xy3v7NmzaaOI4FGsWDHWr19PaGgoOXLkwM7Ojr///pufVRZnZpX/CwdRUFAQxYsX13l9woQJ+Pv7M2TIEEqXLk2ePHnYtm0bR44c0cibfrWh6qq4QoUK8eHDBzZs2MAGLYdwf6r3TrnqMCuHUGWFHDlyMGjQIEaPHs3du3c1rkdGRmpd+WdpacmjR7rDIGRERv2lvKe2MG6WlpZ8/PhRI00VZR3p09O34cOHD0REROgM4xcSEiI5IjILXZERygONlSg/b+WP0U/RkT4ddPelLlJTU3F3dycqKorhw4dja2tLrly5WLRokdaQgdr6MSkpiQ8fPpCSkkJKSgqzZ8+WdoSpklkIwqy2fc2aNcyfP58ZM2YQGxuLo6MjEydOxMXFRWu5rGBkZKw15nyCIk3bGQKq6UlJmmUTExMyLJuxHiPi4uJo0qSJmr7mLX7i4oUL3Lt3DxcXFxITMr6HpE9L2xLTtc3I2FhnfPyEhASd97h+/Trv37+na9euJCUlaTyT5ubmGBkZ6ejfzPvISBHCSVv59O03MjLS+lkoJ3SMVMJBjftlAvp6eixcmLYqo379erRs1YYlS5by55/yMWxsbCz1X1xcHCNHjCAmJoZpM2YwdvRondqNpbGh2afp+/5LYGz8fY3pDevWsX3bNvbs3YuJiQmbNmzEwsICmSyVv+f8SfOmP6Kvr/9djOmskCdPHmrWrIm5uTn5zMxo0bIl48eMYf2WzZSxs8v0M1ae55GYqGV8JGgva2FpSVWFDW7o5sb6tWsZMXgIO729tO72eP7sORPGjqNk6VJM/E39kExjY2MStT0rkm7N8F4g71PI2vjwOX6cgNu32bBju9a6VBk36VcSExJYsmAhSxTOw8Y//oiNTSHOnj5NbGwsISEhxMV8wNxcfq5LopbPNrPxrXpNW/t1fW6FbGwoZCM/NP7Hpo35feYcBrmPwNtru9Ywc0osLCz4GBnJlcuX1RxEmY2Pr2E/nj97xrixYylVqhSTp0xRv/9Xth8pKSlMmvgrz54+ZYHnIin8WnrsFOdzWlhYYG5uzt27d5kxdRrLli5V3OPz9auRkRHJOuxHYjr78deffxJw5w6bt26VwpY1atSIDu3bM3fuXDZs3AjA8WPHuH3rFjsUZ54aGxtrDan2vdhpgEaNG+M+YICanTYyMsqSDU7PlxrXHn//zQ8VKkhnXCpJTU0lNDSUeMV5PnFRYQr7Yfgv7IfcCaStfFbaYGqaj59b/Mi6DVsJDn5PwYIFpDoLF7KhvFNa+L3cuXNTs3IJjp+9z/uwaPT00hbAmeXLhaGhPknJmk6gRMXZaEaG2ndtpqeSIpxctYq21HIuSe9xW8llbECbJnLHpu/FR9x9GMS6vztnVI1EVs5P+lSUoaT/bUhpbSjH+ufWnR01w5fTnR01gxgf6RHjQx0xPtLIjprhy49pQebIZF8nlNv3jqurq8a7bHrSh+GfM2cOc+bMybRu1SNc/i3/eQfRo0ePCA4O1ggVpyQhIQE/Pz8mTJigtltl69atWvOHh4er/a0MXacab7xevXp06dJFo+ynhlVQ7qp5//79J5XLiB9//BFPT0+WLl1KoULqoQvSH2SsJCwsLEsHp2sjK/0VFham9Z7pnXrpd4Ep6wgLC6NgwbTDZNOHEzQ1NcXCwoKVK1dq1ajqePmUA3M/lU/RoYqynbr6UhcvXrwgMDCQJUuW4ObmJqXHx2tfPa6tHw0MDDA3NychIYEcOXIwcOBAtbqUmKc7jDo9WW17iRIlWLRoEUlJSfj7+zNv3jwGDRrEmTNn/nG4nfz58xOi5RlShlnSNVmVz9RUHtpMSz8r0/LrKJuhHisrXr18iYViMlipz8Jc3gdKJ0xIaMb6TDPSp3AqKsvmz5+flJQUwsPD1caZ0umj6x5HDh8mZ86cNG3alFu3bjGgf3+16wcPHZLr1xJyJv2zrg1lyDFdfaxsI8jD8ly9dk1jR2jafeR1vX79mgsXLvDbZPUQUaamplSsWIGbt26l3d/Kinfv3pGUlMS4MWN4/OgRnkuWkKLY5fZvxkZG7f63KHVr3Psbjendu3bh7OIivSwrx3TL1q1ZMG8eb968wdbW9rsY05+ClZUVb9+9o37DBsyYAieOHaeMnV2mfZXPVH6gfdi/6OeGrq6sWLKUM6dP07ptW7VrwUFBjBwyhDx58jBv4SIN22hlZcUbLeMjTLq39sUF+fLp1h2WTvfShYto4OaKgYEB796+BSA6OgqA90HBJCclSXnz5MnD7HkeBAcF8e7tW6xtbLC2saF7hw6AevjKQwf2kD+/JaGhmu8FyrSs2RRt5UMxVXw2GeHm2gAv7/3cuOFPzZq6d0dZWVnx4uVLPkZGqt8n3VhNz5e2H0FBQQxRjI9Fi7SPj69pP/74fSbnzp5lxqyZajuZdKG0H/Xq12fD+vXEx8djbGz8Wfs1q/YjKSmJffv20aNHD7UzbfQNDKhZqxY7d+wgKSkJAwMDFi5ciFujRhgYGPD69Wvy5s0rhTsODg4mKTkZKyur78ZOK6lTt56andb9zvT1x/XVK1e4cOECf8+dy1uFnQG50zEsLIymKqETAQ7t25YF+6F7cZWVIrScrvJZsR/WBeWL+j5GRlGwYAHpfhaWmu/JZqa5SEmV0WHoerX0bYt6YGluQliE5mSZMi2/+ae/ExcuaEqZ4lacPP9AchAt33Ke+tVLo6+vx7sQuS2LjpE7w0LCoklOTiG/RVoIzXv37n3yfbPK8+fPP3udVapUAb6c7uyoGT6/7uyoGcT40IUYH3LE+NAkO2qGLzemBYL/Gv9pB1FCQgK///47hoaGtG/fXmuexMREUlNT1Xb3REdH4+vrqzX/iRMn1EJxHTt2jAIFCkg7P2rUqCEdsq0rJj/Id5dkFmqhZMmSWFtb4+XlRbNmzTLMm1Vy5szJoEGDmDBhgsa5IVWqVOHYsWM8ffpUCif18eNHLly4QMeOHbVVlyknTpygV69e0t/Hjh0jV65c2NnZSffcuXMnHz9+lJxQT58+5cGDB7RNNymWHjs7O4yNjTlx4oTaobjHjx9Xy1ezZk1Wr16NgYEBZctqHlz9tfinOqytrbGystI69jIiQUu4jzdv3uDv7691R522fnR0dERPTw8TExMqVqzI06dPKV++vM57pt81peRT225gYEDVqlUZMGAA7u7uvH//nhIlSmRaTht2dnZcv3ZN45yIu4qQj3b2dlrL5cyZk1KlS3MvUPNl5W5AAIWLFP5HTqty5crx6uVLQt6/p3CRIpK+16/lBycrJ6uUISnt7TUPS1bqK126NIGBgRrXAgICKFKkiKRPWUfg3bvUrlNHyhd49y6pqanSym1VEhMT8fHxoYqzM1YFCmBkbMyyZcvU8lhaWmJvb8/Nmzel8IWShjt3MTY2xtZWd8iSAgUKYG5uTqCWF8KAu3ext0v7bOzt7PD23svTZ88opRLuTuonO3kbwsLkjtQULQcPJicnq4UsKlu2LJcvX+bXiRO5evUqs+fMoUqVKqxdswZAa79A5n1fWKXvvwRK3d/LmA4PCyc1JW07tHJMxypWzyvDSn7rMf2pKPs54kMEqampxERHAyr9bJdJP9/TbEdgQACFC2fez0obqrynko8REYwYMpTEpCRWLF+m1dmj1B0THU1ulfERGCDfOVw6A90lS5figZbxERhwl0KFC2Oi0P0+OJgTR49x4qjm91Dfbt0obVeGdekW2hS0tqag4l0pKiqK1y9fUcnZmeFDhgAQHxeJpaUF9nZl8L95i9TUVLVJ+YAApU0pqlU/QIECVpibmxEYeF/jWsDde9jbldFZVokyVFZ0tObuD1XKli3LhQsXyKvSx3Kdyufw69uPiIgIhg4eTFJiIsvWrtXqSPia9mPR/AUc2L+f0WPH0KRp0yy1QWk/oqKjkclkxMTEYGxs/Fn7VbIfgYHSuYjKv1NTU6Vn+2NEBCnJyWrhHpQkK9JTUlIwMDAgOCiIo0eOcFRL9IHuXbpSxs6OLdu3fTd2WrUdqv+11/HO9C3GtfIM0HFjx2pcUy6e69SpE02aNCE+JkxhP0rj739bi/24J7cfxXQfBizZj3sPNK4F3L2PvY7zFFV5/UbuyDI3N5PXaZWf/JYWhLzX4nj/EIOBfk7+GPeT2sIXC1MTStvm5/b9d6SmysiZM+3avcdBGBvpU8Qm44VZukhITFbbmfQ+LJqT5x9y8vxDjbz9f91BKdv8rJnTSUrTFvXh3xIXF8fz588pXrw4uXLl+uz1w+fXnR01w5fXnR01gxgfSsT40I4YH9lTM3wd3QLBf4n/jIMoNTVVOrQpNjaWhw8fsmPHDl69esWcOXMoUkT7D4K8efNSvnx5Vq1ahYWFBfr6+qxcuZI8efJo7NgAuHTpEn/++Se1atXi/Pnz7Nu3jylTpkg/QoYPH067du3o27cvHTp0IH/+/ISGhnLlyhWcnZ356aefALnzx8fHB2dnZ3LlykWJEiXUfoiBfDfL+PHjGT16NMOGDaNly5YYGhpy8+ZNypcvT4MGDf5RX7Vo0YIlS5Zw+fJlChcuLKW3adOG9evXM3DgQEaOHImRkRHLli1DX1+fnioHdnt6erJ48WJ8fHx09quSly9fMnHiRJo1a0ZgYCArV66kZ8+ekjOoV69eeHl50adPH9zd3UlISGDBggXY2Njo3PWlxMzMjE6dOrFq1SqMjY1xcHDg0KFDvHz5Ui1frVq1aNCgAf369aNfv37Y29sTFxfH48ePefHiBbNmzfrULvxH/FMdenp6DBgwgFmzZmFpaSmNvcuXL2d4P6WD0cPDg9TUVGJjY1m0aJHOkIX79u2T+vHw4cNcvXpVbcfPL7/8Qs+ePRk5ciTNmzcnX758BAUFceHCBdq0aUO1atWwsrIiX758HDp0iCJFimBoaIi9vX2W2n7//n3+/PNPmjVrRtGiRYmOjmbFihUULlyYYsX+eVz0hm6ubN60ib1eXnTr0QOQOz8O7t+Pk5OTNGEZ9O4d8fHxFFdxRDV0c2XJIk8CAwMl59mL58+5dvUaXbt3+0d63Bo34vixY+zbu4/BQ4dI+jZv2kQ+U1OcnJxITExk/759OJUvLzmf3yn0qTrK3NzcWLRoEYF37+KgCN/3/Plzrl69qrYj0sXFBVNTU3bt3q02mb5r926MjY2po5Km5Ny5c0RFRUmr+/Ply0c1LWeNuLq5cfLkSbVVtR8+RHDi5Enq1q2jlv7qldwJVrRomt1wdW3IwYMHpbO6AC5fvsKLFy/p2jVtJ2b9+vWY6zGPXTt3MWGC/Fw2mUzGrt17KFCgABUqyFfDFi1WlJw5c3L8+AnatW0rTboEBwfj73+TihUrSnU2bdqUtWvXcsrXl18nTaKhqyuJiYkcUIwN6wzHhhuLFy1SGxvPnz/n2tWrdFPp+y+BUvf3MqaL2RaTO1IiIjAzM5PGtLe3N7lz56ZYsWLfxZjOjKioKIyNjSVHt7Kf/1Zs7S7rUI7ExEQO7T+Ao1o/Byn6ubhUVwPXhiz1XMy9wEDKqfTz9WvX6NItrZ8jPkRgamaqsXt1/9698nuWS3Pax8XFMXr4CEJCQliyYjlFddhFpe793t50VvRZYmIiRw4cwEFFd3CQXLetyoKB+g1dWb54MfcDAymr0P3y+XNuXLtGp25pB8TPmqt+9gaAz7Hj+J44waTp0ylQMOPQuCsWL5GHQR02lJrVFWd1RMtX7bu5NeCkzyl8fP1o5NYQUNqUU9StWytzm9KwAQcPHiYoKBhra/mu2MtXrsltispZQuEfPmChZffr3n0HyZEjB2XL2WeaFyCXyo6Mb2k/4uLiGDF8OCEhISxfsULn9+bXsh+bNmxk86ZN9OrTh05adtUrSb+LR2k/jh09QkHrglhaWn72fnVW2I89u3apOYh279qFsbGxZFPMLSzImzcvp06dYpC7u2QbYmNjOXvmDMWLF8dYEZpxroeHVE8uY2OePXvG3LlzAZg2YwYFChb4ruw0yHfinDxxQrLTIP9O37RpE95eXnRXGR/fYly7uLio9auSWTNnYmNjQ5++fanwww8UK1aM2Ej5rji3hvU46XMan1NnaORaH4APERGc8PGjbp0a6vbj9RsAihZJ+y3k2rAuBw8eIyjoPdbWcjt2+cp1Xrx8Rdcu7aR84R8isFA4gZS8fx/CvgNHKFOmlLQbCaBxowZs3b6HS5evUb2as7x8eDjnrz2jilNRrWf/1KtWmtOXn3Dm6hPqV5M7piIi4/C7/IQalUtgaJC2CPFNsHzneeGC8t9WySmpxMUlkjePejjRe4+DefoqDLdaac7J30drLkD0vfiIUxcf8etgN6ws1H+bfsmwOrly5fpi9X+perOjZvhyurOjZhDjIz1ifKgjxkca2VEzfFndgoyRaVlkJfh++c84iOLj46VdLiYmJhQpUoQaNWqwePFiSpUqlWFZDw8PpkyZwoQJEzAzM6N79+7Exsaydu1ajbwzZsxgx44dbNu2jdy5czNixAi6dk2bNLG1tWXXrl0sWLCA6dOnExsbi5WVFS4uLmqrpqdMmcIff/xB//79iY+PZ+PGjVSrVk3jfs2aNcPY2Jjly5czWnEmhoODg9pOkk9F6XCYPFn93II8efKwadMm5syZw2+//UZqaiqVK1dm8+bN2Cji84P8h7GhoaHGmTvaGDVqFFeuXGHEiBHo6enRpUsXRo0aJV23sbFh06ZN/PXXX4wdO5acOXNSq1YtJkyYoOEw08aYMWNISUlh9erVpKam0qhRI8aMGcMvv/yilm/RokWsXLmSbdu28ebNG/LmzUuZMmWkg72+Fv9UR/fu3YmMjGTr1q1s27aNGjVqMHPmTPr166ezjKGhIZ6ensyYMYMRI0ZgY2ODu7s7ly5dklaCquLh4cG8efNYsmQJlpaW/P7779SrV0+6XrlyZbZu3YqnpycTJ04kKSkJa2trqlevjq2t/IDdnDlzMnv2bObNm0evXr2kXShFihTJtO1WVlbkz5+fFStWEBwcTN68eXF2dubvv//OcDdeZjiVL49rIzeWLF5MePgHihYtyqGDB3n77i2TVM5mmDZlKjeuX+fKjetSWrv27dnn5c3o4SPo2r07+vr6bN2yGQsLC7qmm+w4e/oMDx/JV2AmJyfz+NEj1qxeDUDduvUoo1i5Xq9+fVyqVmXDunV8jIigjF0ZLCwsePf2LdWqV8fb2xtvb2/evXvHlKlTpfqn/PYb169f54a/v5TWvkMHvLy9GT58ON179EBfX58tm+X6VCfTjY2NcR88mDmzZ/PLuHHUqFEDf39/Dh86xJChQ7WGkDxy+DCGhoYZxko9ffo0L54/x9ramqCgIC5evMiIkSMJCLhLcnIy7oMGquUfOMgdgMOHDkhpffv05uTJkwwYMIjOXToRGxvHxo2bKFO6NC1VDtYrWLAgXbt0ZsPGTSQnJ+Pg6IjfKT/8/f35Y9ZMaYxYmJvTsuXPeHvvZeBAdxo2bEBMbCy7du0mISGBPr17SXX6q/Tl6dOnCbhzB/+bN3nz5g2NGjcmLi6OXLlyMWXKFG5cv861GzfS+r59e/Z6eTFy+HC6KcbGli1bsLCw0JgIO3P6NA8V57glJyfz6NEjVivGRr26dSmjsqNDmf70yRNFXx2SFj8on/cKFSp8V2O6Z69eTJn8G3169KRVmzYYGRthampKyPv3VKhYES8vr286pqOiotixXX5WjrIvd2zfTt68ecmTNy+dOslXR1+7do2///oLV1dXSpcuTVJSElYFCnD+7FksFJPUQwcN4t3bt/w65Tep/hlTp+B//QYXr1+T0tq0b88+772MGTGSLt27oa+vz/bNWzC3sKCzygTv0SOH8d69h3r161OoSGFiY2K5fPEiVy5fpnbdOjhXTTt/bdqkyQTevctPLX/m+bNnPFcJCZsrlwn1GtSXxkcDNzdWLF7Ch/APFClahCMHD/Hu7VvGq5xXNHPKVG7euMHZa1eltNbt23Fg715+GTmKTt26oa+vx44tWzG3sKCjimOrbv36pOfxA/lYqV6rpjQBDbB5/XqePnmCg6MTevp6nPU7zdVLl+jv7k45LefSubk2oHx5R6ZN/4OnT59jbmbKzt1epKam4D5Q/TtvoPtwAA4f9JLS+vbpwcmTvgwYOJTOnTvIbcqmLZQpXYqWPzeX8q1Zs4Gbt25Ts0Z1bKwL8jEyEh9fP+7evUenju0opuJ0at68DY0bu1K6dCmMDA25c/cBhw4dIk/evFw4f56FCxZQtGhRDh48yNt37/hN5Tn8WvZj8qRJ3A0I4OeWLXn27JlayGATExPqKxYVfQ37ccrXF8+FCylarBglSpTgyKHDam2qWr2adO7hyKHDKFCwII5OTphbmBMcFISRkRHRUdFUrlyFHTt24O3t/Vn71djYmEHu7vw5Zw7jf/lFsh9HDh9m8JAhkv3Q09OjW/fuLFu6lF49e9K8eXNSU1PZt3cvwcHB/D5zplRnfZVFW3kVO2X2eHnx7OlT7gYEkJBQhuVLl31Xdvr40WPcv3ePQYMHS84vp/LlcWvUiMWLFxMeHv5Nx7UyHGV6PObOxcLCgvoNGkh9rcTNtR7ltzswbcafPH36QmE/9sod0gN6q+UdOHg0AIf375DS+vbqxsmTfgxwH0nnTu3k9mPzdsqULknLFmnhMBcuWs6rN2+p5lIZq/z5efsuiD1e+4mLi+eXMUPV7tOnV1eOn/Rj7PgpdOvSHov8hdi2bRvJKan061RDo30A9aqVwqFMQf5c7sOL1+GY5s3F3hN3SE1NpXc79QgQo2fuBWCHp3wxX1x8Eu2HbqBhjdIUL2KBsZEBT1+FcfT0PfKYGNKjddr3Sh2XkqTn8Qt5OMGqFWwxyydWXAsEAoFAIBD8P5BDlj4ukECQCV26dMHOzo5p06Z9aykCQaZ8jIkmISGBFUuXceTIYaIioyhdpgwD3QdRo2ZNKd+g/gM0JmlAvvNkvocHly9dQpYqo3KVKowaM4aixdTDHE2fOpVDBw5q1TBl2lR+UnF2xMbGsnzJUk6cOE7kx0iKFi2KTSEb7t+/T1RkFPb29gwcNIiaKvr69+unMZmu1Ocxdy6XLl0iNTWVKs7OjBkzRuvqcS8vLzZv2sSbN28oaG1Nx44d6dKli8buhejoaBq5uVGrVi2tq3eVTJ0yhQMHDmi9NqB/f9zd1R1EzZq3ANQdRABPnjzBw2M+/jdvYmBgQJ3atRk9eqQ0gagkNTWVdes3sGePF6GhoRQrVpQ+vXvTrNmPavmSk5PZvXsPe/ftk3YYODo40L9/P1xc5Kt3TXLnZcKECXh7e+ts3/6DBylUqBAD+vfXmAgDed/P8/Dg0qVLyFJTqVKlCqPHjNHY2TFt6lQO6uinqdOm0UJlbDhXrqxTz7UbN6TJsPfhYd/VmL544QIb1skdATExMRQtWpT8VlY8efL4m4/pt2/f8lPz5hplQb5I4dBh+eT1q1evWLVyJTdv3iQ0NBSZTIZNIRvy5s3HmzeviY6KplSZ0gwY5E71mmmTeoMHDNBwEIE8DNsCj3lcuXQJmUxGpSpVGDFmNEWLpvXzvcBANm/YSGBAAOHh4ejp6VHM1pYmzX6kfceO6OunreNp/VMLgrScHQNgbWOD98EDWOTJK29LaAirly/n+OEjREdFUap0afq6D6JajTTdwwYM1HAQKXV7zpvP1UuXSJXJqFSlMsNGj6ZIUfXxkZ61K1aybtUqDpw8oeYgunDuHOtXrebF8+ekpqRQqkwZOnbtQgPFeXYF8soXmyh3EAFERkYyf8ES/PzOEJ+QgKNjOUaNHIqjg3r4iWY/yRcYqDqIAJ48eYrHvEX437ytsCk1GD1qOJaWaTtVLl26wrbtu7h3/wEfPkRgZGRImdKlad2qBS1aNFMbQzN+n82t2wEEBweTkJBI4cKFady4Me07dmTThg0cPnKEqMhISpcpg7u7u9pz+LXsR4vmzbWeLQTycX7g0KGvZj9WLl/Bah1nDgIsW7mCKs5yW7xrx06OHzvGi+fPiYqOIl/efDg4OmKSOzc3rl+T7MeAgQM/a78CeHt5sXnzZt6+eUPBggXp0LEjnbV8Jx49coRt27bx8sULEpOSKFO6NN179tS5gELZz7P//JP1a9diYWFBdHT0d2enbW1tadehA23atcU0t3xRVlRMDAkJCSxfuvS7GNfaaNG8OaVKlWLBokVSXyt3EAFERkYxf9Ey/PzOEZ+QiKODPaNGuOPooB7iuNnP8oWFqg4igCdPnuGxYCn+N+9gYKBPnVrVGT1ysJr9OHLMh9179vPs+QuiIqPIkzcPlSv+QL++3SlXVjN84OvXb5m/cBlXrt4gOSWFihUr0uunopQtVVAjr5Ko6HiWbb3AuatPSUxKxr5kAdy71tIo03HYBiDNQZSUnMLyLRe4GfiaoJAoEhKTsTTPTZXyRene2hkbq4wX+K3bfZkNe66yd0VfyUFkU3lYhmX+DbGxsdy7d49y5cplmxXe2VEzZE/dQvPXIzvqFpq/DtlRM2Rf3f8lwh/uyDzTN8LC7p8do/JfRjiIBJ9EYmIi1atX58CBA2rh6QSC75WPMdGZZ/qOUE7SxMRqHk78vZJb8cIVGxP1jZVkHZPc8on0qJiMzxn53lBOhmWncZ2dx3R4dPYZ04DkIHofFfmNlWQdbQ6i7x2TPHLntbAfXx5Vx0V2QfTz10Obg+h7xySffFfUuxue31hJ1hEOInWyo2bInrqF5q9HdtQtNH8dsqNmyL66/0uEPdiaeaZvhKW97hDY/6/8Z0LM/T+SkpKicTC8Kqorjz8XhoaG3Ei3WlAgEAgEAoFAIBAIBAKBQCAQCAQCQfZCOIiyMb169eLKlSs6ryvPfhEIBAKBQCAQCAQCgUAgEAgEAoFAIFBFOIiyMdOnTycmg1AQBQoU+IpqBAKBQCAQCAQCgUAgEAgEAoFA8P+MLDXlW0sQfALCQZSNKVmy5LeWIBAIBAKBQCAQCAQCgUAgEAgEAoEgG5LzWwsQCAQCgUAgEAgEAoFAIBAIBAKBQCAQfF3EDiKBQCAQCAQCgUAgEAgEAoFAIBAIBP8amUyEmMtOiB1EAoFAIBAIBAKBQCAQCAQCgUAgEAgE/2cIB5FAIBAIBAKBQCAQCAQCgUAgEAgEAsH/GTlkMpnsW4sQCAQCgUAgEAgEAoFAIBAIBAKBQJC9eR+w9ltL0EkBpz7fWsJ3h9hBJBAIBAKBQCAQCAQCgUAgEAgEAoFA8H+G/rcWIBAIBF+S2Jioby3hkzDJnReA2NiYb6wk65iY5AaE5q+BUndMbOw3VpJ1cpuYABARHf2NlWQdszx5gOw7PmKjw76xkqxjkscSgNiYj99YSdYxyW0KZN/xkR3tR3bUHBWTfcZH3tzysZGdNEOa7mxp84JOf2MlWcfEuh6Qfd+pPzexsbHcu3ePcuXKYaJ43rMD2VG30Pz1yI66heavQ3bUDNlXt0DwrRAOIoFAIBAIBAKBQCAQCAQCgUAgEAgE/xqZLOVbSxB8AiLEnEAgEAgEAoFAIBAIBAKBQCAQCAQCwf8ZwkEkEAgEAoFAIBAIBAKBQCAQCAQCgUDwf4YIMScQCAQCgUAgEAgEAoFAIBAIBAKB4N+TKkLMZSfEDiKBQCAQCAQCgUAgEAgEAoFAIBAIBIL/M/6TO4g8PT1ZvHgxADly5CB37twUKlQIFxcXunbtSqlSpdTyN2zYkPr16zNlypQs3+Py5cv06NGD3bt3U758+c+iuVatWlSuXFkt3d7enl9++YW+ffv+63t0796d0NBQ9u3bh6Ghodq14cOHc+vWLQ4fPkzu3Ln/9b208eDBAzp16oSPjw8WFhY6882aNQsfHx98fX0/y329vLyYOHEiFy9ezPC+gu+L3r17U7VqVdzd3T9bnVFRUSxYsAjfU6eIj4/HycmR0aNGUa5c2SyVf/r0GR4e8/C/eRMDAwPq1K7F6DGjsTA3V8u3evUa7gQEEBBwl/DwcAYO6M+gQQMzrb9f/wFcv34DIyMjcuTIgZOTE6NHj6JcuXJZ1PcUDw8P/P0V+urUZvToMVhYqOtLTU1l48aN7Nq1m9DQUGxti9G7dx9+/LGpWr4pU6Zy4MABjfsUL14cb28v6e/IyEj+/vtvjh8/Tnx8PDY2Njx79oxcuXJx4cL5r65blaSkJDp27MSzZ88YNWokPXr0UNO8f/9+EhMTyZkzJ8nJyQwcOIBBgwZ9V5o7derEsmXLOHjwEJGRkSQmJmotN3v2bJo0Va/3/fv3eMydy8WLF5HJZDg7OzNm7FiKFCmiUX6vtzcbN23i7Zs3FCxYkM6dO9Opc2et9zp27Bhbt2zh0aNH6OvrU7JkSQYPGULVqlXV8oWFhfHnnDmcOnWKDx8+YGhoSHJyMgClS5dm4ODBVKteXWdfqLZjgYcHly9dIlUmo4qzM6NGj6awSjuCg4I4sH8/58+d49XLl+TMmZNSpUvTu29fqlarlmH9f/z+O/v27qVW7drMW7hQax65/ViAr6/Sfnzb57NSJfX3BVWqVXNh+dKFcs0Ll+B76oxcs6MDo0cNo1w5+6xpfvYcD4+F+N+8jYGBPnVq12T06OFqNu99SAgLFy7hbuB9QkJCyZkzJ7a2RenQvi0tfvqRHDly6Kx/0OARXL58la5duzJ2zAgpXd7Xnvie8lOx1SM+0VbPx//mLRVbPVKLrV7LnYC7Kra6H4MGDVDLo6olJiZGGsOGhoaUKFGCIUMGa4x7dS2f31Zktc43b94wevRoHj9+QmpqKoaGhtSvX58JEydiZmamlnf79u3s3LmTN69fY2ZmRu3atfn48SNXrlz5LLajebNmvHv3TmsfFS1alH379wMQHx/PH7Nmce7cOT5+/IhMJsPY2JifWrRg3LhxGBgY6Oxr+Pw2z9fXl927d/P40SM+fvyIubk55cuXZ+CgQZQuXVrKl5iYyLJlyzh08CBRUVGUKFGCx48fk5yczMbNm3FwcMhQ8zwPDy4pNFdxdmb0mDHaNe/dy+aNG3n79i0FCxakY+fOdOrUSSPfsWPH2LhhA8+ePsXExIS69eoxfPhwzNI9A9FRUaxZs4Yzp08TFBSEmZkZefPmJTw8nJiYGEqXKYP74MFUz6Kdzko7du/axdWrVwkICCA4KIifWrRg2vTpGvXduH6dTZs28fDBAz58+EDevHmxs7Ojb//+VKxYUaeO793u9e7dmwsXLtCxdX0mjOySQTtiWbB8D75n/YlPSMSpbHFGD2lPOTvbDPWnpqZy8NglfM7c4MGjV3yMiqGwTX6aNHShR8fGGBmpP0M79/px9cZ9Au49I+j9B1o0rcGMib0z7afv7Z3a1/cUu3fv4dHjx9KzWqlSJYYOHYqdnV2WNAkEAoFAIBD8v/KfdBABGBsbs2HDBgBiYmJ4+PAhO3bsYOfOncyaNYuWLVtKeRcvXky+fPm+lVRJg4mJiYaDaMeOHRQqVOiz3GP69Om0bNmS1atXM3jwYCn9zJkzHDt2jCVLlnwx5xDAggULaNOmzVd30tSvX58dO3Z8889Y8GkMHDiQYcOG0aVLF0xNTf91fampqQwbPoKHDx/Rs0d3zMzM2LlrN/0HDGTLlk3YFiuWYfng4GD69utP3jx5GDp0CHGxsWzctJlHj5+wedMGtUmrJUuXkT+/JWXt7blw8WKW9J04cRJ//5sA2NnZ0bx5M3bu3EX//gPYsmULtrZZ0Ne3H3nz5mHo0KHExcWyceMmHj16zObNm9T0LV68hHXr1tGmTWscHR3x8/Pj119/JUeOHDRt2kStXkNDQ6ZM+U0tLU+ePNL/p6amMmDAAB48eECPHt0xMTFh4cJF0rXM+FK6lWzfvoOgoCC1NFXN8fHx5M6dm9TUVJKTk/n48eN3p3nKlKn4+PjQpUtnLC3zM3/+fHLkyEHfvn2xLV5cylf+hx/U6omNjWVA//5ER0fTp29f9PX12bplC/379WPb9u1qE8S7d+/mj1mzcHV1pVu3bvjfuMFff/1FfHw8vXqrTxQtX76cVStX4ubmRouffyY5OZknjx/z/v17tXxBQUH06d2bHDly0KlTJ076+HD/3j1sChWie8+eHDpwgFHDh7N0xQoqVqqks79jY2MZPHAg0dHR9OrTB319fbZt2cKgAQPYvHUrpop2nDl9mo3r11Ovfn2a/fQTKcnJHD50iGGDBzN56lRa/Pyz1vrvBQZy8MABjIyMdGpITU1l2LDhPHz4kJ49e8jtxzd+PmfO/F3jPg8fPmLjxo3UqF5VrnnEWB4+fEzPHl0UNs+L/gOHsGXzOmyLFc1E83v69htM3jy5GTpkIHFxcWzctJVHj5+yeeNqSXNExEeC34fg5lofa2trkpOTuXT5ClOnzeTFi5cMG6rd4erj68ft2wHa+3r4KIWt7qZiq93ZsmVDFm31QIWtHqyw1Vt49PgxmzetT2erlytstR0XLl7KUIuDQzmuX78hLbDp3r07wcHBGuNeQ8tn/tyzWmdsbCzt2rUnPj6eH374gaJFi3L58mWOHz/OvXv38N67l5w55YEEFi5cyIb163Fzc6NL5848ePCAPXv2YGBggPvgwZ/FdowdN47Y2Fi1/nn37h1Llyyheo0aUlpCQgJnz54lMjISl6pVKWBlxfnz59m9axevXr5k2fLlOvv7S9i8x48ekS9vXrp0kT9DoWFh7N+3jx7du7N+/Xrs7OVOh6lTpuDj40PnLl0oU7o0c+fOlZzhGREbG8ugAQOIjo6mt8K+bd26lYH9+7Nl2zY1zXt272b2H3/Q0NWVrt264e/vz1yl5l690tq2axdzZs+matWqjBo9mvfBwWzbto17gYGs37hRsnWpqakMHjyYZ0+f0qVLF0qUKMHqNWt4/PgxJiYmDB0+nBPHjjFi+HBWZMFOZ7UdG9avJzY2FkdHR0JDQ3XW+VLh6G/Tti2W+fMTFRnJkcOHGdCvHwsWLqRmrVoaZbKD3bt582aGGqR2TPDk4ZPX9OzUGDPTPOzc60f/ER5sWTUJ2yIFdZaNj09k6pz1lHcoSbuWdbEwy8ftu09Yvm4/V67fY+WCMWoOrPXbjhEbG49j2eKEhmX+DiTp+87eqR89fkzefHnp0qUTZmZmhIWGsf/AQdq3b8+OHTsoWzZrjiuBQCAQCASfB5lMhJjLVsj+gyxatEhWsWJFjfT4+HhZjx49ZI6OjrKXL1/+q3tcunRJZmdnJ7t9+/a/qkeJnZ2dbPXq1Z+lrozw9PSUlS9fXmp/fHy8zM3NTebu7v5F7/vy5UuZvb297O7du5nmnTlzpqxBgwb/+p7JycmyxMTEf13P1yQuLu5bS/iuaNiwoWzdunX/qo6Y6EhZTHSkzNtrj8zOzk62d6+XlPbq1QtZlSpVZMOHD5PSdP2bNOlX2Q8/lJc9fvRQSvPxOSGzs7OTbdywXi3vo4f3ZTHRkbLXr17K7OzsZB5z/86w7vCwEFm1atVkdnZ2Mjs7O9n06dNlMTHRslevXin0DZfFxERn+G/SpEmyH374Qfb48SMpzcfHR65v4wYp7dmzpzIHBwfZb79NltKio6NkHTt2lNWpU0cWGflRSh8zZoysQoUKGd7X29tLZmdnJzty5IgsJiZa9scff8hcXV1lDg4OsnLlyn0T3cp/r169lFWuXFk2f/58mZ2dnWzZsqUamh89eiiLiYmWBQTckdnZ2cmaNfvxu9I8deoUNe2vXr2S2dnZyVxcXGTt2rWTRcfE6Py3eMkSmZ2dnezylStS2p2AAFm5cuVks+fMkdJCw8JkVatWlfXp21et/IiRI2UVKlSQvX33Tkq7cPGizN7eXrZ8xYoM7x0dEyPr3bu3rEGDBrLw8HDZrVu3ZHZ2djLPJUtkH6KiZB+iomRBoaGyhg0bytq2ayelafu3aPFimZ2dnez8pUtSmv/t27Jy5crJZs2eLaVdv3lT9uzlS7WywWFhssaNG8tq16mjte7wyEhZ23btZGPGjZPVq1dP1rtPH9mHqKg0+5FunO/du1fls/q2z6e2f7/++qvM3t5e9vRxoMx7zw65Zu+dspioUFlMVKjs1ctHcs3Dhkhpuv5N+nW87Ify5WWPHwZIaT4njyhs3upMy/fr21tWoUIFWWREsMa18NA3svr168nmz/s7zeZFR8hioiNk3l67FH29R0p79eqZoq+HSmm6/k2aNFFhq+9LaT4+xxW616nlffQwUBYTHSF7/eq5wlb/pXZdqWXRwvkye3t72YrlS2WvXj2TOTs7y0aPHv1NPves1jl//jyZnZ2dbNy4cVJafHy8zNnZWWZnZye7dv26LDomRvbs+XOZg4ODbNSoURq2w87OTnbo8OHPYju0/VuwYIH82T5/Xkq7dPmyzM7OTrZ02TJZdEyMTCaTv6tWrlxZZmdnJ3v+4sVXtXna/r14+VLm4OAgmzhxolbNZ86ckTk4OMiqKPr60pUrssjoaK3/PBX27eLly1La7Tt35Jpnz5bS3oeGylyqVpX16dNHrfyIESNkFSpUkL1++1YWGR0tC/vwQValShVZp06dZB+joqR8hw4fltnZ2clWrl4tpZ09f17++2PNGplMJpPs9OAhQ2R2dnayffv3y0LCwmQNGzaUtWvXTmcbPqUdkdHRsgcPH0raKlSoIBs9ZkyGdav+ex8SIqtRo4asZ8+essjo6DRbrbAt2cHuLVb01W/jB8hi3vlp/ee9Za68Hds8pLRX9w7IqlSuKBvu3k1nuZh3frKIlydl50+s0UifN3uszM7OTuZzYKla+iP/PbLot6dkMe/8ZBUqlJeNGd5To2x2eqdW/RcSEqKwrb/9q98SGr8tYmJk165dk8UobFR2ITvqFpq/HtlRt9D8dciOmmWy7Kv7v8Q7/8Xf7T+BJv9XZxAZGRnx22+/kZSUxK5du6T0hg0bMmPGDOlvf39/Bg0aRO3atalYsSItW7Zk7969WusMDw9n6NChVKxYkdq1a7Ncy8rGJ0+e4O7uTpUqVahYsSIDBgzg5cuX0nV7xerDv/76C3t7e+zt7bl8+bJ0bc2aNWr1+fn50alTJypUqICLiwvdu3cnMDAwS30wYMAAChUqxHRFKIfly5cTGhoqhdcLCgpi7NixVKtWjR9++IGuXbsSEKC+wtfHx4c2bdpQqVIlnJ2dadOmDadPn87wvnv37qVo0aIaITaCg4MZNGgQFSpUoE6dOqxatUqjrKenJ5W0rFp0dnbG09NT+rt79+4MHDgQb29vmjRpQvny5bl//z5eXl7Y29sTHh4OwOvXr7G3t2ffvn3MmDEDFxcXateuzZ9//qmx2vPEiRNSXR06dODu3bsa99WGckytXr2aOnXqUKFCBdzd3dVWGit1eHl5MXnyZKpVq0b79u0BeaiSefPm0aBBA5ycnPjxxx+1hvravn07DRo0oEKFCvTu3ZvAwECpzvRatmzZQoMGDahSpQqDBw+W+gPkKz9nzJhBkyZNqFChAg0bNmTKlClERUVpbVdGdYE8fNfvv/9O3bp1cXJyomHDhnh4eACwadMmKlSoQHR0tFqZJ0+eYG9vrzaWmjZtqvPZ+1RO+vhgaWmJa8OGUpqFuTmNG7nh53daZ9guJT4+vtSpUwcbG2sprXq1atjaFuP4iZNqeT9119/6DRuJi4vT2F1nYWFO48aN8PPzy4I+H4U+mzR91atha2vL8eMnpDQ/Pz+Sk5Np376DlJYjRw7at29PcHAwt2/f1qg7JSVF4/NScvKkD/nz56dx48a8ePGSLVu2MG7cOAoVKkRKSso31b1o0SKKFy9O8+bNdGpWflbK1c3Pn7/4rjQ/fPgIPT092rRpo5bP0cmJ27dv8/r1a906T57E0dERR0dHKa1EiRK4VK3KiRNpOq9dvUpERAQdFPZHSYcOHYiLi+Ps2bNS2tYtW7C0tKRLly7IZDKNHQFKnj17xvnz5+nRowfm5uYcOnQIPT09Wqm0w8jIiBYtW3Ln9m2C0+3yUsXXxwcHR0ccVNpRvEQJnF1c8FFpR8lSpTTCJxkaGlKzVi3eBwcTExOjUfeRQ4fk39Equ2q1cfKkwn64qtiP7+T5VJKYmMjx48dxcXGhYMECnPQ5haWlBa4N66dpNjencaOG+J0+m7lmXz/q1KmVzua5KGxe5iFgbQrZEB8fT1KS5i6K9Ru2kJqaSo/umuGVTvr4KnQ3SKfbDT+/M1no61PUqVM7ne6q/8hWK7U8ePhIMe47YW5mhpubGz4+Pt/kc89qncodqc2bN5fSjIyMcHFxAZC+32/fvk1ycjJNmqTtUvI5eVJ6Nz1+7Bjw722HNo4cOULhwoWpoBIu7OTJkxo2z8jIiAoVKgBy26KLL2HztGFhYYGxsbHUh6qak5KSmDVrFj179pT6OiwsTLdmhX1zTGffXFxc1DVfu8bHiAjadeigVr69QvM5heYnjx8TFRVFo8aN1XaJ1KlbFxMTE+nzBIhRfK9bWFoCcPToUfT09GjUqBEg73cjIyNatmrF7du3NXbj/pN2ANgUKpRhCLaMMM6VCzNzc433UyXZwe5lJWz4ydPXsbTIh2vdtN8/FmZ5adygCn7nb5KYmKSzrIGBPhWdSmmkN6xTEYBnL9Q/x0LWlp/8eXzP79SqWFpaqj2rAoFAIBAIBALt/F85iEB+5kHBggXx9/fXmeft27dUrlyZWbNmsWzZMho3bszkyZPx9vbWyPvbb79RtGhRPD09adGiBfPnz2fbtm3S9VevXtGpUyc+fvzInDlzmDt3LuHh4fTq1Ut6ed6xYwcgd3Ds2LGDHTt2qP3AUuXw4cMMGjQIS0tLPDw8mDt3LpUrVyY4ODhL7Tc0NGTGjBmcPXuWpUuXsnr1akaMGIG1tTUfP36kS5cu3L9/n99++w1PT09y5cpFz549pR+3L1++ZMSIEZQpU4bFixczf/58fvzxx0zDMl24cEGrk2fw4MEEBAQwbdo0pk6dysmTJzmm8uP1UwkICGDNmjWMGDGClStXqk2gpGfBggXkzJmTBQsW0KlTJ9auXavmOAwMDGTEiBGULl2axYsX06pVK0aNGpXpjx4lJ06c4OTJk0ybNo1p06Zx+/Zthg0bppFv3rx5yGQyPDw8GDduHAAjRoxgx44d9O7dmxUrVlCnTh3GjRun5jzx8fFh6tSp1KpVi8WLF1OjRg1GjhypVYuvry++vr5MmTKFSZMmcfXqVX7/PS08UXx8PCkpKYwaNYpVq1YxYsQIrl69qhaKMKt1JSYm0rNnTw4cOEDfvn1ZtWoVw4YN48OHDwD8/PPPyGQyDh48qFbv7t27KViwILVr15bSKlWqxL179zQcUP+E+/cfULasvRRSR4mjkyPx8fG8ePFSR0l5XP3w8HActJw14uToyIMHD/6xrnfvgli/fj25c+fWGrfd0dFJoe9F5voctOhzUtd3//4DcuXKRcmSJTTyKa+rEh8fT+3adahTpy716tVn9uzZak6B+/fv4+DgQM6cOZk7dy4uLs7UqVMbc8VE/bfSHRAQwIEDBxk7dozGxIeq5vQkJyd/V5pDQkIoVqyYWlg/gOvXrgHwc4sWdOvalYvpwq6kpqby6NEjredeODk68vrVK8lhcl+h2SHd946yjx7cvy+lXblyBUdHR7Zt24Zrw4bUrlWLxo0asX37drWyykUOFpaW9OzZk/Xr15OSksLkiRN5+/atlM/RyQmAhw8fauhUtuPxo0daz/lxcHTk9evXWh0/qoSFhWFsbIyxsbFaekxMDIsXLaJX795Y5s+fYR3379+nbNmymvbjGz+fqpw7d47IyEh+VoTSu//goXab5+ig0PwqA80hhId/wMFB0yY5OZbjwQPNzys+PoEPHyJ4+/Yd+w8cZv/+Q/zwgxPGxuqh++Q2bxMjhg/WuCZv40Ptfe3k8NVttVLL1avXcHR0YNu2HTR0bYyXlxdxcXGsWLEicy2f8XP/lDqVdnrJkiXcvn2b4OBgTp8+zY0bN9SuJyneaYwUz0d623Hv3r20e/wL25Ge+/fv8+zZM5r++KNa+oP79ylWrBhGRkZ8+PCBd+/eceLECe7cuQPIz8zRxpeyeUqioqL4EB7Oo0ePmDF9OtHR0dLZZkrNefLkYevWrURGRjJ48GAKFy4MwEsd9kFp37RpdnRyUrNvSk3p85ZTala0SfmOqi1kppGREQ8ePJDCvzo4OJArVy6WL13KxYsXuXXrFgUKFGDVypU4ODpK7VP+Jnmo4/n5lHb8E6Kjo4n48IHnz56xxNOTJ48f46Lj3K/sYfeMNerRaMejV5QtU0yzHeVKEB+fyItXWfvdp0pYeCQAZqZ5MsmZOd/rOzXIn9XwDx949OgxkyZNIjo6mhoqYSwFAoFAIBB8HWSpqd/tP4Em/9kziDLCxsYmw5jXqqstZTIZLi4uBAcHs2PHDlq3bq2Wt3r16owfPx6AOnXqEBYWxrJly+jYsSM5c+Zk8eLFmJqasm7dOunHWuXKlXF1dWXXrl107dpVOmjVxsYmw0NXZTIZf/75J7Vq1WLJkiVSer169T6p/VWrVqVNmzYsXLgQR0dHunfvDsCGDRuIjIxk165dWCpWE9aoUYMmTZqwZs0afvnlFwIDA0lKSuK3336TJizr1KmT4f1kMhkBAQG4ubmppZ85c4aAgADWr18vvbhXq1aNevXqaRyenFU+fvzI7t27M3QMKfnhhx+YPHkyALVq1eLy5cscO3aMzooDilesWEGRIkXw9PSUfgDlzp2bX375JUtaYmJiWLVqFXnz5gXA2tqaXr16cfbsWbU+K1u2LLNmzZL+vnTpEr6+vqxZs0ZyltSqVYuQkBA8PT2lz3vZsmVUr16dmTNnAvLPITk5mYVaDliXyWQsW7ZMOjvhzZs3rFixgtTUVHLmzImFhYW0qwzkk+RFihShS5cuPHv2jBIlSmS5rr179xIYGMj27dvVnILKZ8fU1JQmTZqwZ88e6WDl5ORk9u/fT7t27dDT01PrG5CvcK5fv36W+l0XoaGhVK6s6aTMr5gYDgkJoUyZ0hrXAUIU9iK/lknk/Pnz8/HjRxITE6U++RTmzZ+Pvb09Dx8+0ll/mr4y2vWFZF1faGgIlpaaq0VV76Oa1rNnT8qVK0tqqowLFy6wc+cuHj58xKpVK9HX1yc0NJSqVavi5+fHpUuXJEeB0t59C91yW/kXjRs3pkKFCmoOCUDSrIvvSXNMTAylSpWU8uXMmZPatWtTrlw5Vq1aRaNGjbhz5w7Dhg5l/oIFkm1R6tCq08pKun/u3LkJDQ1FT09PYwebgYEBpqamks7IyEgiIiK4desWV69eZcDAgVhbW7N/3z7++vNP9PX1adeuHQCvFLtkZ82cSfny5bG2tkZfX59bN28yzN2dLdu3Y5wrl+SYUe0LVSIV7dDmwFG2LVTRDm28evUKv1OnaOjmpmZbANasWoWRsTGdu3bVWlYVuf2orJH+LZ/P9Bw+fARDQ0PFTpAkQkPDqFy5opZ7Wqpo1lxlDqo2z1KH5kgNm7d12w48F6ftoq5a1ZnpUydplJ833xP7snY0bdJI673lfa1N97+11ZZadWdEaGgo5cs7qoz7awwc0I/omDhWrVrF2rXrsLGxkca9mpYv8Ll/Sp0xMTEUL16cp0+f0rNnLymfq6srPj4+Up3Kc8xu3byJi4uLVEdiknyHgurO539qO7Rx5PBhAH5M5yAKDQ0lv5UVvj4+TJw4UUovVaoUkZGRhOlYMPIlbJ4qPXv04Pnz5wCYmJjQr18/WrVqpaY5NDSU1atWMX78ePLkyUNexXuycoFMeiIz0qzy2X+K5mLFipEjRw5u3brFzyrnrT5//lzSERkZiZmZGWbm5syeM4eZv/+udoZRjRo1+PPvv9HX19fov3/bjn/CxPHjpUUQBgYGtGnbln79+2vNm13tnkY7wj9SuYLmd0p+S/mZnCFhHylTqkiW6lKyftsx8uQ2pnY1p08qp1Xfd/pODdCjZy+eP5c7ZU1MTHB3d9dqowUCgUAgEAgEafzf7SAC+URcRlvpP378yMyZM2nQoIEUqmLHjh1aw1oowzAoadKkCcHBwVIYhvPnz9OwYUP09PRITk4mOTmZfPny4eDgoBG6LTOePn1KUFAQbdu2/aRy2hgwYAAAvXv3libNzp8/T7Vq1TA1NZW05syZExcXF2nlpr29PXp6eowdOxZfX98sbdlXvuin/1F7+/Zt8ubNq7aqK2/evNSsWfMft8vOzi5LziFAbacKyCcfVMNn3Llzh/r166utjnN1dc2ylmrVqknOIZD/4DYzM+PWrVtq+dI7Ps6fP4+ZmRnVq1eXPofk5GRq1qzJvXv3SElJISUlhXv37tFQJbRDRvpcXFzUfmiVKlWKpKQktbAne/fupVWrVlSqVAlHR0e6dJGH/lFOiGS1rosXL1KqVCmtO8aUdOjQgdu3b/Po0SMATp8+TVhYmMbYVu5CyWiSKaskJCRo/bFpZGgkXddZNl5+TVt5Q6PMy+vi6tVr+Pj4Mm7sGN36jAwz15cQr1tfuvYlJCSoHf6bdh9lvngpbfjwYYwYMZzGjRvTtGkTZsyYztChQ7h58yYnT/pI9enr6zN79mzatm0rOTOUduVb6N6/fz+PHz9mxIjhOu6rva9Vr38vmpOTkzEwSLtXoUKFWLNmDS0Uu0R+qFCBbdu3Y25uzvx58zTaYKBVp/qYSoiP16pTqVWZT7njICIigt+mTKFHjx40btyYRZ6elCxZkjWrV0vllHktLS1ZuXIlBgYGFLW1ZeLkybx+/ZpjR4/K6zfMeHwr0//JsxcfF8ev48djZGTEkHS7N1++eMGObdsYNmJEliahvsfnU5Xo6GjOnTtHvXr1yJcvX5pmbXVl0ueq1wwNMh8/Spo2bcSypQv5Y9Y0fmzaWGueq1ev4+Prx7gxIzK8t3ZbnQXdkq3WbPc/sdUJCQnS+2JExEem/DaJHj26UatWLQAKFizI6tVrdJT9/J/7p9ZpYmKCk5Mj48aNZd48D3r37o2fn59avnLlyuFUvjzr169n3759UgjkM6dPo6+vr9Zf/9R2pCc1NZVjx45RtmxZSpYsqXZNOW6dXVxYtmwZCxcupFOnTpKzIjNb8TltnipTp01j8ZIlTJw4kRIlSpCQkEBKSoqa5kULF1K4cGEpXLBSs9LZlp54pWYtWjQ0JySgr0OzoYpmM3Nz3Bo14uDBg2zetInXr1/jf+MGv06YoLUPzczNsS9bllGjRpE/f36KFi2Kv78/06dN06nl37TjnzB0+HAWL13Kb1OmUL58eZKSkqS+T092tXuaWhIxNNBcx2mksG0JCVmLZqBkzabDXL5+j2ED2pA3r8knldWu7/t7p1YybepUliz2ZOLECZQqVUrtWRUIBAKBQCAQaOf/cgdRUFAQxRUrJrUxYcIE/P39GTJkCKVLlyZPnjxs27aNI0eOaORN7/RQXTlVqFAhPnz4wIYNG9iwYYNGWV0/TnUREREBQIECBT6pnDaU91bV8OHDB27evKk1vF2xYsUAeSz35cuXs2LFCoYOHSqtZp8yZYrOGNG6Jvjev3+v0X+AtHvpn6BtNZouVJ03IO8L1fBxISEhGvry5MmjNWyHNrS1w8LCQsPZkT7fhw8fiIiI0BlmMCQkRHI4ptenq++UE4ZK0v/QPXHiBOPHj6djx46MGjUKMzMzQkJCGDJkiMaPtMzqioiIyHSMuri4UKJECXbv3s3EiRPZs2cPLi4u0jhLX3d8vPZJUW0kJiaqhTyMi43G3NwcIyMjreEBExLlujP6XI0UoUK0lU9MyLy8KklJSXz8+JHk5BT+mD0bV9eGlC1bVre+BN3hYiR9Rsa69aVrn5GREUlaJqsSpHZoD32i1N20aVOWLFnK6dOnadTIDSMjI+7evcuHDx9wdx8k5Vf+GP/auqOjo/H0XEyPHt2xtLQkNDSU8HD5qumYmBhSUlJ09nWarm+n2draWi2vvr4+SUkZjztTU1N+/vln1q1bR3BwMAULFpQ0JGnVqT6mjIyNtepUalVtj1KT6o7QnDlz0rhxY5YvX867d++wsbGRwlU1atSInDlzYmxsTFJiIq5ubkz77Tdu375Ny9atScggHJJq+qc+eykpKUz+9VeePX3KgkWLsFKsgFcyb+5cfqhQgYbpnOqpqamEhYaSFBcHQFxcbMb24zt4PpOSkti7dx8JCQnUq1ePkJAQjA1lcs3a6sqkz1WvJWobezrKF7KxoZBigcaPTRvz+8w5DHIfgbfXdoyNjUhOTuavv+fTvFlTHB0dFDZFHvIoLi6O0NDQTGx1FnRLtlqz3RmNF2Wfx8bGSjvMlVpSU+QhCOTjvqFaHzg7O3Po0CFp3Ktp+QKf+6fUKZPJCAwMZPPmzTg6ykN/NW/+E4mJiWzZsoWoyEip7Ny5c5kwfryaU6BUqVIkJyerLRL5p7YjPdevX+f9+/d01bJ7TzluLS0tsbS0JLeJCU2bNmXa9Ok8ePBA5/2+hM1TRXkGEkCTpk1pqzgjadTo0RgZGRH+4QMXLlxg+YoV0sIi5bmW2hwWAMZKzVq0aGg2MiJZh+bEdJonTZpEQkICC+bPZ8H8+QD82KwZhYsU4ZSvLyYmcgfB69evGTRgANN//51WP//MwYMHMTMzo2+/fkybOpXz589Tq1atDMPWfWo7/gnK87AAmjVvTtcuXZjy229MmDiReMVihLiYD5ibm333di89SUnJfIxUD79nbpYXIyNDErWcY5SgsG3KxQlZ4ZjvVZas2Uer5rXp0Kp+lsup6sulJ//t8r29U2ujQoUfpP9v3boNzZo1IykpidGjR//jOtMTJ70jxH22OpUon09dZzz+G76U7uyoGb6c7uyoGcT4SI8YH2lkR83w5ce0IHNkMrFAIzvxf+cgevToEcHBwRqh4pQkJCTg5+fHhAkTpNBrAFu3btWaP/3ZKMqJBeVklKmpKfXq1ZN2Y6jyqaEWlGHXVMN9fE5MTU2pU6cOI0ZornBTde7UrVuXunXrEh0dzZkzZ5g9ezYTJ07U6gRT1R2pMhkBckeXtrNl0h/mq23iJCkpSeuXyD899FYbVlZWGvqio6OzvKpN26HE4eHhGhOV6TWbmppiYWHBypUrtdZrYWGBnp4e+vr6GvoyOgg5I44ePUq5cuWYMWOGlHblypV/VJeZmVmW4oe3b9+e1atX07t3b06fPq0WZk+Jcofap4Qc9Pf3p0ePHmpphw7uJ3/+/FpDS6Z/ZrVhpQxlpaO8qalplkNh3Lp1i/4D0hwpz5+/4Hbn25ibmfHm9RtA7sh4+/Yt5ubmWdNnlXV9+fNbcfXqNY2dlJnd59atW/TvP0D6++jRowwbNhQLCwsCAwPp06cPMTEx0jkDqrsLw8PDtTqDv4TujRs3kZSUROPGTfDx8WHixF+lvCtXrqJ69erkz2+Z4a60r93XqpqVoeWU58oZGRnx7l0QSUlJag79kHR1FFQ4lj5+/EjBggUlHVp1KtquLJs/f35SUlI0PielU1D1+8zIyIi8efNqhGtTlouKjMTGxkYqozz83MrKirfv3qGnp4epmZk0OR2WybjLp2hHWAbPbn4tZf+YOZNzZ88yfeZMnNOFE7x25QoXL1zgz7//Vgs/mJySQlhYGM2aNFHLf+jQwX9nP77w83nr1i08PDwApLCphw7sIX9+S0JDNb8TlGlZs3nayodiapovU5vn5toAL+/93LjhT82a1Tl46CjPX7xk0qTxvH37jtt3Apj461QAvLy88PLyYs/uHYq+1n7frOvW1tdhOnXfvRsIwKbNW9m0Wf6+d+jgXvLnz09kZKRi3OeRxr3yPUzpFIqMjNJwEH2Jz/1T6kxISEBPT09jUtrOzg5AbSFFgQIFWLtuHS9fvOB9SAhDBg+mTJkynDp1Cltb27R7/EPbkZ4jhw+TM2dOmjZtqnEtf/78Wt9zyyqcBO/ShQxV8iVsni7y5cuHi4sLR44cYdTo0eTPn59bt25RqVIlChcuzOvXr+VaFbvS9XLmJOjdO6zTjZF8GWlO99l/iuY8efMyb/58gt694+3bt9jY2GBTqBB9evXC3NxcWiB18MABEhMTpdCkVlZWvHv3jrqKUMa3bt6kVq1aGv2n0R+f0I5/i4GBAfXq1mXdunX4nTqldi072D0AYxP5RFVMbAI+p28w8ffVanUc2v4H+S1MCQ3TPN9VmWalCDWXGZeuBvLbH+uoU708k0ZnHk41PbcCntB/pIe6vu/onTozTE1NqV69OgcOHNAIZ/k5SB9l4XNQpUoVQP38t8/N59adHTXDl9edHTWDGB9KxPjQJDtqhi83pgWC/xr/Vw6ihIQEfv/9dwwNDaXwD+lJTEwkNTVVbSIuOjoaX19frflPnDihFmbu2LFjFChQQFoFXqNGDenQ3PQTaqoYGBhk6ngoWbIk1tbWeHl50axZswzz/hNq1qzJ/v37KVWqVJa84nny5KFZs2bcvn2bgwcP6sxnZGREoUKFpB/MSsqXL09UVBQXL16UwsxFRUVx4cIFNYdAwYIFSUpK4uXLl9IOk0uXLn3xcAHly5eXnIXK1aAnT57McvnLly8TFRUl/RC/ePEiERERaqtQtVGzZk1Wr16NgYGBdAaPNsqVK4ePjw89e/aU0j5FnyrxWsKtHDhw4B/VVbNmTQ4fPsytW7cybGvr1q2ZP38+Y8eOxdjYWOtEkXLMqJ6BlBlly5Zl3bp10t/x8bFYWlpib2+Hv/9N6awkJQF37mJsbIytbTFt1QHyyTNzc3MCtby4BNy9i71iwi0r2NnZsWzZEg4eOMQhxRkMffrKY+m/fSefPNi7dy979+5l3jwPAgLuKPTZ6qxT0heoRV/AXezt0/TZ29vh7e3N06fP1M62UYa8VM2rqXsZ8fHxjBo1itq1a2NpaUnx4sV58+YNq1evZvXq1RrlhgwZSv369Zk/f57GtS+hOygoiMjISJ3x5vv06Uu1atUIDAyUDupWRV9f/6v3dUaalQ6MgIAAtbCNaXXIJ03fKJ4VZVjGnDlzUrp0aQIDA7XoDKBIkSLSIgVlHYF371Jb5Xy0wLt3SU1NxU5xPWfOnNjZ2Uln0ak5rBQTiMr7l1McPh2imOgtW7Ysly9fJiIigo8REZgp8t1VtMNOxzOUM2dOSpUurfVHw92AAAoXLqyx2GLRggUc3L+fUWPG0ESLXVGGEh0/bpzGNaXeTp060aRJE+Lj4xX2wx5/f39N+/EdPJ8WFhbkyJGD6tWrS+FjLS0tsLcrg//NW1o0K21e0Qw0W2FubkZg4H1NzXfvYW+n/bwlVZRhp6Kj5U7joKAgkpOT6d1noM4yjx8/xt6+zFe31cq+bt7sR35qIT+HUv65y7WUKVOae/fuS+P+9u3b5MqVS7IhynGvVctn/Nw/pU4DAwNSUlKIjo6WzowEuH9f/plqm8AtZmtLMVtbypQpg7+/P6GhoVI4S6Wef2I7VElMTMTHx4cqzs5YadltbGdvz7Vr1zR0K21ZnnS7v5V8CZuXEQkJCURHR0uaL1++zI0bN/hJ5RxTJWvWrGHHjh34nTnzSZoLa9McGKgWIln5XabNhlrb2EhOqaioKHloYpVdk2FhYchkMlIV79NKO610Hirfs5XjUFe/fEo7PgdK2zLnzz8pqBhD8XGR2c7uHTx2kYPHLjKoVwsqlE87F8nSwhT70kXwv/NYsx2BzzA2NsS2aMFMtdwJfMro35bhYG/Ln9MHoK+v+3eoLuxKF2GZx0iMLeTv89/bO3VWiI+PJz4+Xnov+RzExcXx/PlzihcvTq5cuT5bvap8Tr1KvrTu7KgZPr/u7KgZxPjQhRgf2VMzfB3dAsF/if+sgyg1NZWbN28C8u2KDx8+ZMeOHbx69Yo5c+ZQpIj2gz3z5s1L+fLlWbVqFRYWFujr67Ny5Ury5MmjdbfLpUuX+PPPP6lVqxbnz59n3759TJkyRXpZHj58OO3ataNv37506NBBWnF15coVnJ2d+emnnwC588fHxwdnZ2dy5cpFiRIl1H4Yg3ynyfjx4xk9ejTDhg2jZcuWGBoacvPmTcqXL0+DBg3+VZ/16tWLAwcO0K1bN3r06EGhQoUIDw/n1q1bFCxYkF69erF9+3Zu3rxJnTp1sLKy4vXr1+zfv1+Kx6+LypUrc/fuXbW0unXr4ujoyLhx4xg7dix58+aV+jp9PhMTEyZPnkz//v0JCgpi48aN/yr8QFYYOHAg7dq1Y9iwYXTo0IG3b9+ydu1ajIyMsrRTKXfu3PTv35/+/fsTFRXF3Llz+eGHH6SVmrqoVasWDRo0oF+/fvTr1w97e3vi4uJ4/PgxL168kHbauLu7M3jwYCZPnkzTpk0JDAxk7969AGo/1rJCzZo1mTFjBkuWLKFSpUqcPn1aOhD4U2nZsiVbt25lwIABDB06lDJlyhAcHMy1a9f4/fffpXwWFha4urpy9OhROnbsiLGxZuikgIAATExMPumFwdTUVO0cq9gY+U4WN1dXTp70wcfXl0aK8FgfPkRw4uRJ6tato7Za8dUr+WR70aJpdsLVtSEHDx4kKChIcgBfvnyFFy9e0rWr5g5BXeTLl4/q1apRsEBBXF3TzpDy97/Jps2bAahXrx4tW/5M0aJFOXHiJHXr1k2n75VCX9pEh6urqxZ9l3nx4oVaGJ/69eszd64Hu3btZMKECYA8FNGuXbspUKCA5NRLSEggOTlZmtTJly8f1atXY8GCBQC0bt0KIyMjmjRpzPnz5+nbt6+0Uj06Oprp02cgk8mYO/dvKfTj19DduXMnGjSor9bn4eHhzJw5i59/bkH9+vX5+DGS6dOnc/z4cerWlT+PygkxW9tiX72vM9Jcp05tzp49x9Wr16hUqRLh4eHkyZOH/fv24VS+PNbW1rx//x5vb29sbW3VJn3d3NxYtGgRgXfv4qAIWfn8+XOuXr2qtkPWxcUFU1NTdu3erTZZumv3boyNjdVsVuMmTbhz5w4HDhygjSLEUkJCAkeOHKFkyZLShK+zszMWFhYcOXKEYcOG0bRpU9auXcucP/4gJSWFatWqkZiYyIH9+3F0cpJ2QAW9e0d8fDzFVZzCDV1dWeLpyb3AQMo5yMfYi+fPuX7tGl27dVPrt00bN7Jl0yZ69elDJy07dwGcXVz4a+5cjfTZs2ZhbWND7z59qFShAsWKFSM2NkbRl66cPHkSHx9fGjVS2o8P3+z5VOXChQvIZDJ69eop2b7Y6DDc3Bpw0ucUPr5+NFKERpPbvFPUrVsrc5vXsAEHDx4mKCgYa2v5ZOTlK9fkNq9LRylf+IcPWGhxkOzdd5AcOXJQtpx8UrlJYzetE6yjx06U27yfm+Pk5IRMBidP+uLje4pGbq4qun2yaKsbcPDgIXXdkq3urHF/SAs5W6RIYapXS9txJv/e8KVmzRoEBNzlwIFDNGhQn6NHj1KvXj2OHz9OyZIlKVDA6qt97lmt09HRkXfv3rFw4SImTZLvpExMTJQW9Lgodta9UzxzJdI9c4s9PTE0NJQc1//Wdig5d+4cUVFROlfzV6tWjU0bN+Ll5SXtBk5MTOTQoUPSdV26v4TN07YD9u3bt1y5ckV6N3Fzc2PTxo381KIFDRo0wFix833y5MlER0czctQoihcvrt2+ubmxeNEiAgMDcVDYt+fPn3Pt6lW6qWh2Vmjes2uXmoNo965dGBsbq7VDG4s9PUlJSaGLyhixtbVFJpNx4sQJunTuLNlp5Xl29vb2kp12cnKSxtu/acenoK3vo6Ki8PX1paC1NW6NGpFX8Y4SGy3f9ZMd7J5RrnwMGTKE2tWdaPNTHZwcSmBlaaaWx61+FU6evoHPGX8a1ZevVP4QEcUJv+vUrfmD2jlrr97IFzYULZzmcH36/B3DJ3hSyNqSRXOGYvwJIelUyZc3N9WdHTCxVny3fGfv1KpoGy+vX7/m4sWLODk5fZGQQLly5fpioYa+ZAijL6U7O2qGL6c7O2oGMT7SI8ZHGtlRM3xZ3YKMkaWKEHPZif+sgyhWb0/AAAEAAElEQVQ+Pp6OHeUv8iYmJhQpUoQaNWqwePFiSpUqlWFZDw8PpkyZwoQJEzAzM6N79+7Exsaydu1ajbwzZsxgx44dbNu2jdy5czNixAi1H+i2trbs2rWLBQsWMH36dGJjY7GyssLFxUUtpvaUKVP4448/6N+/P/Hx8WzcuFH6EaxKs2bNMDY2Zvny5YxWxD13cHBQ28X0TzE3N2fHjh0sWLCAuXPnEhERgaWlJRUqVJDqt7e359SpU8yePZuIiAisrKxo3ry51rB0qjRp0oSxY8eqrQjNkSMHS5cuZerUqUyZMoV8+fLRvXt3QkND8fHxUdO1aNEi/vzzT4YMGUK5cuX466+/1H7sfwkcHBxYsGABHh4ekqNjzpw59OjRQ+P8Im00atQIa2trpk6dSmRkJDVr1mT69OlZuveiRYtYuXIl27Zt482bN+TNm5cyZcpIE7IgnySaNm0aK1asYP/+/VSoUIFp06bRp08fDSdbZnTq1InXr1+zefNm1qxZQ+3atfHw8KBDhw6fVA/IwxGuX7+e+fPns2LFCiIiIrC2tqa5llW1jRo14ujRozp3e5w5c4ZGjRpluPsuq7i5uVJ+a3mmTZvB06fPMDczY+euXaSmpuI+SH1l58BB7gAcPpS2i6pvn96cPHmSAQMG0blLJ2Jj49i4cRNlSpempcoKa4CDBw/xLugd8XHylaQ3bvizSrG7pnmz5hQqZEOJEsUpUaK4VKZu3TrcvHWLO3fu8OHDB0JCQliyZKlcn8rZPgADB8r/Pnz4UJq+vn0U+gbQuXMXYmNj2bhxI2XKlKZlyzR9BQsWpGvXLmzYsJHk5GQcHBzx8zuFv78/f/wxS+rrsLAwOnWSTxgpz2y7ePEi586do2bNmtSvXx+Q2yQvL2+2bdtGjx49MDc3Y+fOXeTIkQN9fX01x/XX0F2uXDkNh6JyF06pUqVo0KABKSkp7Nu3j4kTJ1K9ejWSk1O4ffs2ALlymbBqleKzat7sm2t2dnbG2DgXq1atIjY2htu37/Dw4UPi4uKo36ABixcvxmvPHmJiYqTV7Erad+iAl7c3w4cPp3uPHujr67Nl82YsLCzU7KexsTHugwczZ/Zsfhk3jho1auDv78/hQ4cYMnQopqZpoWzatm3LXm9v5syezYsXL7CxtpbOYFE6D0FuB0aOHMmUKVPo2rUrLVu2pJitLad8fChQoAARHz8yZNAg3r19y+QpU6Ry06dO5cb161y+fj3tnu3bs8/bm1EjRtC1e3f09fXZpmhHF5V2+Pn6snjhQooWK0bxEiU4otihp6RqtWpYWlqqrapXZb6HBxYWFtRr0ACzdDbUzc2N8uW3Mm3aNJ4+fSqN82/1fKpy+PARrKyscHZ2Vtfs2oDy5R2ZNv0Pnj59jrmZKTt3e5GamoL7wH7qmt2Hy+s66JWmuU8PTp70ZcDAoXTu3EFu8zZtoUzpUrT8Oc2er1mzgZu3blOzRnVsrAvyMTISH18/7t69R6eO7SimmBRMb/NUKVKkiOQkdXNrSPmtTkyb9ruKrd6tsNUD1MoNHDRErvvQPhXdvTl50ocBA9zp3KWjwlZvVtjqFmrlDx48rMVWrwGgebNmkhYfH1/Mzc2Z9cccPD2XEB8fz9OnT9XG/df63LNa55Ahgzl16hS7d+/mwYP7FClSlEuXLhEVFYWDgwPly5cHYMpvv3H9+nXatG2LvZ0dycnJ0juYgYEBx48f/yy2Q8mRw4cxNDTENd35X0qePXuGiYkJCxcs4NKlS5jmy8eFCxeIjo7mhx9+oKrCsaXUfcPfXyr7JWxeh/btqVq1Knb29uTLl4+XL1+yb+9ekpOTGT5c/tyUL19e/j5z5AgWFhaULlUKb29vKRRy5SpVcHBwYED//ty4fp1rN26kaW7fnr1eXowcPpxuCvu2ZcsWLCws1BwrxsbGDHJ35885cxj/yy+S5iOHDzN4yBA1zevXrePJ48c4li+Pvp4efqdOcenSJdwHD1Y73/KnFi3YtGkTf8yaxdMnTyhTpgyFCxfmzOnTmJqZ8fHjRwYNHMjbd+/4TcVOT5ky5R+3A+DM6dM8fPQIkJ/T9OjRI2kHcr26dSmj2EEyfOhQChQsiJOTExYWFgQFBXFg/35CQkL4Y84creMnO9g9kzzy0KuFbfLToE4ltOFWrwrlHXyYNmc9T5+/w9w0Dzv3+cntYG/1d86Bo+XnTB3eMRuAmNh4hoxbQGRULD06NeHsxTtq+YsUsqKCU9pv4dPnb/HwyWvF55HCoyevWbVRbsfq1aqAXSnNRZXf2zs1QPsOnaha1QV7O7u0Z3X/AZKTkxkzZozWfhYIBAKBQCAQyMkhk8lk31qE4L9PUlISDRo0YOzYsbRq1epby/nHXLx4kV69erFp0yZpkkIbDRs2pH79+kxR+UH9Ndi1axeTJ0/Gx8dH5y6574lffvmFe/fuaQ1n9/HjR2rVqsW6detwcXH5x/dQrnYE+TlY8xcsxM/Pj/j4BBwdHRg1aiSODupnNDRrLp9EVP0xC/DkyRM8PObjf/MmBgYG1Kldm9GjR2KpOGdFSb/+A7h+/QbaWLVyucZErqq+evUbSrvUHB0dGTVqlMYZEs2ayScpVCci0/R54O+v0FenNqNHj9bQl5qayrp169mzZw+hoaEUK1aMPn16q4WujIqK4s8//+T27TuEhISQmppK0aJF+fHHH+nRo7taeLGkpGT++usvTp48SXx8PI6OjpiYmHDt2jUuXDj/VXVr4+3btzRv/hOjRo2UVqQrNXt7e+sMV7lq1UqmTJn6zTV37NiRpUuXcvjwESIiIqTxER8fT548eahUuTJB795x7949tclSkJ9l5DF3LpcuXSI1NZUqzs6MGTNGCtepipeXF5s3beLNmzcUtLamY8eOdOnSRWPHZHh4OAsXLODMmTPExcVhZ2/PoEGD1HbuKTl29CgbNmzg6dOn5M6TBysrK0JDQoiOjqZ0mTIMHDSI6irl3AcM0HAQKduxwMODy5cuIZPJqFylCiPHjFHbrbFqxQpW6zi7DWDpihVU0fHsAbT66SdKlirFvIULJQeRcgcRKOzH/AUK+xH/TZ9PJc+fP6d16zZ069aNMWNGY2KivppebvOW4Od3hviEBBwdyzFq5FAcHdQdks1+ki8+UJ0olWt+ise8RfjfvK2weTUYPWo4lpZpq7QvXbrCtu27uHf/AR8+RGBkZEiZ0qVp3aoFLVo0y3THbaUqNenatStjx6QtNJHrXoSf32kVWz1ci61uKdet4iBK6+sF+N+8pdBdi9GjR2ix1YMysNXLcHauImnx9fWTzlhT2ucBA/pL4/5rfu5ZrfPhw4f88st4Xr16JYVPbtCgAVOnTZNCbfTv14/r169jZ2fHq1evyJkzJ46OjrRp25aTJ058VtsRHR1NIzc3atWqxVwPD416QB7mbe3atVy6dElysOTKlYsfmzVjwoQJ6Ovrq+n+0jZv+fLlnDt7ltevXxMbG4u5uTmVK1emT9++lCmTtjMkISGBpUuXcuTwYSIjI7G3t+eHChXYsnkzGzdv1ukgUmqe5+HBpUuXkKWmUqVKFUaPGUNRLZq9vbzYvHkzb9+8oWDBgnTo2JHO6TSfO3uWVatW8fzZM1JSUihTpgxdu3XDTctisvfv37N82TJuXL9OcHAw+fLlw9zcnPDwcMlOu7u7U0PFTv/bdkybOpWDOsIYT502TQpruHPHDo4fO8bz58+Jio4mX968OJUvT48ePahUuTKAxg4i+P7tnkkeedjSjq3rM2Gk7t0ykVExzF+2B79z/sQnJOFYtjij3NvhWLa4ejs6TpS3Q+EgevsulOadfk1fnUSLpjWYMbG39PeU2es4cFR71IDpE3rx8481MbGWn0v1Pb9TL1++grPnziue1RjMzS2oWrUqAwcOVFuU+TmIjY3l3r17lCtXLlutSs+OuoXmr0d21C00fx2yo2bIvrr/S7y5qv19/3ugsItYPJIe4SASfDU2bNjAvn378PLyyjzzd8K0adOoUaMGZmZmPH78mKVLl1KgQAH27NmTYRi3r+EgioiIYPHixVSvXp3cuXNz584dli9fTvXq1Vm6dOkXu+/n4MGDB9y7d4/JkyczdepUrWeCLV68mCtXrrBx48Z/dS/VH7PZAZPc8t1pqhPT3zvSpLTQ/MVR6o5RTJxmB3IrXsgj0u1w+p7R5iDKDqR3EGUHlKvpY2M0D2T/XjHJLd+tkV3HR3a0H9lRc1RM9hkfSkdLdtIM2h1E3zuSzQs6/Y2VZB1tDqLsgPKd+nOTXScds6NuofnrkR11C81fh+yoGbKv7v8Sr6/89a0l6KRI1V++tYTvjv9siLn/R1JSUsjI36dcdfmt6Ny5M9HR0VpjRH+vREZG8vvvvxMREUGePHmoU6cO48eP/+Qzfr4E+vr6vHr1ioMHDxIVFYW5uTktW7Zk7Nix31papri7uxMeHk6rVq1o27at1jxmZmZMnjz5KysTCAQCgUAgEAgEAoFAIBAIBIL/D4SD6D9Er169uHLlis7r3zrsmKGhIUOGDPlm9/8nzFMc1Pup+Pr6fmYlmuTJk4cVK1Z88ft8CbLSP93SHT4vEAgEAoFAIBAIBAKBQCAQCASCz4dwEP2HmD59uhQfXxsFChT4imoEAoFAIBAIBAKBQCAQCAQCgUDw/4QsNfVbSxB8AsJB9B+iZMmS31qCQCAQCAQCgUAgEAgEAoFAIBAIBIJswLc/SEUgEAgEAoFAIBAIBAKBQCAQCAQCgUDwVRE7iAQCgUAgEAgEAoFAIBAIBAKBQCAQ/GtkspRvLUHwCYgdRAKBQCAQCAQCgUAgEAgEAoFAIBAIBP9nCAeRQCAQCAQCgUAgEAgEAoFAIBAIBALB/xk5ZDKZ7FuLEAgEAoFAIBAIBAKBQCAQCAQCgUCQvXlxfsa3lqAT21pTvrWE7w6xg0ggEAgEAoFAIBAIBAKBQCAQCAQCgeD/DP1vLUAgEAi+JLERT761hE/CxKwUkL10KzV/jIn+xkqyjmnuPADEfnzxjZV8GiamtgDEhVz5xkqyTi6rqgDERn/4xkqyjkkecwDCH+74xko+DQu7jgDEhd//xkqyTi6LsgC8i/z4jZVkHZt8pgDERoV8YyWfhkleKwCiYmK+sZKskzd3bgBiY7LP+DDJLR8fMbGx31hJ1sltYgJAbOS7b6zk0zDJZwNAXFjAN1aSdXJZOgEQGJ597IeDhdx2ZKfnELL3s/gliI2N5d69e5QrVw6TL3ifz4nQ/PXIjrqF5q9DdtQM2Ve3QPCtEA4igUAgEAgEAoFAIBAIBAKBQCAQCAT/Gpks5VtLEHwCIsScQCAQCAQCgUAgEAgEAoFAIBAIBALB/xnCQSQQCAQCgUAgEAgEAoFAIBAIBAKBQPB/hggxJxAIBAKBQCAQCAQCgUAgEAgEAoHgXyNLFSHmshNiB5FAIBAIBAKBQCAQCAQCgUAgEAgEAsH/GWIHkeA/h6enJ4sXL5b+Njc3x87OjuHDh+Ps7IyXlxcTJ07k4sWLWFhYfFEt3bt3x8TEhBUrVnzWeidMmEBAQAAHDx7UuDZz5kw2bdrE8OHDGTJkyCfX7eXlhYGBAS1atFBL/ydt8fT0ZO3atfj7+wPw+vVrvL296dChAwULFvxkbV+TqKhoFniuxff0BeLjE3BysGf0iH6UK1s607IBdx+w/9BJAgIe8OjxM5JTUvC/fPibaAF4+uwlHgtW4X/rLgYG+tSp6cLokQOwMDdVy/fy1VsWLVnHlWu3SEpMoqx9KQYP7I6LcwW1fJWqNdN5LxsbG5KSkoiKiqJ0mdIMGjyYatWrZ6rx/fv3zPfw4PLFS8hkMqo4OzNqzGgKFymilm/3rl1cu3qVuwEBBAcF07zFT0ydPl2jvkH9B3Dj+nWt99LT1yPwbqBGuryfV+Hrd4H4+HicHMsyesQAypUtk6l+UPTz/OX43wrAwMCAOrWqMnrkQCzMzaQ8y1duZMXqzTrrWLdqPhUrOEp/b9+5j5279/P6TRBmZvlo3rwFI0aMIEcmWiKjYliwdDunzl4nLj4Bp3KlGDO0C+Xsi2fajjuBT9h/+CwBgU949OQVySkp3Dy3SSPfvsNnmPrHKp31zJoyiOaNa2m9FhUVxYKFi/E9dVrR1w6MHjWccuXKZqoP4OmzZ3h4LMT/5i15X9euyejRI7AwN5fyPHv2nH37D3Dx0hVev36DSa5clC1rz6BB/XF0KKdR59FjJ9iwYRNPnz0nd+7cNGzYkH6tS2NmmlunjqjoOJasP87pi/eIT0jCwa4ww/s0xb50oQz1p6amcsT3Fn4XA3n49B2RUXEUKmiOW10nurSuhZGhgVr+6Jh41u88zemL93gfFomFaW6cK5aib6f6WBcwy1KfqRIZFc2CJRs4dfqSfHw4lGHM8D6Usy+Vadk7dx+y/7AvAXcf8ujxc/n4uLhPI19QcAh7D/pw9vw1Xr5+i17OnJQqaUv/Xu2pXrWiRv7ExETWrVjB8cNHiIqKolTp0vR1H4RztWqZagp5/54l8+dz9dJlZDIZlapUYcioURQqUlgjb3hYGOtWrOTiuXN8/PgRC0tLqrg488tvv+msf8yQoVy/coVW7dsz8pdxWvNERUWxYNFSfE+dVYzpcoweNZRyZe0z1Q/w9NlzPOYtwv/mHbmdrlWT0aOHqo3p9Bw+cpxJv80gV65cXDh7Qme+pORkOnbuxbNnz/nll19o1aYNy5ct4/ChQwpbXQb3wYOpnkVbPc/Dg0sXL0q2evSYMRTRYquvXr1KQEAAwUFB/NSiBdO02Oorly9z5MgRbt28SfD79+S3tMTZxQV3d3fyW1lp1RAVFcWCBZ74nvKT97WTI6NHjci6/Xj6DA+P+Sr2oxajx4zU6OvVq9dyJ+AuAQF3CQ8PZ+CAfgwaNEBrnWfPneePP+YQHPwemUxGrly5aN+hAyNHjsxUz/v37/GYO5eLij51dnZmzNixGn0KsNfbm42bNvH2zRsKFixI586d6dS5s1qe58+fs3v3bgLu3OH+/fskJiZy8NAhChXStEsJCQls2byZI0eO8ObNG/LmzUOFHxwZ1L8XBQrkZ8GiFfj6nZW/eziWZfTIwZQra5dpmwCePnuBx7zF+N+6o/hOrM7oUUPUvhPfvn1H85adtZafPes3mjZ2lf6u5FJf572qufzAioVTdV6PjIphwZKNnDpzRWHzSjNmWC/K2ZfMtB13Ah+x/9ApAgIf8ejxC7nNu7An03L+t+7R230yAKcOr8PcLF+mZZISE9m2ajV+R48RExmFbelSdBk4gIpVXTIs9+bFS4557+Xh3UCePnxIUmIiK7x2UcDGJsNy716/YUTX7iQlJvL32tWUzuIzBN/fc9iseUvevXun9V5WVlYcO348U03f8lls3qyZVv0dO3ZkxowZmWoXCAQCgUAg+DcIB5HgP4mxsTEbNmwAICgoiKVLl9KrVy+8vLy+qo6pU6eSM+fX26iXkpLCkSNHADh48OA/chB5e3tjYmKi4SD6J21p37499erVk/5+8+YNixcvpn79+t+1gyg1NZVho6fy8NEzenZri5lpPnbuOUR/9/Fs2bAI22Kak46qnLtwFe99xyhTujiFC1vz4uWbb6YlODiUvoN+IW+e3Ax170lcXDwbt+zh0ZMXbF43HwMD+UR0UHAIPfuNRi+nHj27tSWXsRH7Dp5k8PDJLF/yB1UqlZfqnDltrNo9DE0KEBAQwMaNGwkODqZL164ULVaMgwcOMHL4cJatWEHFSpV0aoyNjcV9wEBioqPp1acP+vr6bNu6hYH9B7B521bMzMykvJvWbyAmNhZHR0dCQ0N11tm7bx9atmqllhYXF8ecP/7QOgmamprKsFGTefjoKT27tcfMzJSduw/Q330cWzYsyUI/h9B34Bh5Pw/uTVxsPBu37ObR42dsXu8p9XPDBrUpWlRzYmDx0nXExsXj6JA28bbQczXrN+3ErWEdOndszdNnL9i8eTOPHz9m8ZyBOrWkpqYy7BcPHj5+Sc/OzTAzzctObx/6DZvF1jW/Y1vUOsO2nLt4C++DftiVKkbhQla8eBWkNV+VCmWZ9dsgjfTNO47y8MlLqlVx1FJKoW/EaB4+fEzPHl0xMzNj56499B84mC2b12NbrFiG+oKD39O3nzt58+Rh6JBBxMXFsXHTVh49fsLmjWulvvbeu5+9+w7g2rA+Hdq3JTo6mj179tKzVz8We86nerWqUp07d+1h9py/qVrVmTGjhhMeEcXGjRu5dT0fqz0GaDhslO0YM2Mzj58F07VNLUzzmeB16AqDf13H+gWDKFrIUmcb4hOSmLnQGyf7IrRu6oK5WW7u3H/F6q2nuHbrKYtn9SZHjhzSfYb/toHnr0Jo08yFYoXy8/pdGHsOX+XyjcdsWzqM3CZGGfaZRv+P+Z2Hj5/Ts2tr+fjwOkK/wZPYun4etlrGpyrnLl7He/8J7ErbUrhwQV68fKs1n9+ZK6zftIf6davTolkDUlJSOXjkFINGTGXapGG0+slNLf+c6TM47eNDu86dKVK0KEcPHmT8iJHMX76MHypW1KknNjaWUe7uxETH0K13L/T19dm1dRsjBg5k9ZbNmKrYj/dBwQzt1w+An9u0IX8BK0JDQrivxWGs5IzvKe7euZNhn8jH9C88fPSYnt07K+yHN/0HDmPLpjXYFiuaYfng4Pf07T9Ubj+GDCAuNo6Nm7fx6MkTNm9YJY3p9O1esGgpuXLlyrBugO3bdxMUFCz9PW3qVHx8fOjSubNkq0cMH86KLNjqQQMGEB0dTW+Frd66dSsD+/dny7ZtarZ6w/r1xGbBVnsuWkRkZCSubm4UK1aMN69fs3PnTs6dPcuWbdvIm1vdQZuamsqw4aN4+PARPXt0U9iP3fQf4M6WLRuyYD+C6dtvoNx+DB1MXGwsGzdt4dHjx2zetF6tr5csXU7+/JaUtbfjwsVLOuv0O32GUaPk34tVXZyxKlAQPz8/Nm7YQEJ8POMnTMiwTwf07090dDR9+vaV9+mWLfTv149t27er9enu3bv5Y9YsXF1d6datG/43bvDXX38RHx9Pr969pXy3b99m+7ZtlCxZkhIlSvDgwQOd95/066+cOXOG9u3b4+joyOuXT9i5ey89+gzGtlhRnr94Sc/unTAzNWXn7n30HzSSLRtXYltMc8JcvZ/f03fAcMV3Yn+5nd68g0ePn7J5w3KNMd20iSu1a6o7g38or/4dMnP6rxr3efjkNRs3bqRG1Qoa15SkpqYybOwsHj5+Qc8uLTEzy8tOr6P0GzKFrev+ytzmXbiB9wGfTG1e+nvOmbeGXLmMiYuLzzS/kkUzZ3HR14+fOnagUNEi+B46wszRY5mxZBEOFXS38UFAAId27aZI8eIUsbXl2aNHWbrfuoWL0NPTIynLCuV8j8/huLGjiI2NY8fOXdy9G0jNGtUxMs6Fj48PoaGh+Pv7UykT+/Ytn0UAe3t7+vbtq5ZWokSJDMsIBAKBQPC9IksRIeayE8JBJPhPkjNnTiqqTCj98MMPNGzYkO3bt+Pk5PTVdJQunbUdHp+LixcvEhoaSs2aNblw4QJ3797F0VH7JO2n8k/aYm1tjbV1xpPR3yMnfc9x6/Y9/vrjVxq51gagkVtdWrXvz/JVm5n9+/gMy7dv05xe3dtjbGzEnL+X/isH0b/VsmbDDuLjEti6YRE21gUAcHSww33YJPYfPEnb1j8CsG7DTqKjYti1bRnFbeUTP61bNaVNh4F4zF/F1o2LpDqb/9hQ7R4mZqU4evQoAD1798Z9yGAAmv3UnM7tO+C5cBFr1q/TqXH3zl28evmS9Zs24qAYrzVr1aRzh45s3bSZwcOGSnmXr1qFtY01OXLkoF6t2jrr1LZr6cgh+S6uJj/+qHHtpM9Zbt0O5K/Zk2nkWhdQ9HO7PixfuZHZMyfqvBfAmvXbiI+LZ+vGJWn97GiP+9AJ7D94nLatmwNgV6YkdmXUVywHBb8n+H0orVs2lSZFQkLD2Lx1D81/dGPm9F+kvGXsf+D333/n9DkX6tWurFXLiVNXuXXnEX//PoxGDeROkMYNq9Gy8ziWrfFizrTBGbalQ2tXenf7CWMjQ2bP26DTQVSkcAGKFC6glhafkMgfHutxqexAfkszreVOnvTl1q07/PXnHzRyk4+lRo1cadW6A8uXr2b2HxmvlF2zdj3xcXFs3bweGxu5fXF0dMB98HD2HzhE2zatAGjatDGDBvbDxMREKtvy5xa0adeJFStWSw6ipKQkFi9ZTuXKlVi+1JMcOXJgksecSpUqMWjQIPYfu077Fprjyfd8IHfuvWLWhI40rCUft661neg4cCGrtvgyY1x7nW0w0NdjxV/9+KFc2iRayybO2BQwY/XWU1y99ZSqFeW7eQIevObeozeMGdScds3TJlCLFcnPrIV7uXrrCfVrOGTYZ6qc8L3ArTv3+XvWLzRqKN/h1di1Ni07urNs1TbmzBiTYfkObX6kd7c2GBsbMXvuCp2Tpc5VynNk7xq1VfPtWzelY4+RLFu1Vc1BdPv2bXyPH2fQ8OF06t5Nrql5M3p36syKRZ4sWbtGp559u3fz+uUrlq9fT1lHeT9UrVmT3p06s3PLVvoPSRvvHrNno6enx/IN69UcR7pISEhg6cIFdOnRg7UZ7J496XOKW7fv8Nec32nk1gCARo0a0qpNZ5avWMPsWdMyvM+adRsVY3o1NtbKMV0O9yGj2H/gMG3btNQos2rNBnKbmODiXJlTfmd11h0e/oGVq9fTq2dXli1fzbt37zh+7BgjRo6ke48eADT/6Sc6tm/PooULWbt+vc66du3cycuXL9mwaZP0blGrVi06dujAlk2bGDJsmJR35apVWNvYkCNHDurU0r6TEGDU6NFUrFRJbQFKjZo1GdC/Pzt37GD8L7+o5T950odbt27z11+zaeQm313SqLEbrVq1Y/nylcz+Y6bOe4HCfsTHsXXLxjT74eSIu/tQ9u8/SNu2raW8hw7upVChQnz4EEFD18a661wj/34bNmwwfXr3wiS3KTExMbhUrcq+ffsydBDtVPTpps2b1fq0Q/v2bNq0iWGKPo2Pj2fpkiXUrlOHv+fOBaBNmzakymSsWrWKNm3bki+f/FmrV68ep8+cIXfu3GzcuFHnpPT79+/x9fWle48eTJ40CYDYyHdUrvQDA9xHce/+Q/6aM41GrvXl/dyoAa3admP5ynXMnql7xx3AmnVb5N+Jm1ZiYy1fEOToUBb3oWPZf+AobduoL0IqZ1+G5s109zGg9frNPxeTI0cOfmxUR2e5E6cucuvOA/6eOZZGDWsA0LhhTVp2Gsay1TuYM31Uhvft0KYJvbu3wtjIiNkeq7LkINqz74T8e72FK1t3Hso0P8DDu4GcO+FDz6GDadW1CwD1f2zKiK492Lh4GXNWLddZ1qV2bTYfP0qu3Cbs3bI1Sw4i/0uX8b98hdZdu7Br/YYsaVTyPT6HDRrUJyDgLnfuBDBq5HB69OjG+g1b8PHxwcrKioULFrB+g+52fstnUYlVgQK0bKlp7wUCgUAgEAi+NOIMIsH/BYUKFcLCwoLXr19LaUFBQfTr14+KFSvSuHFj9u7dK13btGkTFSpUIDo6Wq2eJ0+eYG9vz+nTpwG4fv06Xbt2pUqVKlSqVIkWLVrg7e0t5e/evTsDBw7UqGPo0KFUrVqVChUq8PPPP6uFilu7di1t27alSpUq1KhRg4EDB/Ls2bMstfPgwYPkzp2bOXPmYGBgwIEDBzTyREZG8vvvv1O3bl2cnJxo2LAhHh4ekt4rV67g5+eHvb099vb2eHp6arTl8uXL2NvbcyfdquqUlBRq1aol1efp6Smt1rt8+TI9FJNR7dq1k+pPSkqiVq1azJ8/X0PryJEjadeuXZba/jk56XsOSwtzXBvUlNIszE1p7FoHvzOXSEzMeK2lpaU5xsZZX9H/JbX4+J6nTm0XyWkBUL1qJWyLFea4T9qkov+tu9jbl5KcQwC5jI2pV6ca9x48ztDJlZiYyLlz5wDo3rOHlG5kZMTPrVpy5/ZtgoO0OxkAfH18cHB0lJxDAMVLlMDZxYWTJ9TDJtkUspF2Vnwqx44eJVeuXNSrX1/j2knfs4p+TnM6WZib0ditLn5nLpCYmJhh3T6nzlGndrV0/VwZ22JFOH7yTIZljx7zQyaT8WPTtFA6t+/cIzklhSaN1bU2ayYP73fUR/cq2pN+V7C0MMW1nrNKW/LRuGE1/M5dz3z8WphibGSYYR5dnD7nT0xsPM0a19SZ56TPKSwtLXBtWF9FnzmNG7nid/pM5n3te4o6dWpLk0oA1atVxda2GMdPnJTSHMqVVXMOAZiZmVKpUgWePX8upT1+/ISoqCiaNHJVG1sNGjTAJJchJ85q3z1y6vxdLMzyUL9GWrg6c9PcNKztxNnL90lMStbZBgMDfTXnkJJ6CkfPi1chUlpMbAIAFmZ51PJamucF0Lq7KSNOnrqApYUZrvVrSGkW5qY0blgbv7OXszA+zLJk30qXLKYRUsnQ0IDaNasQ/D6MmJhYKf3o0aPk1NOjRetWUpqRkRHNf/6Zu3fu8F5l90t6Tvv4UtbBQXIOAdgWL04VF2dOnUwbDy+eP+fyhQt06t4NUzMzEhISSE7W/RkBbN+4CVmqjI7dumaY76SPn2JMp+2YtTA3p7FbQ/xOn8vCmD5NnTo1JecQQPVqLtgWK8rxk74a+V+8fMWWrTsZPWoYenp6Gda9yHMZxW2L0vxH+cTqgwcP0NPTo3WbNlIeIyMjWrZqxe3btwnKwFb7KGy1Yzpb7eLiwgkNW10oS7a6cpUqGruTK1epgqmpqdZ3n5M+voq+biClye2HG35+WbAfPlmzH4DWMFDaUO7O6tA+7X0ld+7c5Le0JD4+PuM+PXkSx3R9WqJECVyqVlXr02tXrxIREUGH9uqO5w4dOhAXF8fZs2nf56ampuROt/NKGzExMQBYWqrvdsyf30LRBhNcG9SV0uXfiQ3wO30+C9+JZ6hTp4bkHAKoXs1ZMaZPaS0TFxdHUlLW97IkJiZy/PhxXFxcKFhA947Nk6cuKmxemoNdbvNq4nf2atZsnlHW3+k+RkaxZOU23Pt1Im+ezD8HJRdP+ZFTT4/GrdIcBIZGRri1+IkHAQGEBuu2g3lN85Ert4nO6+lJTk5mzfyF/NShPdZaQnFmxvf4HILccaWnp0cbxUKRgwcPUqRIETp06JC5ffuGz6IqiYmJxMbGZp5RIBAIBAKB4DMiHESC/wuio6OJiIigQIG0yduxY8dSu3ZtlixZQrly5ZgwYQJPnjwB4Oeff0Ymk2mc8bN7924KFixI7dq1iY6OZuDAgeTJk4d58+axdOlSOnToQGRkpE4dz58/p2PHjrx48YJJkyaxbNky2rRpw9u3aasRg4KC6NatG0uXLmXmzJmkpqbSqVMnIiIiMmxjQkICx48fp1GjRpLGQ4cOkZqaKuVJTEykZ8+eHDhwgL59+7Jq1SqGDRvGhw8fAHkYOQcHBypXrsyOHTvYsWMH7dtrroJ3cXGhQIECHD6sfq7OpUuXCA0N5aefftIo4+joyJQpUwCYPXu2VL+BgQGtW7dm7969alojIiLw8fH5Jg6i+w+eUta+lMaklaOjHfHxCbx4+VpHye9Ly/v3oYR/iMChnOYZOk4Odjx48ET6OzExCSMtTgHlRPC9+4913uf06dMkJiZimT8/efKoT2I7OMp37D188FBr2dTUVB4/ekQ5LWfCODo58vr1a2kS69/w4cMHLl++RL369bWGZLr/8DFly5bW7GcHe0U/63aQvX8fSnh4BA7lNM9lcHK058ED3X0HcPioL9YFrdTC+CknrNI7apTa7z14rrO++49eUNbOVqMtTg4liY9P1Lkj6HNw5MQFjI0M1ZxTGvoePKBsWXstY9qB+Ph4Xrx4qbPs+/fvCQ//gIOD5hkHTo4OPNAxzlQJCwtTCxWTqJiQNDI21shrZGjAwydBarZJycOn77AvZaPRDge7wsQnJPHyTVimWtIT/iEKANN8aRN95UoXIpexISs3+3Dt1lPeh0Vy484zlqw/TrkyhXGpmPkZGqrcf6jdpjg5lMl0rH8OQsM+YGxspOZkunfvHkWLFSN3OvuhdPo8fqjbfjx5/Bj7cpr2o6yDI29fvyZWYT+uX7kCgLmFJaPdB9Okdh0a167DL8NH8O6t5o6A4KAgtm7YwIBhQ7WODVXuP3hEWXs73WP65SudZd+/D5GPaS3ndsjHtOZOgLkei3BxrkSd2jU0rqkSEBDIgUNHGTtmhOSsCQ4OplixYhq2Wjkp+lDHCnelrXZw0Nyt5ujk9NlsNchDPcXGxqo9p0ru339I2bJlNfvaKav2IxwHLePFydEx09X9ulDu/NywcTMvX77i5cuXLFmyhJAQuaNXV72pqak80tGnTo6OvH71SurT+4o6HNLtCndwcCBnzpw8uH//k3UXKVKEggULsnnTJnx9fQkKCiLg7j1mzZ6Hnp4eTo7ltIzpsooxndG7h3JMa56/5eRYlgcPNb8TV6zeQM26P1KtVmO69hjIxUtXM9V/7vxlIiMj+fnnnzPMd//hM8ral9Bi80rLbd6rzHcEfQpLVm7H0sKMdq0afVK5Zw8fUqhoUUzSORTKKN6Pnj3MWti4rHBg+06io6Jo37vnPyr/PT6HAP9j77zDojq+BvxKl94VUWwgINh7wQYYW+zGnth7xRRjjC2xJAbF3nvviogNEKOJXSygYsFOkd6r8P2xy8Kyu5TExPj75n2ePIa5M3PPPXvuuffOmTnzKPSxzL89ehTKs2fP6NatG07S7BH/1Xsxn5s3blC/fn0aNGhAhw4dZOnSBQKBQCD4FMnLff+f/U+giAgQCf5nycnJIScnhzdv3vD999/z/v17PvvsM9nxwYMHM2zYMFq1asXixYvR0dHh7NmzgGTG12effcaRI0fk+vP29qZXr16oq6vz/PlzkpOT8fDwoG3btrRo0YKhQ4fy1VeqP7ZWrZLsRbJv3z569OhBy5YtGTZsGGPGFGy2OmvWLHr16kWzZs1o164dq1atIisrSyabKgICAkhNTZUFZz7//HPevXvHtWvXZHWOHz/OgwcP2LBhA1999RUtWrSgV69e/PyzJBWEra0t+vr6GBoaUr9+ferXr680RZyamhpdunTB19eXvLw8WbmPjw92dnbY2ysOCujr68vS1NnZ2cn6B8leRVFRUXKz7k6ePImamprSYNM/TUxsnGwGbWHMzSRl0TFxn4Qs0bFxcnXl2pubkpiULAtEVK1amSdPX8jN6gcIuivZm+NdtOrB7pMnT1KuXDlslOScN7cwl8gSHa1wDCApMZGsrCzMzc2VyCgpi1HRtiycP3uO9znv6dRFMb0cQExMnAo9SWYlRxdz/fm/garfSaJn5bNpnz17wZOnYXTq2F5utn3+Sq47d0Pk6t+8eROAd9HxKuWJiU3AQkl6t/yUb9Exqtv+HRKTUvjj2j3atGqAnq7qfVFiYmKL/b2jo1XvVxIdEytXV769GYmJScXOXL4ddId794Lp6F6Q3symShXKlSvHnTt35eqGhYURn5hKZlY2ySmKe0jExqdgZmqgKIe0LCZO9WQBVew+ehk9XW1aNCoI6hob6fHTt/1ITctk8uzt9Bj2GxNnbcPc1IDVC4ehUcIKkqLExMZjYWaiUG5uLin7J/3bq9cRBARexa1dC7mVL9HR0QqrGADM8n1AjAr/kZREtjQ4rbKt1J7eSoM0vy1ahIamJnMXLWTMxIncv3uXGRMnkZEh/xuv9fLCzt4e147Fp72SyBcr8xWFKfAfpbFp5e2L2vSly39y9ep1PKZPVqhfmLy8PH5ZupyO7h2oV7cgtW5qaqry+8fCQirrX/fVqtqWlb1795KdnU1HJbqPiYlRoauSZYiW7oX0V/2HKnR0dDA1NWHLlm306NkHd3d3Nm3axNdff12sTInF6bTI7xETE4O6ujqmpvLPGU1NTYyMjP6S7jU1NVn622/olC/P+PHjadu2LUOHjSctPR1NTU0qVlTcK/JD23Q5NTVaNG/CtCnj8PJcxNfTJxIXn8Ckqd9x6fKVYuX3PXMeLS0tuXd7ZUieiUp8nrQsOvrD+bzHT19w5MQ5ZkwZVuLqvqLExcZiosQPmkj1GFfMXl5lIT42lkPbtjNozCiFYFRp+S/eh/lyWUjl8j0tSX3cvXt3LEqQ62PfiyD5NhozdiwrV65k4cKFWFlZsWjRIpYuXfqX+hMIBAKBQCAoC2IPIsH/JPkbI+djZGTEnDlzcHFx4ejRowC0bl2QSkpXV5dKlSrJpR744osvGDJkCE+ePMHOzo6LFy8SGxtLnz59AGQz1ObNm8fQoUNp3ry5wsdCUa5evcpnn32mMHO3MHfu3GHFihU8ePBAbtXQi0IpkZTh4+ODmZkZLVtKUjt16NABXV1dTp48SYsWklnGV65coWbNmsVu0lpaunbtyvbt27l16xaNGzcmKysLPz8/RowYUea+qlatStOmTTly5Aht20pS9Bw9erREXf1TZGZmoaUkbZO2tqb0eOYnIUtmhuQDW1l7LS0tWXstLU369e7C75eu8d0PS5g0/ivKl9fm4OFTPHj4pNjzpKSkERgYiI6OjtKVOdqFzqP8+iTlmpqKq5e0tLRLvMbScvbMGUxMTGjarJnS4yr1rFUKPUuPaSnZSF5LO//6s2Q6L4zvWUn6qM6d5Pd1cnSwo46zA9t3HcTS0pwmjeoR9uIVS5auQ1NTk8xiBk8yM7OUbmqffy0ZmX9t4KUkzl+4TnZ2TrHp5STyZSrVVUm2UviYUl0Xshdluo6Li2PWD3OwrlSJYV8NkZWbmBjj7u6Kj48v1atXo0P7diSlPOOnn35CQ0OdnJz3ZCpJQZSZlY2WhuIAoJamhlSO4tOXFWX7wYvcuBPGN+O7YaAvfy8ZG+lRq0ZF+nRtSg0bS548j2T3kcv8vOI4i2b2L9N5MjOz0FRq6xKd/VP2kZ6RyTc//IK2thZTJnwpdywjIwNT6SBcYWS/aYZym8iSliu7noJ7T1InPV0S/DY1M2OJ13LZzHeLCpb89MNs/M6coVvPngAE3bzJ7wEXWLdN9d5phcn3o0XR1i6DTZdwDVpaWmRnZ/PbspX06dOTmjWK37jc+6QvT5+GsfQX+b1AcnJy0FRyf2iVcP9lyHx18c+Tv8vtW7fYtHEj7u7uNGnaVOG4qvu7VP4jozhdF+8/iiMrKxNdXT0aNWpIhw7t0dDQ5uDBg6xcubJYmWTPv1L8HpkZGUp1D5IUgX9V94YGBtjXqkWXzp2pV68eTx8Hs237HjIyMlBXU5xHWDo/LX33KMFWtLS0sKpYgbWr5AfAu3bpSJ8vvmKZ11qVq+RSUlK5/MdV2rZti6GhIenFLNhU/Uz88D7vl+VbadW8AS2b1S9z26zMTKW+LN8+sj6QnDvXrKOCdSXcun9ecmUV/Bfvw/x2mlpa5ObmcvbseWrXrk3NmjUJla5C/S/fi14rVgCgJ02N27lzZyZNmsT27dvp27cvFSooBmzLSnp6uty/H4r8dL7/RGq8f0pm+Ofk/hRlBmEfRRH2UcCnKDP88zYtEPyvIQJEgv9JdHR02L17N+XKlcPExAQrK8U0QAYG8jO/NTU15WasNWnShOrVq3P48GG+//57jhw5QpMmTWSrJIyMjNi2bRsrV67k22+/5f379zRu3JjZs2crXUEDKKS5K0p4eDgjRozA2dmZ+fPnY2lpiaamJmPHji32gyMpKYmLFy/So0cPuRQvLi4unD9/nnnz5qGlpVXi+ctC3bp1sbGxwcfHh8aNG/P777+TlJT0l1f8fPHFF8ycOZO4uDjevXvHgwcPmFnMxs4fguzsbBKTkuXKTIyN0NbWUpqTPjNTmoqqDLnoyypL+WzJnh3pSXF/WxZtHemggpL2+bae3751yyZ89/V4Vq7ZxsAvJTPTq1SuxKRxX+K1eiu6SoI/INl7JzMzEysrK6UzPjOLnEdBRml5drZi26yszBKvsTS8ffOG+/fu0a9/f/Ly8oiJiSErTfrCmBSHiUkxes4qhZ6lx7KU7J2QP6CjLH1fXl4ep89ewLZmNWrZKaYJ+23JHL77YSHzfpLs6aWursawYcO5ceMGYWFPyc7OITFJfp80E2NDtLW1lO7jkKkibd2H4vT5PzEy1KdV87oAMvl0kMymTU9NxMTEGG1tbaW6KslWCh9Tquti7CU9PZ0p074mNTWNbVs2KLzYz541k8zMTJZ7rWK5l2Tfte7du1PRRI3AKw9Iz8giNr7AVxgb6qGtpUlWjuLy9Py9h7S1S/+K5XfpPht3B/C5e0N6d5EfFH8bGcekWduYM7037VtJJj60ae5IRUtjfvY6xpWbj2nRWDG9ocSnqLAPpbYu0f8/YR/v379n5o9LCXvxmjXL5mJpIT/zXEdHh2wl/kP2m6rY80hLWq7segruPUkdLW1Jmrj2bm5y7wPtXF1ZNGcuIffu061nT3Jyclj5mycdu3SW29cIJGmIYmNi0JD2nZ4SW2DTSv10GWy6FNewe88BEhISGT92pMr+QDJ4vmrNBr78cpDCKhANDQ0Vui5eVh2Zry75efJXefH8Od98/TU1a9bku++/JyYmhgzpgEF6WhImJiZSXZf9WQMFdqRc13/9eZOcnEx2dg5LFi9ETU0NXT0jOnfujLu7OxERESU//0rxe2jr6KjcnyczM/Mvyz1ixAj69u0r2yOyVo2KONjbMXaCB0+fKe4BVTo/LX33+Iu2YmRkSPfPO7Ntx16iot5RoYLie6t/wO9kZmbx+ecFQY5ifV4xz5wP5fPO+v3B3fuhHNmtuKdmadDS1lbqy/LtQ+sDyBkaHMzFM2eZv2qFwneRMrKzs0lJSiJa+qj7L9+H+e2ys7K4des27969Y/jw4aXq92Pfi8p49OgRLi4u/Pnnn3h7e8tNbPy7lDTpsKw0atQIkKSL/af40DLDPy/3pygzCPvIR9iHIp+izPDP2bSgZPLei1RunxIiQCT4n0RNTY06deqUXLEE+vXrx+bNmxk+fDgXL15k4cKFcsfr1q3L5s2bycjI4Nq1a/zyyy9MnDgRPz8/pf0ZGxvz7t07lee7dOkSaWlprF69GkNDSaAgJyeHxMTEYuU8e/Ys2dnZHD58mMOHDyscDwwMpGPHjhgbG/+t3N5F6dq1KwcOHGD27Nn4+vpSr149qlSp8pf66tixIz/99BPe3t68efMGGxsbmiqZPfwhuXvvIaMnyAehTh3bhrmZKTFK0izFSFO2WShJJfZflMVCmjItv65c+5g4jAwN5GZwDuj3OT26ufP46XM0NTSwr1WD497nALCxUb6Jse/ZQAwMDKhatSpRSjZQzk/vZKFkdQCAoZERWlpaxChJnZJfZq6ibWk5c0aSZqRT587cu3uX8WPGyh0/dXwn5uamKvQUK5Vf9QbY+b+Bqt9JomfFgZ07d0OIiIhi8kTlq+4sLc3Ztmk5L1+9JTY2Dpsq1tjUbEDr1q2pWqUid+4/YfSURfLXcmgZ5mbGRMcmKJElQSqvYqqdv0tEZAy37z6mT/f2aGpIXi2UynfyKObmZsX+3hYWiile8slPHaO8fSxGRoYKus7OzmbG1zN58uQpa1Z7YWtbU6GtgYE+XsuWEhERSXhEBDVq2mNtbU2fHm7o6+kwYPwqufpHN0/HzESf2Lhkhb5ipGXmpoYqr6Mw14OesmDZUVo2tuPbiYozuk/5BZGVnUOrpvITD1yaSfasuffwldIA0Z37jxg9cbZ8X0c3Ym5mQnSsYprBGGnqwX/Cvy1YvIbf/7jJonkeNG1cV+G4hYUFbyMiFMpjZamIVPgPQ0M0tbRk9ZS2ldpT/r8mRVJJqqurY2hkRHKyJCXgOV9fXr98yYzvv1fYmyji7Rv6dO4iV3bK+5DUphWXMBT4j9LYtPL2+TadnJLC5q07+KJvL1JTU2WTQdLS0snLyyM8PEKW6mzn7n2SFG3uHQgPl+g1Svruoa2tTWRkJNnZ2XKz4PNTef4dX62qbWmIjIxk4sSJ6Ovrs3LlSp4+fcq4Qul3AU75HMfc3FyFrkqWwUKWsrD0/qMksrOzSU5OxsjISG7AXVNTEwcHByIiIlSuLjcqTqdFfg9zc3Pev39PXFycXH/Z2dkkJib+Jd37+/sTFxfHxo0b2bhxo6z81Il9lCtXjogIxf3qPqRNF0dFaVAoMSlZaYDI98x59PX1aN++vazszv1QRk+aK1fv1JF10meiEp8nLbOw+DA+b/manbh3aIGGpgZvIyT3W3KK5D6NioohOzsHy2LOZWpmRqyS1H3xUj2aKkl/VlZ2rlmHY716VKhkxTupz02SZiuIj4khOjISi0KppUPv3+fHiVPk+vgv3of5mJub8+5dNL6nz6CmpkbXrl2BgrR2quT62PeiMhwdHWV60NPTw1HJnk1lJT09nRcvXlCtWjWlq/7/Lh9CxqL80zLDh5f7U5QZhH2oQtjHpykz/DtyCwT/S4gAkUBQDL169WL58uV8/fXX6Ojo0KlTJ6X1dHR0aNu2La9evWLhwoUqZ5C1aNGCs2fP8vXXXytNnZaRkUG5cuXQ0Ci4NU+fPk1OTvGpik6ePIm1tTWLFy9WOObh4cHJkyfp2LEjLVu2xNfXl7t371KvXj2lfWlqapY6PUK3bt1Yt24dAQEBBAQEMH369GLr5w9GKetfS0uLHj16cOjQIWJiYhg2bJjcniz/BLXsqrNulXzQz8zMBPtaNQi6E0Jubq7cgE9wcCg6OtpUtan8j8mio18JgIyU8L8ti6WlOSYmRrI0cYUJfvAY+1qKq1bKl9ehXp2CF7RrN4LQ0damfj3FjXujY+K4eesevXr1wsjIiBs3bpCSkiJn2yHBwZLrs1ccwAZJMLemrS0PHyjOGgoJDsa6sjV6fzFHfj7nTp+hcuXK1Klbh6SkJFavW4uejuQlMSM1CjMzU+ztahJ0J1hRzyGPpHpWHiCDwnp+rHAsOCQU+1qKAQkA3zMBlCtXjs6fdVB6PJ+qNtay8z99+pTo6Gg+79Qce1sb1i//Tq6uuakR9rY2BN17rHAt90OeoaOjRdUqivuK/V3O+F0lLy9PLr1cvnzaxpJARkZ6MmZmZtjXqkXQnTtKbDoEHR0dqlZV3MsqH0tLS0xMTHjwQHET6OCQB9jXkrez3NxcZs+Zz/UbN/llyc80btSw2OuwsqqIlVVFdPVNSEpKIvRpOK2a2NOrSxO5eqYm+tjVsOJuyEuF63jw+A062prYWKsOKuYTEvqamYv242BXiZ+/6690P6G4hFTy8iD3fS4UymqTI1299P59rtK+7W2rs37FfLkyc1MT7O2qE3T3gaJ9PHhcoq3/FZat2saJU/58M20UnTu2UVrHwcGBq9eukZqSgl4h//EwRLIHl20t1f6jRs2ahCqZdfgwJIRK1tayPTZqOUjsMOad/P4Q+YN6xsaSwGlUZCQ5OTlMGjVKoc8bVyV7+k2ePJmGDRuSkZYg8R+1bAm6c0+J/5DatI3qiROWlhaYmBjz4KEqm5bsR5WclExaWjrbd+5l+869CnW7du9Hu7YuLPdcTGRkFElJyfT9YqhCvbdv30r6Dg6WSzcbLPPVyldAq6mpYWtry4MHDxTlDA7GunLlv+yrExISmDRhAtlZWazbuhVzCwu0tLVZs24dujqSlV8ZGakS/2FvR1CQEv9xvwz+Q4m9BIeEKPiP0smeSF4eJCYmKTz/8vciqVlT+TOgJJ1WLqTT/JXpD0JCaO3iIqv3IETyfqDqdyuOuFjJAP+cuXOpXq0aABmpsZiamlKuXDkSk5KV+OmHUpsu7t0j36YVJyQFhzzC3s62RNnevJUEZ01MjBWORcfEcvPWHT7v1kkukGBvW431K+bI1TU3NZb6vIdKnolPJD6vSqUS5SkNkVExnD53idPnLikcGzD8G2rZVePgDk+V7avZ2XH/dhBpqalyewM9DpHYR/VadqqalproyCiiIyMZ27ufwrFF385EV1+fPefPFMhka8u8FcupamgM/Hfvw3zsa9Xi5s1bREdH07hRQ1latnz/pirDw8e+F5Whq6srC1hVrFjxg6Y0Kl++/D+SIumfTLv0T8kM/5zcn6LMIOyjKMI+CvgUZYZ/Vm6B4H8JESASCIrB1NQUV1dXzpw5Q//+/dGRDlSAZFXO4cOHcXNzo1KlSsTExLB7924aNmyoMr3ApEmTCAwMZNCgQYwaNQoLCwuePXtGeno6o0ePpnnz5gB8//33DBgwgCdPnrBt2zbZaiJlREVFcePGDcaPH08zJfurdOvWjb1795KcnEyPHj3Yu3cvY8aMYdKkSdjZ2REVFcXNmzf56aefAKhRowbHjx8nICAACwsLLC0tVea9trW1xd7enp9++onMzEy6dOmitF4+1apVQ11dnSNHjqChoYG6urrcSq8vvviCHTt2oK6uTu/evYvt60NgaGhA86aK+zG5dWiFX8Bl/C/8iburJKVDfEIi5wMu06Z1M7lVN6/fSGZgVqls9UFk0TWWDCSlJTz7ILK4tm+Fzyl/IqOiqVhBMqvx2o07vHz1lsEDexYr0517DwgI/JO+vbtioK848Hf2/EVyc3P5/PPP0dXVZevWrRw/epQh0lQ1WVlZ+Hh74+zsTAXpjNTIiAgyMjKoVr1g/4wObq6sWbmKBw8eULu2JBD18sULbt64yeChQxTOWxZCHz3i+fPnjBwtGew1NDSkabNmGOlJBvHSEl8C4Obqgl/AJfwvXMbdVTKIHZ+QyHn/S7RxaS43CPX6jWTgqkrlgkEl1/Yu+Jw6T2TUO9nM52vXg3j56g2DByracnZODn7+v1O/nhNWFUuX9jE3N5elS5dSvnx5+vXogKGhHs2bOCvUc2/fFL/AG/hfvIl7+6bSa0nm/IXrtG3VQN5m3kpWfVWx/nu57U+f/xOrCmY0qFswsJMvX3kLiQxpKZLZ2m5u7fHzD8A/IBB3N0lwLD4+gfN+AbRp01pe16/fSOSrUjAY6dqhHT4+vkRGRsnSZ127foOXL18xeNAAObl++dWTc+f8mP3DTFw7tKcseHp68j43l6F9XahdSzFo0qFVbS78EULglYd0kKZ+S0hMJeByCK2b2sv2IgJ4EyFZXVbZqmC28YvX0cyYvwcrS2N+mzMEHW3lexrYWJuRl5eH/+UQuroV+Kvzv98HoFZN5b7H0FCf5k3rK5S7d2iJ34U/8Q+8gnuHVgDEJyRxPuAP2rZu8kH92/bdR9m59zgjv+rL4P6q97vo1KkTW7du5eSx4wyQ3vNZWVmcPumDo7MzltLfOSoykoyMDKpKB7MB2rp2YOPqNTx68AAHqf949eIlt2/epP/gwbJ69Rs1wsTUFL8zZxg8fJjsOX3mpA+579/TuJnETjt07Kg0IPXjN9/SvFUruvbsQbvmLbC0tCQtWRIAcHNtj59/IP4BF3F3k9hZfEIC5/0u0MalVRH/IQnQVKlcYFMSmz5dxKZv8vLVawYPkuwxZWJqwrLf5FfkAezbf5h794NZvHCebNP4gQP60r6di1y9uLh4fl60lHbt2hEYGMitmzdlAaKsrCxOSn11xWJ9tRurV66U89UvXrzg5o0bDBmqGIwqDenp6UydMoXo6GjWb9ggS+NraGhIs2bNMJAOyqalSlZSu7m64ucXgH/ABdzdXIF8/+FPmzYuJfsP1/b4+JyS1/W16xL/MXhgmeU3NTVBV1eXtLQ0Dh06wvDhX0lliufhw4doaWtTtWpVACKkOq1eSKdubm6sXLmSByEh1JbunfnixQtu3LjB0EI6bdKkCUZGRhw6fFhuUPrQ4cPo6Ojg4iL/e5eGfLkiIyMZPGgQAGlJEVy4eJnc3FyysrLwv/A77q7tJNeUkMB5/0DauLQohU23wcfnLJGR76hYMf+ZeEtq031l9eLiEzAtEgR69y6aEydPY2dXU7YaqTBnzwWQm5tLl05ucuWGhvo0b6I4+cm9fQv8LlzBP/Aa7h1aSK8lifMXrtC2VeMiPi9Sei1ln0ixbPG3irL6/cFZ/z/4+cfJVLAsftJAyw7tOLF3H+eOn6DnYMnvkZ2VRcApX2o51cZc+i4eHRlJZkYmlatVLbOME2Z+S2ZGhlzZ/Vu3OXXoMMMmT8S6qnyf+oaG1GvahNqmkvfH/+p9mI+bWwd27tpNSkoKnTtLJvVlZWXhfeIEznXqyPzbf+1eTExMRF9fH/VCk0Sys7PZuHEjmpqaSr/vBAKBQCD4r5ObK1LMfUqIAJFAUALu7u6cOXOGvn37ypXb2NigpqaGl5cXsbGxGBsb07p1azw8PFT2Va1aNfbv34+npyfz58/n/fv3VKtWjTHSNCr29vYsXryY1atXM3bsWBwdHVmxYgXTpk1T2eepU6fIzc2lp3Rz7aL06tWL7du3c/bsWfr27cv27dtZvnw5GzZsICEhgYoVK8pSMACMHj2aV69e8d1335GUlMSkSZOYPHmyyvN369YNT09PWrRoUWJaBVNTU+bMmcPmzZvx9vYmJydHLuWdra0t1apVw8bG5oNsxvpXcevQmjrOJ5j383LCnr/CxNiQg0dOkfv+PePHyAcsxk76HgDf49tlZeERUZw6HQAgW72zaes+AKwqWtKti+u/JsvIYf3x87/MmAkzGdi/B2lp6ezccwQ722r06NZRTubvflhMW5fmmJmZ8CzsJUeOnsbOtjqTx3+lVDbfMxewsDCjWbNmqKmp4eruxprVq4mLi6dKlSqc8vEhPCKcH+YUzOidN2cut2/d4vrtW7Kyvv36ceLoMTymTGXw0KFoaGiwd89uTE1NGVxk0PHSxd95/ESyUicnJ4enT56wZfNmANq0aYtdkRm2Z06fBiTp5YrXswt1nB2Z95NngZ4PnyQ3N5fxY76U1/NEyaod3xO7CvQ8fAB+/r8zZvy3DOzfk7T0dHbuPoydbXV6fN6Roly5cpOExCS6dFK9euhXz7VkZWVRy64mOe9zOHP2AsEhoSxZsgSriqpTzbi1a0pdp7PMXbSJsBdvMTYy4OAxP8m1jOwjV3fM1CUAnD5csGdCeGQMp85cBuDBI8keFJu2HwfAqqI53TrJ58F/Gvaax89eM2JIt1Kt+nNz7UCdOgeYN/9nwsKeY2JsxMHDR8nNfc/4saPl6o4dPwkAX5/jsrKRI4bh5xfAmLETGTjwC4lN79qDnW1NenQv2ANtz979HDx0hLp166Cjo80p39NyfXdo306WbmDrtp08e/YMZ2cn1NXVuXT5CpcvX2bsEFelwSGA9i2dcLa/wsIVx3j+6h3Ghnoc9b3O+9w8Rg2S/10nz94OwLEtkudDalom0+bsJDk1ncG9W/HnDfnVZ9ZWJtRxkAyUd3VtwN5jf/DLGm8eh0VQ3caS0GfhnDx3mxo2lrRtXraUDG7tW1LX2Z65C1cS9vw1xsaGHDx6mtz3uYwfJT8wN2ay5N49fWyTrCw84h2nzgQC8ODRUwA2bTsIgFVFC7p1lgRIAgKv4LVmBzZVKlGjWhVZm3yaN62PmakxAPXq1aOdmyub1qwhIT4O68pVOHvqFJHh4Xw7+wdZm0Vz53H39m0Cb1yXlfXs2xef4yf4froH/YcMRl1dg0N792Jqakr/IQUBIi0tLcZNmcziefOZOmYsHbt0JioyiiP791O3QX1cpKmqqlarJheAKkzFSpVwadcOS0MjeZ26tqNOHSfmLVhE2PMXEps+dExyzxXZL2js+KkA+J4sSAc7cvhQ/PwuMGbcFAYO6CfxH7v2Sm1aMvGivI4O7dsprsC6EHiJ4JCHcsccHexxdJCfxZ6faq5p06ZoaGqyadMmUlNTqVKlCj4+PoRHRPBjIV89Z84cbt+6xc3bt2Vl/fr14/jRo0ybMoUhUl+9Z88eTE1NFQJEv1+8yOMnkudfTk4OT548YbPUV7dt0wY7aRBu9g8/EBIcTPcePXj+/DnPnxfse6Orq8vnRfY1dHPrQJ29zsyb95PUfxhz8NBhia7HyaekGztuokTXp04U6HrEcPz8/BkzZjwDB/WX+I+du7GztaVHd/kgpo+PLxGREWSkS1Y9374dxKbNWwDo2qULlSpZoa6uzvBhX7Jm7XpWrlrDlStXMTUz5+LFi7x//55h0j1QAOb8+CO3bt3idlBQgU6/+IKjx44xZcoUhn75pUSnuyXPv8KD0jo6OoyfMIElixfz7Tff0KJFC4KCgvA9dYqJkyZhZFRgk8nJyRzYvx+AO3fuAHBg/34MDAzQNzBgwABJIL1N27bUrFmTTRs3EhMdTb169Xj25AEHDh3DzMyUCpYWzFvwC2FhL6V++rj0mVhwTQBjJ0j8mq/3gQI9DxuCn18gY8ZPY+CAvhI9796PnW0Nenxe8DxesXI9r9+G06xJQyzMzQmPiOTIUW/S0zP4dsYklOF75jwWFuY0blRf6fGiuLVvTl2nWsxdtJqwF68xNjLk4NEzUp/XX67umCnzADh9dL2sTOLzfgfgwSPJ5J1N2yT3r1VFc7p1bgdAh7aKg/ihT14A0KpFQ0yMi087WsvJiZYd2rN73QYS4xOwqmzNBd8zvIuIYOKsghTEKxb8TEjQHY5duSwrS01JwfeQRKaH9ySTB3wPHUHPQB89fQO69JM8++s3U0zdnJoi2bfJqUEDbB0dipUxn//afZhPnTrOWFpa8u7dOx4/fsKBAwc4duwYERERzJlbkH7wv3YvXrx4kc2bN+Pm6kr16tVJTEzEx8eHx48f4+Hh8cHS1gkEAoFAIBCoQgSIBP9zTJ48udiARu/evZWuTjlx4oSS2vD7779Tq1Yt6taV3zehRo0arFy5slhZdu3apVBma2vLunXrVLbp2bOnQrAnICBA7u8lS5bI/n/EiBGMGKF8DxOQpO4pHIQxMjJi3rx5zJs3T2n9ChUqyOWiz0fZtQCMGTNGFuAqirLfYsCAAbIPoqK8evWKly9fFhtk+zdQV1dn9fL5LF+1hf0HvcnIzMSpdi3mz5lOtaolp5cLD49i7QZ5feX/3ahhnTIFiP6uLBUrWLB5/S94em1i5ZptaGpq4tKqCR5TRsnNmtXX08XczJQDh06SmJSMpYU5A/p3Z9Sw/ujpKS7JfvHyDQ8fPWXIoF6y9CLzFixgw9p1nPY9RXJSMrZ2dizz8qJhCWm99PT0WLdpI8s9Pdm6ZTN5uXk0bNSI6TNmYGIiv19OQIA/p076yP4OfRRK6COJfVewtJQLEOXm5nL+7DkcHBxUDvjmo66uzmqvn1m+chP7DxyX6tme+XO+oVrVkvfVqljBks3rf8PTawMr12yR6rkpHlPHKs2l73s2AA0NDdlqJWU42NuyZ99RfM8EoKamhlNte7Zv307z5s1Jj76usp26uhqrl37N8rX72Hf4HBmZWTg51GDBD2OoZlPySpC34dGs2XxEriz/70b1HRQCRL7n/gSgs3tLSoO6ujqrVy5judcq9u8/KNG1kyPz5/1ItVLMiK5YsQKbN63Dc9kKVq5aK9F165Z4TJ8ip+vQUEnQ5d69+9yTDpgV5tTJerIAkZ1tTS5cCOTi75d4/z4XBwcHvLy8aFYzqZjrUMNz3lBWbz3LoZPXyMzKxtHOmtnTelG1cvF7RSQlpxEVI5mJvXbHeYXjXTrUlwWIjAx12bp8HJv2BHD5eijHTt/AyFCXbu4NGDfUDU3Nsr3Kqaurs9pzDstXb2PfIR+JfTjasWD2lFL5lLcRUazZuEeuLP/vRg2cZQGi0KcvAHj1Opwf5itu2r5pzc+yABHA9/PmUaHiBs75niY5OZmatrYsXr6Meg2L9x+6enp4rV/HmuXL2bVlK7l5edRv2JCJHtMxLuI/PuvaFQ1NTfZu38G6lavQ19fn8969GD1hgtzM7bKirq7O6hVLWb5iLfv3H5b6Dwfmz/uBatVUp1rKp2LFCmzeuArP5atZuXo9mpoaEpueNukv78VRHPMXLMBq7Vp8fX1JTkrC1s4OLy8vGpaw6a6enh4bNm1imacnW7ZsIS83l0aNGuGh1FcH4HPypOzv0EePCH0kSaMn8dWSANFj6fuJ94kTeBd5D7OyslIIEKmrq7N6lRfLvVayf/8BMjIycXKqzfz5c8rgP9bj6enFypVrpP6jFR4eUxV0ffyEN7duFQTIbty8xY2bkskNDerXlw1Mjxo1AktLC1atXsvNW7fJy8ujfPnyjBo1igkTJxYrj56eHps2bcLzt9/Ysnkzubm5NGrcmBkzZmBSZO+iL774Ag0NDXbv2sXFixepULEiM77+mkHS1T/5JCcns3btWrmy/Hc4Kysr2TuYpqYmW7ZuZdPGjfzxxx/4+Pigq1uedm1bM3nCaAwM9Fm+ch37DxyR+Ina9syfO7OUNm3J5g0r8PRay8rVGyU23ao5HtMmyOm5efMmvDnizYFDx0lOSkbfQJ+GDeoxauRQHB0UV/K9ePGKhw8fM2TQF3KpzYpD4vN+YPmanew75Cv1ebYsmD2JalVLTqn5NuIdazbtkyvL/7tRAydZgOhDMHXObPZu3MzFM2dJSU6mas2a/PDbrzg1qF9su9TkZPZu3CxXdmKfJDBhUbGiLED0ofgv3ocAKSkpJCQkYGNThfN+fhw5egx7e3u8VqwocVPxj3kv2traUqN6dXx9fYmPj0dTUxNHR0e8vLzoXMIEJ4FAIBAIBIIPQbm8vLy8jy2EQPBfJDQ0lIcPHzJ79mzmzp1Lv36K+boFH4b4+HieP3/OmjVreP78OefOnZPbh+nvkJ+q7VOhaIq5T4F8mRNTUz6yJKWnaIq5TwVdI8nAS3EBov8aRVPMfQro6ksGu+MeHyih5n8L01qS2fDpcYr72fxXKW8qmbEekZT4kSUpPVbSFUT5KeY+FXQNJLPQk1NTP7IkpadoirlPAV09iX2kpqV9ZElKj540N39aUsRHlqRs6BpKggPpscEfWZLSU95Mkhr2Qdyn4z+Kppj7VPiU78V/grS0NB4+fIijo+Mnsx+HkPnf41OUW8j87/Apygyfrtz/S4SeUj1x/2Nj33XVxxbhP4dYQSQQqGD8+PHExcXRs2dP+vT5sDPvBPJcuHCBWbNmUbVqVZYuXfrBgkMCgUAgEAgEAoFAIBAIBAKBQCBQjhiFFQhUUDStm+CfQ1XaP4FAIBAIBAKBQCAQCAQCgUAgEPwziACRQCAQCAQCgUAgEAgEAoFAIBAIBIK/Td779x9bBEEZKN3ungKBQCAQCAQCgUAgEAgEAoFAIBAIBIL/GUSASCAQCAQCgUAgEAgEAoFAIBAIBAKB4P8ZIsWcQCAQCAQCgUAgEAgEAoFAIBAIBIK/TV5uzscWQVAGxAoigUAgEAgEAoFAIBAIBAKBQCAQCASC/2eUy8vLy/vYQggEAoFAIBAIBAKBQCAQCAQCgUAg+LR5eHzMxxZBJY49N35sEf5ziBRzAoFAIBAIBAKBQCAQCAQCgUAgEAj+Nrnv339sEQRlQASIBALB/zRJL3w+tghlwrBaNwDSo69/ZElKT3mLpgAkpKR8ZElKj7G+PgDp0Tc/siRlo7xFYwCenpvxkSUpPbYdPYFPS9f5eg678P1HlqRs1Gi/GID0d39+ZElKT3nLlgBEJCV+ZElKj5WhEQBpSREfWZKyoWtoBUBcSvJHlqT0mOobAJCWEvuRJSk9uvpmAKSlfjp61tXL13P8R5akbOjqmwAQ9/jAR5ak9JjW6g/AsZehH1mS0tOrqj0AaclRH1mSsqFrUAGAtLTUjyxJ6dHV1QPg8ItHH1mS0tO3msM/1ndaWhoPHz7E0dERXV3df+w8H5JPUWb4NOUWMv87fIoyw6crt0DwsRB7EAkEAoFAIBAIBAKBQCAQCAQCgUAgEPw/Q6wgEggEAoFAIBAIBAKBQCAQCAQCgUDwt8nLFSnmPiXECiKBQCAQCAQCgUAgEAgEAoFAIBAIBIL/Z4gAkUAgEAgEAoFAIBAIBAKBQCAQCAQCwf8zRIo5gUAgEAgEAoFAIBAIBAKBQCAQCAR/m7z3IsXcp4QIEAkEgv/XJKeks3KzD4F/3icjIxsn+ypMG9MdB7vKxbbLzc3llN9NLvxxn9Cnb0lKTqdSRVM6tqvPkL7t0NbSVNn2TnAYo2esAeD8wfkYG+mXWe6k5FS81u7nwqVbpGdk4uxYkxmTBuFoX63EtvcfPMPb9xLBD57x5Nlrct6/587lXQr1Tvj+ztxFm1T2s3DOOLp2bFXsubKysti4fj2nT50iOTkZW1tbxk6YQLPmzUuU8927d3h5enLt6lVy8/Jo1Lgx0z08sK5c8NtkZGTw26+/EhIcTFRkJLm5uVhXrszn3bvTt18/NDRV/w6lQaLnfVy4dJP0jCycHWswY9JgHO2rl9hWouffCX7wtJCe9yjUO+F7kbmLNqrsZ+GcCSXquSgpadlsPfGQK/ciycx6T62qxozqVRvbKkZl6ifnfS6TlvzO68gURvR0pI9rTdmx2MQMth5/yJNXCcQlZqCmVg5rCz26tqmGa9PKlCtXrkzn+hR1nZKWxZajwfx5J5zMrPfYVzNhdN862NqYlLoPkOh5wk/+vI5MZmRvZ/p2rCV3fJ/vI0JfxBH6PJ6E5EwGd3VgyOe1y3SOwiQlp+G17iAXfr9FeqZU1xP7l9J/hOF9+jLBD8J48uyNRNeXtimtGxuXyIr1h7l05S5paRlUr2rFiKHd6Ni+iULdrKwstm3YwDnf0yQnJ1PT1paR48fRuFmzEmWKfveONcuXc+PqNfLy8mjQqBETp0+nUmVrhbpxsbFs27CRK5cvk5iYiKmZGY2aNObbH3+U1bl04QLeR48S9vQZSYmJGJmYUNvZmWGjR1PDtqZCnwDJycl4rdxAQOAlMjIycXZywGPaBBwdaimtX5Sw5y/xXLaaoLv30dTUxKVVczymT8TUxFih7us3b1m7fivXrt8iLS0NS0sLOrq1Z9KEUYDk+eRz6iz+Fy4RGvqExKRkrCtVpNvnPRg5ciRZWVlsWr+eM6d8SZL55fE0LaVfXuG5jOsyv9yIqUr8suevv/IgOJioyCiZX+7WvTt9+vVDQ7Pg8yPo9m327trF49DHJMTHo29ggF2tWgwfNZJ69eur1vWKNQRc+J2MjAycnWrjMX0yjo72pdT1Czw9VxB05x6amhq4tG6Jh8cUTE0K7tt30dGsWLGGkAePiI6OQU1NjapVq/BFvz583q2zgn+7eu0GW7bs4OnTZ7zPzaVatWp80a8v3bp1LZDZayUBFy5IZHZ2wmP6dBwdHUonc9hzPD2XEXTnjsQ+WrfCY4aHnMwAmzdv4X5wMMHBIcTFxTF2zGjGjRur0N/69RvYsFHx+a6lpcW1K78XyLxiNQEXLhbS85TSy/z8uVTPd6Uyt8TDY6qczM+fv+CE90muXL3Omzdv0S1fHgcHe8aNG41TbUeFPs+cPc+OHbsIe/4CXV1dXF1d+frrr0uUJTklnTXbz3HxykMyMrOpXcuaKSM6YW9bqdh2ubm5nA64S+CVBzwOi5C861Uwwa2NM4N6tVJ410tJzWD7wYtcvPKQd7FJmBrp0bh+TUYOaEdFS+MS5czJyub8zj3c9gskPSUFq+rV6DhsMHaNGhTbLvjyn9y7eJk3oU9Ijo/HyMICh2aNcR3cn/L6Be+Yz+7eZ9M3P6jsp+OwIXQY9EWJckK+z1svvQ8zcXZyxGP6BBwdynAfLltN0J37kvuwVQs8PCYp9Xn5+J4+xw8//kz58uX589JZhePnzgewe89Bnr94hZpaObS1dUhPTycnJwdnZ2c8PKbj6KhoV0rlCwvD09OToCDpPefSGg+PGZiayt9zubm57Ny5k0OHDhMTE0PVqjYMHz6Czp07ydULDg7G2/skwcH3efLkKTk5OQQF3VY4b0REBEeOHOHo2TPEhoejpqZGhWpVaTewH9WcnfDbuZc7/hdIT0mlYvWquH81BNtG9Yu9lpDLV7h/8RJvHj8lJT4eIwtz7Js2of3gL+TsAyA7K4s/j3oT5H+BhKh36OjrU7W2Ax2GDKRCNZtS6U4gEAgEAsGnhwgQCQQfgYsXL7J7927u379PcnIyRkZGODs70717d7p06YKa2ofN/rhq1Sq2bt1KUFBQmY79Xa5du8aXX37J4cOHqVOnjux8rVq1omHDhnJ17e3t+fbbbxk5cuQHl0MVubm5TPtxM0/Cwhnarx1GhnocPvkn475dy87V07GxtlDZNiMzmwWeB6jjWJU+XVtiYqzP/Ycv2LjrLDeCnrDu1/FKB8hzc3NZuvYY5XW0SM/I+styT/7Wk8dPX/HVwC4YGxlw8Jg/oyYvZO+Wn6hapWKx7S9fucsxn0Bq1bTBupIFL19HKq3XqJ4DC38cp1C++8AZHj97RbNGTiXKumDePAL8/BgwaBBVbGw4dfIk06dMYe2GDdRvoHrAIy0tjQljx5KSksKwESPQ0NBg3549jBszht1792JkbAxAZmYmYc+e0bJVK6ysrFBTU+PevXt4LVtGSHAwPy1aVKKMqpDoealUz12levZj1OSf2btlYSn0fIdjPhekerbk5esIpfUa1XNk4Y/jFcp3Hzhdaj3Ly53HvPXXef42iT6uNTHU1+LUpRfMXHmFFd+0xtqy9AHJkxdfEB2XrvRYUkoWsQnptKpvhaVJeXLe5xIUGsPy3Xd5G5XKV91LN4gokfnT03Vubh5zV/9J2NtE+rrXwlBfC5+LYXy77BKrvu+AdYXS69n7wjOi49NUHt/p/QATQ21qVjHi1oN3pe5Xudy5TP52OY+fveargZ2kug5g1JRf2Lt5bsm6vnqPYz6/U6tmlWL9R0pqOsMmLiIuLolB/dwxMzXifMANvp2zlpw5Y+ji3kKu/pL5C7jo70/fgQOpXKUKZ3x8+G7qNJavX0ddFYECkPiK6ePHk5qSypDhw9DQ0ODQ3n1MHTuWzXt2y3wFwLvIKCaNkgRRuvfujbmlBTHR0TwKeSDXZ9jTZ+gbGNJnQH+MjI2Ji43ltPdJxg8bxpqtW7BqLB/gys3NZfK073n85ClfDR2AsZERBw+fYPS4aezZuZGqNsVPOIiKesfIMVMw0Ndj0oTRpKens3P3AZ48DWP3jvVoFgp0h4Y+YdS4aVhaWDB08BcYGRkSGfmOqKgCu8jIyGDugl+oU6c2fft0x9TEhHv3Q1i1ahVXrlzB0NiYC/7+9B80iCo2VTh10gePKVNZs2ED9RoUr+tJY8eRkpLCVyOGo66hwYE9e5kwZiw79+6R88vPn4XRolUrrKwqUU6tHPfv3WOF1C8vWLRQ1ufrl69QK6dGrz69MTUzIzkpmbOnTzNh9Bh+W+FF146fKep66tc8fvyUr74chLGxMQcPHWX02Ins2b2NqjZVStb1qAkSXU8cK9H1rr0SXe/cLNN1QkIiUe+icXNtR8WKFcnJyeHqtevMnfczL1++YvKkgmdj4MVLeMyYSd26zowdOxJtHX1Onz7Nj3PmkpCQwKBBA5k8ZSqPHz/hqy+HSmU+zOgxY9mzZxdVbYofdI2KimLkqNEY6OszadJE0tPS2LlrN0+ePmP3rh1y9rFm7TrMzc1wsLfnzytXiu0XYNasmeiW10VLWweAnOyMQnr2kOp5sFTmI4weO4E9u7eXQuZ3jBw1XiLzxHGF9PyM3Tu3ymQ+dtyb4ydO4tqhHV/060NKSgpHjhznq2GjWL1qOc2bNZX1efDQERYvWUrTpo2ZMX0KUe+i2bf/IMHBwWxY9IXKiTm5ubnMWLCbp8+jGNy7FUaGuhw9dZ0Js7ax3WscVSqZqbyOjMxsfl5xDGf7yvTq1AQTYz3uP3rN5r0XuHk3jNULh8ve9XJzc5ny4w5evI6md5cm2FQy501ELEd8b3Dt9lP2rZ2Mnq52sXo79JsX9y/9Sete3TGztuLW+QC2zV7AmKULqeaselLAUa81GJqZUt+1HcaWFkQ+f8kV71OEXr/FlLXL0dSWnNfSpjL9v52u0P62fyBPbgWVGIjKR2If3/H4yTOJzzM24uDh44weO5U9uzaV7j4cPVlqH6NJT0tn5+79PHkWxu4dG+RsOp+0tDS8Vq6nfPnySvvct/8Iv/62ApfWLZg8cQw7du0lIiKKvLw8evXqyd279xg9egx79uyhatVS3HMjR2FgoM+kSZNIT09j585dPHnylN27d8nJt3r1GrZt20bv3r1wcnIiMDCQWbNmUa5cOTp1KvBfly9f5tixY9jZ2WFtbc3Lly+Vntvf359NmzZRq3lTGrq3J/d9LkF+F9j2/Vwq29sR/jSMlr0+x8y6EkHn/Nnx4wJG/vpzsfZxfMUaDMxMqd+hLUaWFkS9eMnVk6d4fOMWE9csk9kHwKEly3h49TqNO3ekkm0NkmPjuHrSlw3Tv2Xy+pWYVLAsVncCgUAgEAg+TUSASCD4l1m2bBkbNmzA3d2dOXPmYGFhQUxMDH5+fnzzzTcYGRnh4uLyscX8x1i9ejW6uroKAaKPgf+le9x78IIls7/E1aUeAO5t6tNn5BI27jzLz98PUdlWU0OdzcsmUc+pYHVDry7NsapgysZdZ7ke9IRmDRVnjh/zvUpUdAI9OjVj//FLf0nu8xducPf+E5b+NBn39pLBk44dmtFj4Des23KUJfMmFNv+i16uDB/SDR1tLRYv26FygLeytSWVreU/BDMys1jkuZ0mDWtjbmZc7HlCgoM5f/Ysk6dOZciXXwLQpWtXBn3xBatXrmTzNuWrDgCOHDrE61ev2LZzJ7WdJIP2LVq2ZFD//uzZvZsJkyYBYGRkxNYdO+Ta9u7bF319fQ4dOMA0Dw/MzM2LlVMV5y9cl+p5Cu7tJasYOnZoTo+BM1i35TBL5k0qtv0XvdwYPuRzqZ63qwxaqNbztlLpuSh/3Ing4fN4vh/RkNYNJLOjXRpYMfqnQPb4PubbYaW79xKSM9l35jF93Wuy+9RjhePVrQ1ZMrWlXNnnbaszf8N1vC8+Z0g3e9TVSreK6FPU9eXbb3kQFses0c1waSRZqeLSqDKj555jt88DvhvZtIQeJCQkZbD31CP6dazFrpMPldbZ/vNnVDDXIzElkwFfnyq1jMo4H3iTu8FPWbpgAu7SlTwd2zehx6DvWbf1OEvmKgaFC/NFz/YMH9xFouvlu1T6j8MnAnn95h0bvb6haaPasrZDx/3MstUHcG/XBE3pSpJ79+4RcO4c46ZMYcBQid/t2LULwwcMZMPKVazZukWlPCcOH+bNq9es374dByfJeZq2bMnwAQM5uGcvoycW+EPPxYtRV1dn/Y7tcoGjonw1epRCWdcePejXtRsnjhzBpUiAyM//InfvBfPrknm4u7YDwN29PT37DGH9xm0s/vlHhf4Ks2XbHjLSM9i7ayNWFSsA4FTbgfGTvsb75Bn69P4ckAzKzp67iOrVbNi4zgsdHeWDzZqammzbvJr69ZxlZb17dcOmmi2rVq0CYNLUqQz+cigAnbt2ZfAX/Vm9ciWbtm1VKedRqV/esnNHIb/ciiH9+7N39x7GT5oISPzy5h3b5drm++XDBw4y1WO6zC9379WT7r16ytXt068ffXr04MDefQoBIj+/C9y9e59ff/kZd7cOALi7d6BnrwGsX7+ZxYvmq5QfYMvWHWSkp7N391asrCTBUCen2oyfMBXvk6fo01siSy07WzZvXCPXdkD/vkyd9g379h9iwvjRqKurA3DgwGHMzc3YuH4VWlpa6Oqb0b9/fzp99hneJ32wtLTk7t17/PrrEtzd3CQyd3SnZ8/erF+/gcWFAmbKZd5GRkY6e/fsLpDZ2Ynx4yfi7X2SPn16y+qe8vGmUqVKxMcn0MHVrdh+Adxc3TAxMUZXzwCAtJR4qZ4DpHpeVEjPrvTs9YVUzwtKkHm7VM/bi+h5ipyeO3XqyLixo9DV1ZW17dH9c3r3HcCGDZtlAaLs7GxWr1lPw4YNWL92lSwo07RZC8aNG4f32Vv0+1z5CriAPx5w/+FrFs7sT4dWErt1be1M/7Er2LQngAXf9FN5HZoa6mz4dRR1HQsCCj0+a4yVpTGb917gxt0wmtaXrCoMDn3DwydvmTGuK327Fqx8tKlszsIVx7lx9xntWqgexH/96DF3Ay/RZfRw2vTrBUBD9w54jZmE7+btTPD6VWXbwT/OpGa9OnJl1nY1ObTUi6CAizTt3BEAAxMTGri1V2jvt3s/5taVqGJvp/IccvX9A6U+bwHubu0A6X3YexDrN2xj8cI5xbbfsm23xOft3lzg85wcGT/RA++Tp+nTu7tCm01bdqKnq0uTxg24EHhZ4fj+g0dwqu3AiuVLOO93gfDwSH755Rfmz59PXFw8mzZtomfPnqxfv57Fi4ufPLRly1YyMjLYu3cPVlZWUvmcGT9+PN7e3vTp0weQrKjctWsX/ft/wcyZMwHo1asXI0eOwsvLC3d3N5mf6NevH8OGDUNHR4clS5aoDBA1a9aMCxcuEJBUEPRv2rUTy0dO4E3oEzqNGoaL1D4auLVn5ZjJnN28nbHF2MfA2d9Ro6h92Nbk8G8ruBNwkSZS+0iMiSXkjyu07tuTzqOHy+pWc67Nlu9+5MEfV2jVu0exuhMIBAKBIJ+8XJFiDiAgIAAvLy+eP39OpUqVGDNmjOxdQhVv3rzB1dVVobxevXocPHhQruz27dv88ssvPHz4EDMzMwYOHMjo0aPLnNHlwy5TEAgExRIYGMiGDRuYNGkSq1evpkuXLjRp0oTOnTvj6enJgQMHMDNTPZNR8GEJuHQPUxMD2rcq+GgyMdbHrU09Ll4JISsrR2VbTU0NueBQPvl9vXgdpXAsMSmNdTtOM/bLThjoK58BWRr8Aq9jZmqEa9vGsjJTE0M6dmhG4OVbZGVlF9vezNQIHW2tv3Tui5eDSE3LoEvHliXWDfD3R11dnZ69CwavtLW1+bxHD+7fu0dUpPKB5fy2tZ2cZIOQANWqV6dxkyb4nz9f4rnzP+iTk5NLrKuKAj0XDAZL9NycwMu3/2E935bquWyp5QAu34nA2ECblvWsZGVGBtq4NLTi6v0osrNL96K23fsR1pb6tG9c/OqHolia6pKZ/Z6cnNxSt/kUdX359ltMDLVp1aAgRZGxgTYujay5cjeCrFLqeevxECpX0KdDM9UzmiuY65VJtuLwC7yJmakhrm0bycokum5C4OWgD6broHuPMTE2kAWHANTU1OjYvgkxcYncvBMqKz9z5gxq6up8XihQoK2tTdfu3Qm5f593kYr+NJ+L/gE41K4tCw4BVK1WjUZNGnPBz09W9vLFC679+ScDhg7ByNiYzMxMcnJU+/iimJiaoqOjQ0pyisIxv4CLmJma4Nq+jazM1MSYjm7tCbz4B1lZxa8W9b/wOy4uLWQDpQDNmzWmqk0VzvldkJVduXqDp8+eM2bUMHR0tEnPyOC9ktzempqacsGhfNzd3QEoV64cPXv3kpXn++XgUvhlR6faRfxytTL4Zcm9kqxEh4XRKa+DsbExKUr8t5//BczMTHHt0E5WZmpiQkf3DgRevFSyrgMCcXFpJQtaADRv1oSqVW04dz6g5GuoZEVGRgbZ2QW2k5qahqGhAVpaBfeFhoYGxsbG6Ghr4+fvj5mZGa4dOhSR2Y3AwIsly+wfgIuLSxGZm0ll9pOrW6lS8SnTipJHHikpKeTl5cmVq9azK4EXfy+Fni/g4tK6iMxNFWSu7eggFxwCMDY2okGDejx/8UJW9vTpM5KTk/nM3VXuY7d9+/bo6upy/tJ9lbJc+CMEU2N92rUoSC1mYqRHh9bOXLr2iKzs4t/1CgeH8mkrDfS8fB0tK0tNywTA1Fh+9aiZiST4VlzqYYD7l/5ATU2Npl0KgqKaWlo0/sydVw8ekfAuWmXbosEhAOdWkoDZu1eviz3v60ePiQ2PoH6HtsXWK4yf/0WpfSjzeZdLYR8XcXFpWaLPy+flq9fs2XsIj+kTZQGXoqSmpmFqakK5cuVk8nXv3h09PT20tbUxNTWhY0d3AgMDS3HP+UvvuYL3qObNm1G1alXOnSvwdYGBgeTk5NCvX0FavnLlytGvXz+ioqK4d++erNzMzAwdHZ1izwtgZ2eHqampXJmGliZ6RoYA1GtfMIlQU0uLxp3cefUwtFj7KBocAqgttY/oV29kZVlpkhXj+kUmUBhI5dHQ+mvvWQKBQCAQ/H/l5s2bTJo0ifr167Np0yY6d+7MDz/8wJkzZ0rV3sPDgwMHDsj+W7hQfmLZy5cvGTlyJBYWFmzYsIGvvvqKlStXsnWr6kl/qhABIoHgX2Tbtm1YWFgwfrxiiiOAunXrUrt2wSBXYGAg/fr1o27dujRv3py5c+eSllaQhujatWvY29vzxx9/MGPGDBo0aED79u3ZtEn1vjGlISsri2XLltG+fXucnZ3p3LkzJ0+elKsTFBTEuHHjaN26NfXr16dHjx4cP3682H7t7SV5yX/99Vfs7e2xt7fn2rVrsuO5ubmsWrWKli1b0qxZM77//nu56/3QhD57i4OttUJKPyd7GzIys3j1VvXHlipi45IAMDZUHNBdv/M0ZiaG9O7SQuFYWXj05CUOtaoqyO1cuwYZGVkqZ/R/CE6f/xMdbS254JQqHoeGUsXGBv0i+c2dnCUDl48fK65KAYkdPH3yRGme+NpOTrx584bU1FS58uzsbBLi44mKjCQwIIA9u3ZhZWVF5SrFpzkpjkdPXuBQq5oSPdckIyNT5SqVD8Hp839I9ay4V0tJhL1JxLaKIWpFVu/UqmpMZtZ73kanqmhZQOiLePyvvWZMHydKmniSmfWexJQsomLT8Lv2Gr+rr3GoZoK2lvJBHGV8irp+9jqBmlWMFfRsX81Uoud3xQ+CA4Q+j8P/ykvGflGXss3v+euo9B+OH9Z/ZGVlKw0k5a96eRj6Qlb28OFDqtjYoFfEV+QHfZ4W4yuePX2KvRJf4VDbifA3b0iT+opb168DYGJqhsf4CXzW2oWOrV34dspUIsLDlfafnJxMQnw8YU+fsvTnn0lNTaVRE0U7eRT6BAeHWorPEicHMjIyeFloAK4o795FExcXT20l++c4OzkQ+vip7O9r128BoKWlyaAvx9DSpRMtXDrx3az5JCYmqTxHPjExMQCYm5sr6Lq2syToU5xffvbkKY6OiisgHJ2ceKvSLydI/fIF9u7aRUUrKypXUQw6p6akkBCfwIvnL1i3eg1hz57RuKkyXT/GwcFeia5rS3T9UvVguEzXtRXTXzo7ORIaqnjtGRmZxMcnEB4egfdJX7y9T1G3rrPc6q1GjRrw7Nlz1qzdyKvXb3j16hVr1qzhwcOHfPXVlzx6FKpcZmcnqcyvipH5HXFxcdRWYuPOTk6EhoYqaVV6Pv+8By5t2tGwYUO+/vprYmNjAXgUqkJmmZ5LklmVnmsr1XNRYmNjMS40SJ2VLQlcaysZYNfR0eHxM8kehMp4HBaBfU0rhWupXcuajMxsXr2NLVGeosTFS4KXRoYFwS1H20qU19Fi425/bt4N411sErfvP2fN9nM42lnTpH6NYvsMfxqGeWVrdPTkA2ZVpPuYhT97XiYZk+MTANAzNCy2XlDARYAyBYgehT7Gwd5OiX04Sn1eKe5DpT7PkdDQJwrlv3muoknjBri0Vv3+3Khhff68cp19+48QEvKQqjaV+emnn0hOTmbQoIFS+Zyl9qt89Y5EPuk9p2QPLGdn+Xvu0aNQypcvT40a1RXq5R//UCTGxEC5cugX2XessnTVV0TYX7QPowL7MK1UESNzMy4fPcHDq9dJjI7h9aPHnFi1DpOKFajb7n83w4VAIBAIBP8E69ato27duixYsIDmzZszbdo0unbtysqVK0vVvmrVqtSvX1/2n52d/GrvLVu2YGJiwrJly2jRogXDhg1jxIgRrF+/vsQJMUURKeYEgn+JnJwcbt++zWeffYaGRsm33pkzZ5g+fTq9e/dm8uTJREdH4+npSVJSEsuXL5erO3fuXHr06MGaNWvw8/Pjt99+w97enjZt2sjVUzZbWtkH9dSpU7l9+zYTJ06kZs2aXLx4kW+++QZDQ0PatpV8QIaHh9OwYUMGDhyIlpYWt2/fZvbs2dJc370U+gQ4cOAA/fv3Z+jQoXTr1g0AW1tb2fE9e/bQqFEjlixZwosXL/j1118xMzMr1QbEf4WYuCQa1FH8YDc3lXwsRccmYlvdSuF4cew8dAE9XR1aNpH/sHwSFs6xU1fx+nkU6up/LzYfE5tAo3qKH9b56bGiY+Kxq/nXAyOqSExK4Y9r92jv0gg93ZJXQMXExGCuJL1bfmqh6GjlAbikxESysrKUpobL7y8mOho9vYIg3IWAAH6cNUv2t2Pt2syeM6dU95pK+WMTaFRPcYCrQM8J2NX88Bv2llXPRYlLzMSppuJKRFNDyYBmbGIG1SqpHjDKy8tj/eEQXBpWwrG6CVGxxQdpTwQ+Z8fJR7K/69UyZ/qQemWS+VPUdVxSBs52ijZqYigZwIxLyKC6tZHK9nl5eaw7cJc2jSvjWMOMqJiSA3cfgpjYRBX+QyKrRNd/339Us7Hi2q0HhEfGUKligZ6C7koGh99Fx8vKoqOjla6ezfcBMTEqfEVSEtkqfIWsbXQMNnp6vJUOWP62aBEOtWszd9FCoiKj2LF5MzMmTmLrvr0Ks7snDB/Ba+lAYnldXYaOGEGXHoqpj2JiYmnYQNHmzc3NpNcXg52t8sHh6JhYubpF2ycmJpGVlYWWlhavXr8F4Lvv59GyRVNGDBvM48fP2LZ9D1FR0WzbvKrYVAKbN29GTU0NayUBmsK+VRlJUjnK4pcDAwKYM+sH2d+OtWszS4Vf/mHm91yT7pmjqalJzz69GT5KMdVfTEwsDRvWVyJDvq6jsbOrqfQaomUBMmW6NpfTdT579x1g1er1sr+bNm3M/Lk/yLUdM3o44eERbNm6g81btgNQvnx5li79hfbt2vHjnLk0bKi4t4t5oWehnZ2twnF5mZXrPVH6vNQq48x+Q0ND+vf/gnp166Kppcn9+yHs3buXu3fvsGfXdqmei5M5phiZY+Xqyrc3U6rnwtwOusO9e8GMGlmQ4sqmShXKlSvHnTt36dG9m6w8LCyMuLg4AJJTMuQCNvnExqdQ37maoiymkpU9MXFJ2FaroHC8OHYfvYyerjYtGhV8pBsb6fHTt/1YstqbybO3y8qbNbRl0cz+aKhY+ZJPclw8BqYmCuX5ZcmxcWWSMfDAEdTU1KjTRvXq2Nz377l38RJV7Gthbl361WcxMXEl+LxY7GxV3Yel93kAly5f4erVG+zfpzotMcB330wlITGRX39bAUB4RCTPX7xm+/bt2NvXkvZf+J5Tnk4vOrr091xMjOTZVdTvmpfwnltWYt9GkJKQiL6xEWpF7Oiv2sfvByX24eRSkBFAXUODgT/O5OAST3bPLZihXMmuJmOX/0L5IhMLBAKBQCAojlwlmQ7+P5GVlcW1a9cUxjO7dOmCj48Pb968oXLlsmVrKcrvv/+Ou7u73Ht1ly5d2LBhA0FBQTRr1qyY1vKIAJFA8C+RkJBAVlaWXLoCkAwSFk4Ro6amRrly5fj111/p0qWL3BJCCwsLxowZw4QJE+Q+bDp27MjkyZMBaNGiBYGBgZw9e1YuQJSWloZTobQwhSmc3uPq1asEBASwZcsWWrduDUCrVq2Ijo5m1apVsgBR165d5a6hSZMmREVFceDAAZUBovrSjcatrKxk/18YCwsLPD09AWjTpg0PHjzg7Nmz/1iAKDMrW7YHRmG0tDRkx8vCtn1+XA96wneT+iikkPtt3XFaNHGgeSPFgdmykpmZpXQD3/z0JRmZZZspUFrOX7hOdnZOqdLLAWRmZKCpZABIW1qWmZmpvJ20XNngkZZ0I92ibRs1bsyqtWtJTk7m5vXrPHnyhPSMjFLJqVL+j67nsqeXA8jKfo+mhmIQUktDMqiQlVV86je/a294GZ7ErJGNiq2XT7vGlbCzMSIxJYsbIVHEJ2WVOr1aPp+irrOyVOhZU1KWWYIOzl95yYu3SfwwpvQvbR8Cia4V/V6Brsvm91TRq1sbDp24wLdz1vH15AGYmRpxLuA6AZduyeTIJyMjA1MLC4U+tLSk93uGcl+RJS3XVJK6SUtb3s+kp0sCnaZmZizxWi6b+W5RwZKffpiN35kzdOvZU66PmXN+JDU1lYi3bzl90ofMzEylkyoyM7PQUmq/xfu6/LaA0vZahdpraWmRLk3/U7u2Awt/mg2AW4e26Ohos2rNJq5dv0XzZspXd27Ztps///wTExMTpZu8a5XolzOk9UrWdT6NGjdmxdo1pCQnc/P6DZ48eUJGRrrS/idMnsSgIYOJiorC1+cU2dnZStPnZWZm/g1dS58tmkqeLUV0nU+nTu7Uru1IfHw8ly79SWxcnMI5NDU1sbGpgptrezp0aIuGpi4HDx5k9uw5rFu7RqHPApmVP8/kZM4o3fOwrAGi/BUV+XTv3pO6devy9ddfc/DQkQ+kZ2U2XbzMcXFxzPphDtaVKjHsq4J9IE1MjHF3d8XHx5fq1avRoX073kVHs/Q3LzQ1NcnOzlb5zpaZlS17/snJIvWDmZmlTzUJsP3gRW7cCeOb8d0U3vWMjfSoVaMifbo2pYaNJU+eR7L7yGV+XnGcRTP7F9tvdlYWGkp0lp/WKztLtc6LcifgIjfPnKftF72LDfw8DbpHSnwC7Qeo3odJGSptWoUvKNoWSvYlWlpaZGdn89uyVfTp04OaNaoVK5OOjjbVqlahgqUFPqfO0qhRfZKSUpk8eTKbN2/CxsamlPLl+zplfkLefjMzM5W/u8juzb/3HgqS59y+hb9QDrC0UZy8IbOPMrwn3Q24yK0zfrj0U7SP8gb6WNWsjnObVlRxsCcuPIKLBw6z7+dfGb5kvtL3eoFAIBAIBIq8evWK7OxsatSQnyhYs6ZkEk1YWFiJAaJ58+Yxffp0jI2NcXV15euvv5atsk9LSyMiIkKh/xo1alCuXDnCwsJEgEgg+C9TdJbZ2bNnmTp1quzvwYMHM2TIEN6+fcusWbPkVv00bdoUNTU1goOD5QJE+YGc/P5r1qxJZJF9BHR0dNi9e7eCPAcPHsTHx0f29x9//IGxsTHNmzeXO3fLli2ZN28e79+/R11dncTERFatWoW/vz9RUVGygRzjYjb+LomWLeUDDzVr1uTUqb+3ITtAdnYOicnyqyBMjPTR1tKU20cgn/y9h0rKF1+Yc4FBrNtxhh6dmtL385YKx+49eMH+Dd+UXe4k+TRVJsaGaGtLPpqLkj848lf3YimJ0+f/xMhQn1bN65aqvraODtlKlrVmSsvyP6AV2knLlS2JzZJ+1Bdta2ZmJluB4OrmxvatW5kyYQKHjx1TOuO9MP89Pf8h1XPxq3Cyc3JJTpPXkZG+Nlqa6mQr2f8nK0dyj2ppqV7BlpaezXbvR/R2rYmFSelW1Fia6mJpKgkyt2tszcp99/hh9VU2zG6vkGbuU9R1dk4uyalF9GygjZaWCj1nS8q0NVXPFk9Nz2b78RD6dLTDwlRxxvuHQKJr+VVJJsYGUl0r+r0CXZfe7xVHLdsqLJ4zloWeOxk2QbIhuLmpEd9MHsRCz52U1y1YraOjwldkSQdEtXWU+wotaXm2koHhrEx5P6OlLTlfezc3ubRI7VxdWTRnLiH37isEiJzqFvi6Dh07MrRvP9LT0/nOwwOA9ORYTEyM0dbWkqXAKkxJvk5yTGLbytpnFWmvrSOp2+kz+Q1LO3dyY9WaTdy9F6I0QHT2XABr1m2hb9++3L17V+k+U0XPpSinjrReybrOx9TMjKZSv9xB6penTpjIwWNHFfxyLfuCyROdunThq0GD+PH77/l1yS8ApKfGS3Wt/Td0LX22ZCuzNeXtK1lZUUk6sadzp4789PMSxo2fyrGj+2Vp5pb8uoz790PYuX0jyckplNczoUmTJgwePJhfly6VyKz0Waj8eSYns07Zn4dlITs7m8TERMqnZdC8eXNMTUy4eu3aB9KzMjtTLXN6ejpTpn1Namoa27ZsUNibaPasmWRmZrLcaxXLvVYB0L17d2xsbDh37hwaGurExsvvW2VsqIe2lqbs+Scni9QPamuX/nPY79J9Nu4O4HP3hvTu0lTu2NvIOCbN2sac6b1p30oyIatNc0cqWhrzs9cxrtx8TIvGtVT2ramlRY4SneVIda6pVbrf+fn9EA4vW0Wtxg3oOHxosXXvBASipqZG3XatlR7Pyc4mPTmFaF3JSpj0lNiC+1CZTavwBYUpeMcr2Zfs3nOQhIRExo8dobQvif1K0mt+P3sBGurqrF65FD//i1hXsmLNmrl89tlnrFmzhl9++aWU8uX7umKeSfk+WVtb+buL7N4sec+h4sh9/54Di5fy7tVrjCwtUJbzV2YfpXxPenE/hKPLV2PXqAHuw4fIHctITWXTjO9x6duL1n17ysqta9my+ZsfuH3Wn2afd1bZ9z+RFjw9PV3u3w9Jvo/50HJ/ijLDPyf3pygzCPsozKcoM/zzNi34tHF1dS32uL+//98+R2JiIiBZuV+Y/L/zjytDS0uLgQMH0rp1awwNDbl79y7r168nODiYQ4cOoampKdtvu2j/WlpalC9fvtj+lSECRALBv4SxsTFaWloKgZsWLVpw+PBhANneRPHxktQ7EydOVNpXRIT8fhwGBgZyfxd2FvmoqalRp47iJqWBgYFyf8fHx5OQkKBytVF0dDQVK1Zk5syZBAUFMXHiRGxtbdHX12ffvn2cPn1aabvSUNSxaWpqljlvpjLuPXjBuG/XyZWd2PED5qaGxMQp7tuQX2Zhpjo9VGGu3Qpl3m/7aNXUkZlT+iocX7nZB1eXumhqqBMemZ8KRfKiEhWdQHbOe6XnunP/CaOnLJIrO3VoGeZmxkTHJijKLS2zMFdMUfJ3iYiM4fbdx/Tp3h7NUqZtMzc35927dwrlsdKUORZKVgwAGBoZoaWlJatXGNkeGira5tPB1ZV1a9Zw8eJFevfpU2zdO/cfM3qK/GZ/pw55lULPxsX2+1eQ6Dm0VHp++DyO71delSvbOq8DpkbaxCcpzlqNS5IMWJgZqR6wOBIQRs77XNo0rCRLLReTIOkrJS2bqNg0TI10lK6cyad1fSvO/vmK4GexNHK0lDv2Ker64bNYvlt+Sa5s+8+fYWqoQ1yiop7zdW9qXIyezz8hOyeXNo0qy1LLRSdIfEJKWjZRMamYGpcvVs8lcSf4KaOn/CJXdurgUszNjFToWvIC+SF17d6+Ce1aNyD06Styc/NwrFWVG0GSdIRVqxRsXm9hYcHbIs81KPAV5uYqfIWhIZoqfIWsrYW53L8mZvKbf6urq2NoZERycvF7+BgYGlLDtiYnjx7l5NGjsvJTJ/Zhbm5GTIziPib5ZRYWqoPUFtI0S6raGxkZymayW0iDKmZF0lCZmhgDKDz3Aa5eu8mP8xbj0qo58+fPZ/To0YQr0XVJvtVQKsff9csb1qzl94sX6VWMX9bU1MSulj3nzpyRmwBz6uSRUuhatQwWspSFytrHyOlaFW6u7Tl6zJvbt4No2bI52dnZnDh+kq++Gsz9+yGMHjtJrn54eDiVra1lOip6ztLLrLy9kfR5+Ve5e/cuo8eMkyszjo2T6rk4mUtj08raxyrVc3Z2NjO+nsmTJ09Zs9oLWyXpyQwM9PFatpSIiEjCIyKwsqqIrV1tBgwYgImRHi9eRzNxlnwasqObp2Nmok9snOK9ESMty08rXBLXg56yYNlRWja249uJnyscP+UXRFZ2Dq2ayq8Ud2kmSZ967+GrYgNEBqYmJClJE5YcJ/kmMCjiu5QR/uw5O+b+TMVqNgz+cSbqxaS1y87MJOTPq9g2rIeBifL3xpcPHrHpmx8o/NQ+5X0Ac3PTEu5DxfRx+ZTW5yWnpLB5606+6NuT1NRU2R5naWnp5OXlER4ewaPQJ8z4ZrZcH1FR72TyGRsb07BhQ+7cuSvtvxT3nEXp7zlzcwtu3LhJXl6e3ATA0pynNBzzWkPotZv0+86DW2f9SIpV1FlZ7CPi2XN2zVtIhWo2DPzxOwX7CL58hZT4BBxayAc/q9d1RltXl5cPHhYbIHr48GFpLusv8eLFiw/eZ6NGkpXy/5Tcn6LM8OHl/hRlBmEfyvgUZYZ/zqYFJZOX+7+XYi45OVnpGFdRqvyNvbABLC0tmTdvnuzvpk2bYmdnx9ixYzl//jxdunT5W/0rQwSIBIJ/CQ0NDRo2bMiVK1dkq3AAjIyMZIGb/A+O/FU4c+bMoW5dxdUalpaWCmUfCiMjI0xNTdm4caPS46ampmRmZhIYGMjMmTMZOrRgduLevXv/Mbn+DnY1KrF68Vi5MjNTA2rVrERQ8HNyc3PlZpQHP3qFjrYWNtYlf9gFP3rJNwu242hXhcU/fKk0x3xUdAJnLwRx9kKQwrEhE5djV6MSe9fNUDhmb2vD+uXfyZWZmxphb2tD0L3HCnLfD3mGjo6W3MDrh+KM31Xy8vJKnV4OwK5WLW7dvElKSgr6hfKWhwQHA1CrlvKBEjU1NWra2ip9UQwJDsba2lpunwtlZEhnb6ampBRbD8Detirrl38vVybRc1WC7oUq0fNTdHS0qVqlbPtTlYYzflekei455Vl1a0N+nii/ZNjEUJvq1kaEPIsjNzcPNbWCAYvQFwloa6ljbaFad9Fx6aSkZTN+0UWFYwfPPeXguaes/M6FmpVVB0/zU6ulpSuuUvkUdV29shGLpsrPrjYx0qFGFWNCnsYo6PnR8ziJni1V5+qPjksjJS2bcQv8FI4dOBPKgTOhrP6hAzWrGJftogphb1uF9cvl03MW6z8ehP0j/kNTUwNnx4Jl79duPgCgeaPasjIHBweuXrtGakoKeoV8xcOQEABsi/EVNWrWJFSJr3gYEkIla2t0pb6iloNkkDbmnfyeEPkrKIyNSw6sa2lpoampKXs+ZqTGYmZmin0tW4KC7ik+S4IfoqOjQ1Ub1akDLC0tMDEx5sFDxc3Mg0MeYV9onxdHx1pwHN5Fyw9cRkdLBg1NpIGifO4HP8Djm9nUdrTnl8Xz0NDQwMHBgWtKdF16v/xA4diDUvrlzDL4ZT19SV8rVqzA0NCQjPQkqa7tCLpzV4muQyS6rqr6Y0ym6wePFI4FhzzEvpbyPUkKk/9sSUmRDFYnJCSS8/4979/nUquWLevWrkCnvCTgsG3bVn7//RK2drbcu3dfUeb7+TKr3l/N0tISExMTHiix8eCQEOxV/F6lpVatWqxbtwYdHV3y8vKYMmUKFubmGBgYEHTnTjF6LoXMSvX8QEHm3NxcZs+Zz/UbN/llyc80btSwWJmtrCpiZSXxU0lJSQQHB9OuhQO21Suy4qev5OqamuhjV8OKuyEvFa7lweM36GhrYmOtOpiRT0joa2Yu2o+DXSV+/k75fkJxCank5UHu+1wotBAzR7p66f374tO7VqpZg7C798lITUNHr2B28utHodLj1YttHxsewbYf5qFvbMywn+eirSSVZGEeXLlOZlo69Tu0U1nHqkZ1Ri5ZQOsKkvsqIy2+0H2oxOeF5Pu8UtyHSn3eQ+xrSXxeclIyaWnpbN+5j+079ynU7dq9P61aNmfdmmWEhb1gqedKBg7oqyBfTk6OLMtBcPB9qf1WLUa+fPtVcs8Fh8j2MwKwt6/FsWPHCAt7Ts2aNQrVC5Yd/6uc3rSN2+f86TpuFPXatyH86TOeK7UPyb5+VjVKto/ts+ejb2zEVz/NUWofqfEJAOQVsdW8vDzycnNL3EvC0dGx2ON/hfT0dF68eEG1atWUpkf9EHxouT9FmeGfl/tTlBmEfcCnKTP8O3ILPl3+6gqhM2fOMHv27BLr+fr6YmQkGTMpOokvKUkyMTH/eGlp27Yturq6hISE0KVLF9lCgaL9Z2VlkZ6eXub+RYBIIPgXGT58OGPHjmX9+vUqVweBJGdkxYoVef36NYMHD/4XJZSkedu8eTOampo4OChuGg8SB5SbmyuXdzslJYWAgIAS+9fU1Cw29/c/gaGBLs0aKn6kdWhdF/9L97jwx31cXSQpphISU/C/dBeX5rVlexEBvAmXDMhVrlQwa/b5qyim/bgZqwqmLF8wUmVqpqVzhymUnQu8w/mLd5j/zUAsVczYNzTUo3kTZ4Vy9/ZN8Qu8gf/Fm7i3l8zyi09I5vyF67Rt1UAur/vrt1EAVLEu2wbMRTl9/k+sKpjRoG7pP3Y7uLqyZ9cujh89ypAvvwQkD6uT3t44OTtToaJkgCcyIoKMjAyqVa8u13bNqlU8fPAAx9qSgeSXL15w6+ZNBg8pSImREB+PkbGxQupG7+PHgdK9bBav5+v4X7yBe3tJIEai52v/gp5L3qvKQFeLBg6KQczW9a34404Ef96NoHUDSW75xJQsLgdF0My5ApqFUp9FREsGOa2kQaPu7arToq58gCAhJZPV++/j1qwyzetUpKKZZGAiMTkTIwPFNC3nrrymXDmoWUXxheRT1LWBnhYNHBWD8q0bWnP59lv+CArHpZE1AIkpmVy+/ZZmda3QKqTn8GjJgHglC8mAfI8ONWlRXz7vf0JyJqv2BOHewobm9SpR0bz4wfaSMDTQo3ljxZWg7u0a4xd4E/+Lt3Bv3wTI1/UN2rasX0TXktlRVaw/zKSEl68jOXziAm1a1qOqTYGdderUia1bt3Ly2HEGDJXc31lZWZw+6YOjszOWFSW/dVRkJBkZGVStVk3Wtq1rBzauXsOjBw9wkPqKVy9ecvvmTfoXen7Wb9QIE1NT/M6cYfDwYbIUQWdO+pD7/j2NmxXMmI6Pi8PEVH42dkR4OPfu3MXR2UmWDjUtSbISx61DW/z8L+J/4XfcXdtJ+khI4Lx/IG1cWsitlnj95i0AVSpby8pcO7TBx+cskZHvqFhRoutr12/x8tVrBg8qWJXark0rlnquwvvkabp36yQbmD12QpKKtXnTgvRyYc9fMmXaTCpZVWTl8sWydGj5uj5+9BiDvxwq0/Up75NF/HKk1C8X6Lq9awfWrlqt1C8PkvPLCRgZG6n0yw6OBcHBuLg4TIvoOjk5mT8vXaZChQp06tRJousUSRDMza09fv4X8A8IxN2tg0TX8Qmc97tAmzat5HX9+o1E11UKAnSuHdrj4+NLZGQUFaV2de36TV6+fMXgQQV7xMTFx2OqZFXF8RM+lCtXDgdHid8wNTXBwMCAC4G/M2H8aJo3a4KuvhmpqamEhj6merVqfNaxIxcuBOIfEIC7m1shmf1o08alZJldO+Dj40NkZCQVpb/PtWvXJTIPHqQgY2nIvz5DQ0OaN2uGrp4Be/bsISUlhdatW2JhYY6ff4ASPQfQpk3rUui5nRI935DqeYCcLL/86sm5c37M/mEmrh3al+k6PD09ef/+PQN6tMRQvzxN6yuuPOrQqjYX/ggh8MpDOkhTvyUkphJwOYTWTe1lexEBvImQrOCpbFVgky9eRzNj/h6sLI35bc4Qle96NtZm5OXl4X85hK5uDWTl53+/D0CtmsVPdHB2acnvh49x3fcsbfpJ9vLMycrm5ll/qjjUwthS8rxPeBdNVkYmloUCz8lx8Wz5fi7lypVjxKJ56BuXPCBw58JFNLW1cWrVXGUdXQN97BrWp2VVib2nJUuev26ubfHzD8Q/4Hfc3doBUp/nd4E2Li1L4fPa4uNzpoh95Pu8LwAwMTVh2W/yK44B9u0/zL37ISxeOBdzczPqONemVi1bPJev5smTZ2hpacnkO3jwIDdv3qR+/frEx8dz/rwfbdq0KWK/ryXyFZrp6+rqquSeu8bLly/lvsvatWvHb795cujQQWbOnAlIgimHDh3G0tKSevWKTxWsis2bN3P58HHaDuhLy16S1WrOLi25fPg4N3zP4lLIPm6fU7SP7IxMLIrYx/ZZ8yhXrhzDFs5DT4V9mEn3I7p38RKuQwv2KXt45TpZGRlUKhQEU8Y/mXapfPny/1j//1S/n6LM8M/J/SnKDMI+CvMpygz/rNyC/3/069ePfv1Kt3djVpZkn+WwsDBcXFxk5WFhYQAKeweVFV1dXaysrGT95fP8+XPy8vLK3L8IEAkE/yLt2rVjzJgxrFy5kkePHtG5c2csLS1JTk7m5s2bREdHo6enR7ly5Zg5cyZff/01aWlptGvXjvLlyxMeHs7FixeZPn061asXP1Psr9KqVSvat2/PqFGjGDVqFPb29qSnp/P06VNevnzJwoULMTAwoE6dOmzatAlTU1M0NDTYuHEj+vr6xMUppscoTI0aNfD396dx48aUL1+e6tWry60u+TdxdanH/uOXWOB5gLCXURgb6XH45J/k5uYyZuhncnUnzFwPgPdOyWyB1LQMJs/aSHJKOkP7tufydfmZhpWtzKhbuxoA7VoqpvZ7/CwcgJZNHDA2Ktv1u7VrSl2ns8xdtImwF28xNjLg4DE/cnNzGT9SPm3PmKlLADh9eLmsLDwyhlNnLgPw4NFzADZtPw6AVUVzunWSXy3xNOw1j5+9ZsSQbgoDfsXhXKcOrm5urF29mvj4eCpXqYKvjw8R4eHMnjNHVm/+3LncvnWLa7duycr69OvHiWPHmD51KoOHDkVDQ4N9u3djamrKoEKr1k6fPs2xw4dp264dlSpXJi01latXrnD92jVc2rShcVP5NBllwa1dM+o6nWHuoo2l0LMkFeDpwytkZeGR0YX0LHlob9p+DMjXs4tcHxI9v2LEkM/LpOeitGpghUOgMV577vIqMgVDPS18L78kNy+PwV3kA3yzVktS1G2bL8nBa1vFCNsigZ38VHM2Vga0qFcwqH/g3FMehMXRyNESCxMdktOy+fNOBI9fJfJ522pUKmalUlE+RV23bmiNQ3VTlu+8xavIJIz0tPD5/Tnvc/MY2k0+MPn9colsOxZJBrttbUywtZEffM5PNWdjZUjLIsEj/6uveBeXRqZ0f7Tgp7Hs85XMzu/QzIYKZqX/6HFr14S6TueZu3grYS/CMTY24OCxAKmue8rVHTPtVwBOH/pNVhYeGcOps38C8ODRCwA27fAGwKqCOd06Fawy7D3kB9zaN8aqghlvI6I5dPwChoZ6/PC1/Cz/evXq0c7NlU1r1pAQH4d15SqcPXWKyPBwvp39g6zeornzuHv7NoE3rsvKevbti8/xE3w/3YP+Qwajrq7Bob17MTU1pf+QgoE8LS0txk2ZzOJ585k6Ziwdu3QmKjKKI/v3U7dBfVzaFwxMjxg4iIZNGmNbqxYGBoa8ef0KX29vcnJyGDNRPoUYSAZL6+yvzbwFvxAW9hITYyMOHj4u0emY4XJ1x06Q7F/k631AVjZy2BD8/AIZM34aAwf0JS0tnZ2792NnW4MehdL5mJubMXL4UNZt2MrEKd/Svm1rHj95xtHjPnT6zBUnJ8mkjtTUNCZO/oak5BS+HDqAS5evSHRQ3hiARk0as271auLj4+T88qw5P8rOtWDuHIJu3ebKrZsFv2e/fpw4dpwZU6cxaOgQNDQ02L97DyampgwcWhAgOnPal2OHj0j9sjVpqWlck/rl1m1caNy0iayux+QpWFawpLazM6YmpkRGRnLq5ElioqP5abF8ilWJrttTp44T8+YvIizshVTXR8nNfc/4saPkdT1+ikTXPgUpAUeO+BI/vwDGjJ3EwIFfSHS9aw92tjXp0b2rrN6WLTu4c/ceLVs0x6piBRKTkvAPCCQk5CED+vfFRhoMUVdX58uhA1mzdiNffjWabt06o66hw+HDh4mKimLhzz/h5uZKnb11mDdvAWFhzzExNubgoUMS+xgnv7p57DhJqmHfUycLyTwcPz8/xowZx8BBAyQy79yFna0tPbp3l2vv43OKiMgIMtIlE3Fu3w5i0+bNAHTt0pVKlSRBiq5du9HRvSO2djXR1tLmfnAIp06dwt6+Fn1690JLS5M6dQ4wb/7PUpkL63l0ET1Pkur5eCGZh0n1PFGJnrvJ6u3Zu5+Dh45Qt24ddHS0OeUrn6a4Q/t2slm/W7ft5NmzZzg7O6Gurk5g4O9cuXqNadOmUbuW6vRa7Vs64Wx/hYUrjvH81TuMDfU46nud97l5jBrUQa7u5NnbATi2RXKfpqZlMm3OTpJT0xncuxV/3ngsV9/ayoQ6DpLVVF1dG7D32B/8ssabx2ERVLexJPRZOCfP3aaGjSVtmxc/YcXG0Z46bVpxZutOUhISMKtkxe3zAcRHvaOPx2RZvQO/Luf5vWCWnPOWlW2dNY+4iEjaftGbl8EPeBlcsNJP38QYu0YN5M6VlpTM4xu3cW7dosSVRspwc21HnTqHmbdgMWHPpffhIanPK7Jf0Njx0wHwPXlQVjZyuNTnjZP6vPR0du7aJ/F53SU+r7yODu3byT+7AS4EXiI45JHcMVMTY3p078Kx4z6MHT+Ndm1bU6FCQWqW6tWrMXr0GIl84+VTKo4dK/nb17dgz9ORI0dI77kxDBw4iLS0NHbu3ImdnS09ehTccxUqVGDw4EHs2LGTnJwcatd2IjDwAkFBQSxatFAuhVt4eDinTvkC8OCB5PfZtElyb1pZVaRbN8l9cf78eZYuXYqZdSUsbapwxz9Q1kdlezvObdtFamIippWsCJLaR69C9nF4qRfP7wWz8OwJWdn2H+YTFxGJS7/evAx5yMuQgm8WfWNjbBvVB8CheRMsq9pwYc8BEqLeUcXRntjwCK56+2JgakKjTu4Kv4dAIBAIBKrIK2Hl6f86WlpaNGvWjLNnz/LVVwXfv76+vtSsWZPKlVVnmVDGhQsXSEtLk9s6pE2bNvj7+/PNN9/IJvD7+vpiaGhIgwYNVHWlFBEgEgj+ZWbMmEGjRo3Ys2cP8+fPJyUlBSMjI5ycnFi0aBFdu0oGKDp37oyhoSHr16/n5EnJQIG1tTUuLi6Ym6vO/f4hWLlyJRs3bmTfvn28ffsWAwMD7Ozs6N27t6yOp6cnc+bMYebMmRgbGzN06FDS0tLYunVrsX3PmTOHRYsWMXr0aDIyMti5cyfNmjUrts0/hbq6Gl4/jWLl5pMcOHGJzMwcattXYe7XA6hWpfgZ84lJaURFJwCweuspheNd3RvLAkQfGnV1NVYv/Zrla/ex7/A5MjKzcHKowYIfxlDNpuRUXG/Do1mz+YhcWf7fjeo7KASIfM9JBoM7u5c+vVw+cxcsoOK6dZw+dYrk5GRs7exY5uVFg4bFp5DR09Nj7caNeHl6sm3zZvLy8mjYqBHTZszApNCs7vr163P/7l3OnT1LXFwc6urq2FStyjQPD/r171/MGUpGoudvWb52L/sOnyUjM1uq57FUs6lUYnuJng/LleX/3ai+o0LQwvfcH8Bf07Oc3GrlmDe+KVuPP+TkxedkZudSy8aI6UPqUbnChwvGNnGyJCImlfNXX5GYkoWmpjrVKxkwbXA93JqV7WXnU9S1ulo5FkxqyZaj9/EOeEZm9ntqVTXB46tGVK5oUHIHZeDsHy+4/6Qgrdjd0GjuhkpSpTnVNCtTgEii6+ksX3OAfUf8pP6jOgtmjSyd/4iIYc3mY3Jl+X83qm8vFyCqZVsFb9/LxMYnYWykT8f2TRk/siemJop7fnw/bx4VKm7gnO9pkpOTqWlry+Lly6hXgq/Q1dPDa/061ixfzq4tW8nNy6N+w4ZM9JiOcZEVIJ917YqGpiZ7t+9g3cpV6Ovr83nvXoyeMEFuIK97n95cvfwH169cJS01FRNTUxo3a86Q4cOoYWtbVATU1dVZ7fULy1euY/+BIxKd1rZn/tyZVKumOhVXPhUrWrJ5wwo8vdaycvVGNDU1cGnVHI9pExT2ahk9ciiGhvrsP3CMpctWY25mysjhQxgzuuCjIzExkcgoyeqvlasV08V+1rkz/QcN4swpX4mu7Wz5rdR+eQNensvYvnkLeXl5NGjUiKkzPOT8cr369bl/9x7ni/jlKR7TFfxytx7d8Tt7jgN79pKcnIyhoSFOdZyZv/Bn6iv5qFFXV2f1Sk+We61h//5DZGRm4uTkyPx5s6lWTXXaqAJdV2DzpjV4LlvJylXr0NTUxKV1CzymT5HTtUvrlrx585YT3j7Exyegra2Fna0t8+f+wOefy+f8HjVyGNaVKrF330E2bNxKdnY29vb2LF36C27SDXBXr1rBcq8V7N+/n4yMTJycajN//jyqFVoNp1rmimzetBFPz+WsXLlaKnNrPDymKdjH8RMnuHXrtuzvGzdvcuOmJMjXoH59WYCoc+fO3L17D/+AADIzM7G2tmbUqFF8NXQA5ctL9k9bvXIZy71WsX//wUJ6/rEMel6H57IVrFy1VipzSwU9h4ZKAi737t3n3r37Cv2cOllPFiCys63JhQuBXPz9Eu/f52JnZ4uXlxedO3cm7vEBhbb5qKur4TlvKKu3nuXQyWtkZmXjaGfN7Gm9qFq5+PfppOQ0omIk+7Ot3XFe4XiXDvVlASIjQ122Lh/Hpj0BXL4eyrHTNzAy1KWbewPGDXVDU7Pkz+4vvp3O+e17CPIPJD05hYo1qjHspx+pUVdx5W1hIsIkk30uHjyqcKx6XWeFANH93//gfU4O9dq3LVEmZairq7N6xa8sX7GW/fuPSOyjtgPz531fSp9Xgc0bV+K5fDUrV2+Q+LzWLfCYNvEv76k1a6YHtexqcvyEL2vWSd4bzc3NSU9P58iRozg5OTF//vzS33ObN+Hp6cnKlSsl9uvSGg8PDwX5pkyZgoGBIUeOHMHb+yQ2NjYsXPgznTvL79UTHh7O2rVr5cry/27UqJEsQPTokWTyR+zbcA79upyi1GnTmiD/QDKSU6hQvRpfLphN9TrK943NJ1JqH5cOKbeP/ACRhqYmYzwXc2HvAUKv3+Re4CW0dMtTu2Uz3IcPRc+odPt1CQQCgUAgkDB+/Hi+/PJL5s2bR+fOnbl27Ro+Pj4sXy7/jK9duzY9e/Zk0SLJBLklS5ZQrlw56tevj6GhIffu3WPDhg04OzvjJs1IADBy5EhOnjzJjBkzGDhwII8fP2bLli1Mnz69zO9U5fLy8vL+/iULBALBf5OkFz4fW4QyYVhN8oGYHn29hJr/HcpbSFbpJJRiX4n/CsbSVWvp0TdLqPnforyFJIXU03OKe1b9V7Ht6Al8WrrO13PYhe9LqPnfokb7xQCkv/vzI0tSespbSgJKEUmJH1mS0mNlKFlll59i7lNB11ASHIhLSS6h5n8HU31JsDU/xdyngK6+ZE+btNRPR8+6evl6jv/IkpQNXX1JYLK4ANF/DdNakiDpsZeKe/D8V+lVJMXcp4KugSR9XVpa6keWpPTo6kpWXx9+obiH13+VvtWUpyT/EKSlpfHw4UMcHR0/mRRRn6LM8GnKLWT+d/gUZYZPV+7/JW5v7fWxRVBJwxHHSq70gfD398fLy4vnz59TqVIlxowZQ9++feXq2Nvb06tXL5YskWQAOnToEPv27ePly5dkZGRQoUIF3NzcmDJlikIGptu3b7NkyRIePnyIqakpgwcPZvTo0WXOlCJWEAkEAoFAIBAIBAKBQCAQCAQCgUAg+Nvkvc/52CL8J3B1dcVVmlVAFaGh8hOHyrLXUcOGDTl48GDJFUtA7W/3IBAIBAKBQCAQCAQCgUAgEAgEAoFAIPikEAEigUAgEAgEAoFAIBAIBAKBQCAQCASC/2eIFHMCgUAgEAgEAoFAIBAIBAKBQCAQCP42ubnvP7YIgjIgVhAJBAKBQCAQCAQCgUAgEAgEAoFAIBD8P0MEiAQCgUAgEAgEAoFAIBAIBAKBQCAQCP6fIVLMCQQCgUAgEAgEAoFAIBAIBAKBQCD42+S9FynmPiXECiKBQCAQCAQCgUAgEAgEAoFAIBAIBIL/Z5TLy8vL+9hCCAQCgUAgEAgEAoFAIBAIBAKBQCD4tLm+9rOPLYJKmk44+7FF+M8hUswJBAKBQCAQCAQCgUAgEAgEAoFAIPjb5OWKFHOfEiJAJBAI/qdJS0v92CKUCV1dPQDSkqM/siSlR9fAAvi0dC3T8yckMxSSO+H5R5ak9OgaVwcgPe7RR5ak9JQ3dQAgLSniI0tSNnQNrQAIS4j7yJKUnhrGpgBEJCV+ZElKj5WhEQBpyVEfWZKyoWtQAYC01E9H17p6Ul2nJn9kSUqPrp4BAGkpsR9ZktKjq28GfFp6hkK6/oTkzpc5OfXTef8w0JO+e3xCeoZP2z7iUj4dmU31JTJ/Su8eUPD+8aFJS0vj4cOHODo6oqur+4+c45/gU5RbyPzv8CnKDJ+u3ALBx0LsQSQQCAQCgUAgEAgEAoFAIBAIBAKBQPD/DLGCSCAQCAQCgUAgEAgEAoFAIBAIBALB3ybvvUgx9ykhVhAJBAKBQCAQCAQCgUAgEAgEAoFAIBD8P0MEiAQCgUAgEAgEAoFAIBAIBAKBQCAQCP6fIVLMCQQCgUAgEAgEAoFAIBAIBAKBQCD42+TmihRznxIiQCQQ/Mt4e3uzc+dOnj9/Tl5eHhUqVKBhw4Z4eHhgZmYGQIcOHWjXrh1z5sz51+W7du0aX375ZYn1/P39cXV15dtvv2XkyJH/gmRlIykpiaVLl3Lu3DkyMjJwdnbGw2M6jo6OpWofFhaGp6cnQUF30NTUxMWlNR4eMzA1NZGrl5uby86dOzl06DAxMTFUrWrD8OEj6Ny5k1y9o0ePcuqULy9evCA5ORkLCwsaN27E2LFjqVSpklzd5ORkVq1YS0Dg77x79w4jIyPKl9chPj6RrKwsnJ0c8Zg+CUcH+9Jdy/MXeC5bSdCd+2hqauDSqiUeHpMwNTFR2cb39Dl++HEB5cuX589L51XWy87J4bPPPuPFixeUL1+evLy8j65rOfmys+nffwDPnz9n+vRpMtvOt48zZ86QkpJCuXLlUFdXp3bt2kyYMJ4mTZr8azLn5ubi4+ODv38AoaGhJCYmYm1tzWeffcaXXw5FW1tb4fyxsfGs27iTwEtXiY9PAKBcuXI0qOeMx9TRODrYFSu/7Dqev8LTawNBd0MkttGyKR7TxmBqYixX79XrcFau2cr1m3fIzsrGwb4mE8Z+RZPG9eSvw9cP/8A/CA19RmJSMtaVKtLt856l8hFJySl4rdnBhYtXSc/IxLm2HTOmjMDRvmaJbe+HPMbbN4DgkMc8efqCnPfvuXPlhEK9yKhojvv4c+mPm7x6E466mho1a1Rl9LB+NG9av9hzJCcn47VyAwGBl8jIyMTZyQGPaRNwdKhVonwAYc9f4rlsNUF370tsplVzPKZPlNN1eHgEXXsMVNp+8cIf6dTRVa5s/8GjHDx0nDdvIzA2NqJr125MnTpVafusrCx2bdxEwOkzpCQnUd3Wli/HjqVhs6bFyv3m5UtOHT1GaEgIT0Mfk52VxfZjR6lQyUqh7sXzfly7fJnQ4BDC37yhTsMG/LpubQmaKZBv24YNnPM9TXJyMjVtbRk5fhyNmzUrsW30u3esWb6cG1evkZeXR4NGjZg4fTqVKlsr1I2LjWXbho1cuXyZxMRETM3MaNSkMd/++KOsTv/uPYiKiFB6LusqVQjw81Mol9jHegIu/C61D0c8pk8oo59eXchPt5D6aWNZnfDwCLp276+0/eKFc+n0WYF9BAc/wNvnDMHBD3jy5Bk5798TGhqqKLPXKgIuBEqfk054TJ+Ko6ND6WQOe46n53KC7tyV2HTrVnjMmKbwbNm8eSv3g0MIDg4hLi6OsWNGMW7cGKV9Xr12nS1btvH06VNyct5TvXp1hgwZQkd3V6X15a9lJQEXLhS6lullvJZlBN25U+haPJRcyxbuBwcXupbRjBs3tsT+k5OT8VqxRmofGTg71cZj+mQcHctgH54rCLpzT2IfrVvi4TFFTr530dGsWLGGkAePiI6OQU1NjapVq/BFvz583q0z5cqVk9Xt0q03ERGRSs9VpUoVvE8c+8/pdP36DWzYuEmhXEtLi2tX/yxWlv/atYDE561ftw7fU6dITk7G1s6O8RMm0Lx58xLleffuHcs8Pbl65Qp5eXk0atwYjxkzqFy5sly9w4cOcePGDYKDg4mKjKTb558zb/58hf5Oenszf948pec6c+4cee/fF3mn/mf0J3ln2sWhw0ck70w2NgwfMYzOnRTf886dO8/u3Xt4/uIF6urq1KxZk2FffYmLS2u5euvWreP27Vuy38TBwYHIyMj/hB34+wdw7tx5Qh48IDY2hgoVKtChgysTJkwgKyebTevXc+aUL0nJydja2jJ2wnialtI+Vngu4/rVq+Tm5dGocSOmenhgXcg+MjIy8Pz1Vx4EBxMVGUVubi7WlSvTrXt3+vTrh4ZmwTDRhDFjCLp1W+m51NXVefDgQan0V5h/451EIBAIBAJB6REBIoHgX2TTpk14enoybNgwpkyZQl5eHk+ePOHkyZO8e/dOFiD6mDg5OXHgwAHZ3yEhISxYsIDFixdTo0YNWbmlpSUHDhxQCG78F8jNzWXMmDGEhoby5ZdDMTY25uDBQ4wePYY9e/ZQtapNse2joqIYOXIUBgb6TJo0ifT0NHbu3MWTJ0/ZvXsXmpqasrqrV69h27Zt9O7dCycnJwIDA5k1axblypWjU6fPZPUePQrF2tqatm3bYmhowNu34Rw7dozff7/EgQMHsLS0kMk+fPhwnj59yhd9e1HFpjIbN27l5cvX6OnpMn7cKE54+zB67GT27NpCVZsqJVzLO0aOnoSBvh6TJo4hPS2dnbv38eTZM3bv2CR3LfmkpaXhtXIt5cuXL1HX+/Yd4tWrVwDUq1ePdu3afnRdF2b//gNERsoPguXbx8OHDwEoX7482tpapKSkkpCQwIQJE1m/fh2NGjX6V2TOyMhg7tx51KlTh759+2Bqasq9e/dYv349169fZ+PGDXIDexEREQwZLvEfmhoaqKtrUL9ubeITEoiLT2D0+O/Ys2MVVW0UB8flryOakeO+wUBfl0njh5GensHOPYd58uwFu7etkF1HZFQ0X42ajrqaGl8N6Ut5HR1O+JxjwpRZrF+zhEYN6kivI5O5Py2jjrMDfXt3xdTEmHv3H7Jq1SquXLnCBq9ZctdR9DeZPOMnHj99wVeDe2FsZMDBo6cZNeEH9m5fRtUqxfuZy1duccz7PLVsq2JtXYGXr8KV1gv8/Trbdx2hXZvmfN6lPe/f5+Jz+gLjps5l3g+T6dnNTbV8077n8ZOnfDV0AMZGRhw8fILR46axZ+dGqtpUVtquQNfvGDlmiuQ+nDCa9PR0du4+wJOnYezesV7hPuz0mSutW8oHRurWcZL7e8WqDWzfuQ8317YMHNCHsOcv2b17N0+fPuUHz6UKMixb8DOXAwLoOaA/lapUwe/UKeZM92DJ2jU416+nUD+fh/eD8T54CJvq1ahSrSphj5+orHvq6FGePgqllqMjSUmJxeqkKEvmL+Civz99Bw6kcpUqnPHx4bup01i+fh1169dX2S4tLY3p48eTmpLKkOHD0NDQ4NDefUwdO5bNe3ZjZGwsq/suMopJo0YB0L13b8wtLYiJjuZRiPzg1iSP6aSnpcuVRUVGsGXdepooCVjl5uYyeep3PH7yTGIfxkYcPHyc0WOnsmfXplL66ckY6OszaeJoqZ/ez5NnYezesUGJfbjRupX8IGHduvL2cfmPqxw77oOdXU2srSvx8tVrRZmnTOfx4yd89eUQyXPy0GFGjxnPnj07qGpTCt89aqxE5kkTSE9LY+euPTx5+pTdu7bLybxm7XrMzc1wsK/Fn1euquwz8OLveHh8Q926dRg7ZjTlypXDPyCQ7777jndR0xkyZLDSdpJrmSq9lqGFrmUse/bsKuW1jJZey0TptezmydNn7N61o8i1rJNeiz1/XrlSbL9y8k39msePn/LVl4Ok8h1l9NiJ7Nm9rXT2MWqC9Dk+VuI/du2V+I+dm2XyJSQkEvUuGjfXdlSsWJGcnByuXrvO3Hk/8/LlKyZPGifr85sZU0lLL7BxLW19wsPD8fLyokXz5v9pnc6aNRPd8rpSuXVQV1cvtv5/9VrmzZ2Lv78/gwYOpIqNDT4nTzJ1yhQ2bNhA/QYNVLZLS0tj3JgxpKSkMHzECDQ0NNi7dy9jR49mz759GBfyeTu2byctLQ0nJydiYmKKlQdg3PjxCu/1enp6Be/UQ4f8o/pbvWYt27Ztp3evXjg51SYw8CKzZs2WvDN9VvCet2//fn799TdcWrdmypRJZGVm4X3ShylTp/Hb0l9xde0gq+vl5YW5uRn2tWpx5epVnj59yqiRI/4TdvDzwoVYmFvQpUtnKlasyNOnT9m9ezcXL16kWo3qXLwQSP9Bg6hiU4VTJ33wmDKVNRs2UK9BfZV9pqWlMWnsOFJSUvhqxHDUNTQ4sGcvE8aMZefePbJnYmZmJs+fhdGiVSusrCpRTq0c9+/dY8WyZYQEB7Ng0UJZn8NGjKB7z55y50lPT+fXRYtpVoqAlTL+jXcSgUAgEAgEpUcEiASCf5Fdu3bRq1cvZs6cKStr27Yto0aNIjc39yNKVoC+vj71Cw3GZWZmAmBnZ0edOnXk6tYvZtDuY3LmzBmCgoJYsWIFbdq4AODu3pGePXuyfv16Fi9eVGz7LVu2kpGRwd69e7CyksxIc3JyZvz48Xh7e9OnTx9AMkNv165d9O//hew37dWrFyNHjsLLywt3dzfZwMWsWd8rnKd9+3YMHjwEHx8fRowYDsCdO3e4f/8+M7+dTv8v+nDuvD/vomPo17cXhw4fo7K1FZs2rKJn74Gs37CFxQvnFX8t23aSkZ7O3t2bsapYUXotjoyfOB3vk7706d1Doc2mLTvQ09WlSeOGXAi8pLLvuLh41q7fLLPdFi2a079//4+u6wL54ti4cSPDhg1j3bp1snI/Pz+CgoJo3bo1V69eZd++vRgaGtGzZ0/s7Owksyo9Pdm7d++/IrOmpibbtm2jfqEP4t69e2NlVYn169dz7dp1mjcvGJSeM2cO6urqjBw+gAULvfh10Q+4u0rsPC4+gZ79RrF+0y4W/1TgZ5Rex44DZKRnsHfHKqwqWkquo3Ytxk+ehbfPefr06gLAth0HSElO4dC+9VSrKhnI7NWzE72/GI3n8g3s3bkaAE1NDbZtWkb9urULrqNnZ2yq27Nq1Squ3bircpXO+YA/uXv/EUsXfot7h1YAdHRtTY/+41m3aR9LFswo9lq+6N2Z4UN6o6OjzeLfNqgMEDVuVIfTx7dgYmwoK+vXqxP9v5zGuk17VQaI/PwvcvdeML8umYe7azsA3N3b07PPENZv3Mbin39U2i6fLdv2SHS9ayNWFSsA4FTbgfGTvsb75Bn69P5crr6jvR1du3RU2V90TCy79xyka5eO/Dx/lqzcrpYTP/30E1cvXaK5i4usPDQkhIvnzzNy8iT6SgfZ3bp0ZtygwWxdvZplmxVn5efT3KU1h/zOoaunx+Hde4odjPlm3lzMLCxQU1Nj3EDlg/nKuHfvHgHnzjFuyhQGDB0CQMeuXRg+YCAbVq5izdYtKtueOHyYN69es377dhycJLbXtGVLhg8YyME9exk9cYKsrufixairq7N+x3a5wFFRXNq1UyjbuUUig5uSmex+/oFS+1iAu5ukrbt7B3r2HsT6DdtYvLD41cBbtu2W2MfuzQX24eTI+IkeeJ88TZ/e3eXqOzoUbx8A/fr2ZNhXg9HR0WbJL8sVAkR+fv7cvXuPX39djLubZHWOe0c3evbsy/r1G1m86OfiZd66nYyMdPbu2YmVlfTZ4uzE+PGT8Pb2oU+fXrK6p3yOU6lSJeLjE+jgqlruAwcOYW5uzsYNa9HS0gJg6JfD6Ny5M94nfVQGiAquZQnubm7Sa3GnZ8/erF+/gcWFBjqVX8s26bXsLnItE/H2PkmfPr0LXYt3oWtR7i8U5bvA3bv3+fWXn3F3kwxcu7t3oGevAaxfv5nFixRXdMjLt+P/2DvrsKqSN45/FKWRVlFBXUHStRsssLvXXgu70HXXDWuNtRXEbgS7ELBAsVsUMRC7FQTpUvj9cS8XLvdeYnet387neXx8OGfmnO/Mfc87c2bOvCNtxzdk67O3Y8TIcfge9Kdrl04AVLayZN0aT7m8P/TsxrjxP7Ft+y5GjhgqayebNm0sl05b15gVKySr/Vq3afVV16mLswuG0pV12jp6ACQlxqtM/zWWJTQ0lKNHjjBu/Hj6SVc2t23Xjp7du+O+bBkbNm1SmXfXzp08ffqUzV5e2NtLJoYbNmxIzx498PbyYtSYMbK0a9aupbSZGUWKFMGpYcM8ywnQoGFD7Ozs5I4dO3o0u0/tJLnGp6g/SZ9pKz17dOeXX34GoHPnTgwe4srSpe40d8nu523fvhN7ezuWLVsi+/CkY8cOtGzVhoN+fnITREFBQRgZ6rNv337OX7hA0yaNGTbM9ZOVAwpuBwvmz6NWrVpyx6pVq87PP//Mw4cPGT1uHH369wOgddu29OnRk+Xu7qzduEHlNffu2sWzp09Zv2UzdlL7qN+gIX179sRnqzcjRo8CQF9fn3WbN8nl7dKtG7q6uuzesZNxbhMwNjEBULpq6XBAAAAtWrdWqUUVn6tPIhAIBIIvS+ZHEWLuW6LolxYgEPyXiIuLo2TJkkrPFS2a9+MYEhJC//79qVatGjVr1mTixIm8e/dOLk1aWhqLFy+madOmODg40Lp1aw4ePCiX5pdffqFdu3acPHmSdu3aUaVKFbp06cL169cLXR5ra2vWr88euOvXrx/Dhg3Dz8+PFi1aULVqVYYPH05sbCwvXrxg8ODBVK9enbZt23Lx4kWF6+3du5f27dtTpUoVnJycWLJkCR//RqNy5MgRTExMaNEieyDKyMiQFi2aExwcTFpaWp75g4KCcHJykg3+A9SrV5fy5ctz9Gh2uLXg4GA+fPhA9+49ZMeKFClC9+7defPmDaGhoXneJ+srzfj47IGNhIQEqV4jQDLwaGxshJNjfQA0NDQwMjSkhUszgk+eyb8sx0/i5NRANjkEUK9ubcpbmHM08LhC+idPn+HtsxO3CWPy/SrX3WMlGhrqGOYKrfG11LW7uzsVKlSgbds2cscDA4MwMTHhzZs3WFtbU6FCBZnm06dP4+jYkDt37vLkydPPorl48eJyk0NZNGvWFIBHjx7Jjj148IBTp07Rv283zl+4ipGRAY2csiePjAwNaOHsRPCp8wWwjTM4OdaRTQ4B1KtTg/IWZTkadEp2LORGGNbWlWSTQwBampo0dqrHnfD7PHn6Irsc38sPLAE0b95cUo4nz1VqCTxxDmMjA5yb1M9RFn1aNHMk+PRF0tLS8yyLsZEBmpqKofhyY/mdhdzkEIC6enEcG9Tkzdt3JCYmKdd3/CTGRoY4N22UQ58BLVyaEnzybP51feIUTk71ZYP/APXq1pI+hyeU5klOTiY9XXm5Q0Nv8eHjR1q2aCZ3vE0bia2fPCYfAu3M8RMUVVOjdY4vgNU1NGjZvj13boYR+eaNSu16+vpo6+jkWb4sTEuVyrctU8bhw4cpqqZG+87Z+jQ0NGjboQO3bt7k7WvV+k4GHcfGzk42OQRQvkIFatauxYkcoeCePH7MxXPn+KFfX/QNDEhNTeXDhw8F1hh05ChmZcrgUPV7hXOBQScxNjbCuZky+yiMn/537APA2Ngoz2ciMOi4VHPTHJoNadHcheDgUwXw3SdwcnKUDZRKNNehfHkLjuayv4KuNE5MSKRECT3Z5BBAsWLFMDQ0RFNJqM3ssgRhbGyMc7Ps5yG7LCcLUJbjUp+esyx1/1FZ5PWdkNZ1k1z6mhF88nQB7CMYJ6eGufTVlupTbMdzY1bGjJSUFNLT87Z3Pz8/ypYtS7WqVb/qOs0kk4SEBDIzMwuU/mssy+HDh1FTU6Nzl+xJBQ0NDTp26kRoaKjCymd5PUHY2dvLJocAKlSsSO3atTl2TD4ksFmZMipX7qoiMTFRru8dFBSk2Kf+BPUXHHxS0mfq0V12TNJn6irtM92U02hkaCRXNl1dXbS1tRTC8maF3Tt5StKvqVix4ictBxTcDnJPDgG4SCcxixQpQqcu2RPtGhoatO/YkbDQUN7kYR/Hg4KwtbeTTQ4BVKhYgVq1axOUyz6UYWaW9W6SkGe6o4cPo6WlRaMmjfNMp4zP1ScRCAQCgUBQcMQEkUDwGbG3t2f79u3s2rWLyMjIAucLCQmhX79+6OnpsWTJEv78809u3rzJyJEj5dKNGzeOHTt2MHDgQFavXo2TkxM//fQTJ0+elEsXGRnJjBkzGDx4MEuXLkVdXZ3BgwcrTDj9HW7fvs2WLVuYPHkyM2bM4MqVK/zxxx+MHTuWJk2a4OHhgZGREWPGjCExMVGWb+PGjfz+++84OjqyatUqhg4dypYtW1iyZEmhNdy5cwc7OzuFgUp7ewdSUlJ48uSJyrxv374lOjoaOzvF/XMcHOzl9nC4ezccLS0tvvuuokK6rPO5ef/+PdHR0dy6dZtp06YDUDdHvG0HBwe0tbVZuWodly5f5dbtu5iZlcZj+Wrs7WypW6eWtCx2krLk+ipcviyRREfHYKcktrqDvR3h4Ypf3S1c5E7tWtVlE1KqCAu7zUH/w2hpamJlpbjfzZeu67CwMA4e9GPSpIkKgyN3797Fzs6O9PR0uYGELM1ZgwRZIeg+l+bcZD2POcPFnJeGKjE2MuDUmYtER7+nYZNOjBr/Oy9fvpaWw5qUlFTZxI0y3r6NIjrmPXa2ivvnONhZEx7+QPZ3Wlq60n2Qsgaf79zN++vNrLA2BvolVKa5e+8hNtaVFJ5ZBzurfMvybxD1LgZNTQ2VA+p3wyOwsamsxKfYSJ9D1ZNf2c+h4l4jDvY2hN+7r3B89brNNGjUmroNW9Cn/zDOX7gsdz5NOjGQe9A8Kyzk/bt35Y4/uHePsubm6OjKD6pUlk6qPLh3T6X+z8GdO3cwt7BAR1dX7njWpM99FfoyMjJ4cP8+1kr2O7Oxs+fl8+ckSduZq5cuAWBoZIzbiJG0dHSihaMTk8eO49VL5SvOsogID+fJo0c4qwhleTf8HjbWVkrsw7YQflqZfdgq9dOr126igVNL6jZwoU9/V85fuJSnfqWa797DxsZGUbODtG1RMUEu0Sz1g0rq3cHeXmGvo4JSs1YNHjx4iOeKVTx9+oxnz57j6elJWFgYAwao3hvx7t1wbGyslZTF/ouVRU5f+D3l+rLa8ScFsA87Ze24LeHhis9GSkoqMTHvefnyFb4HA/D19ef77x3ynDC8ffs2Dx48oLXUxr/mOm3fviNOjZrQ0LERkyZNyjd02tdYljt37mBhYYFuLp+XNelzT8V1MzIyuB8RobDKB8DewYHnz5/L9a0Ly3BXVxo7OeHYoAETxo/n6dOnhEv7TJ+6/u6GS/tMFXP1mewdpOez27WaNWtw7vx5tm3fzsuXL3n06DFz584jISGB3r2U7+N3/76kX5O7T/g12HROZH0mAwOFNtFO2n+8l1ebGHEfW1tF+7C1t+eFEvtIT0/nfcx73rx+TfDxE/h4eVHazIxy5qpD58bExHDpwkUaNWlSoHDUufna+yQCgUAgEPwXESHmBILPyLRp0xg9ejS///47IPmqrWnTpvz4448KG8vmZNGiRTg4OLB8+XLZi03lypVlK4EaN27MhQsXOH78OOvXr8fRUbJBa8OGDYmMjMTDw4PGjbO/8Hr//r0kznx9ySRAnTp1aNy4MZs2bWLixLxDOeVHQkICq1atkq2ACQ8PZ8OGDUyfPp1e0pe2kiVL0r59e86fP4+LiwsJCQm4u7szZMgQ3NzcZNqLFy/OX3/9xeDBgxVWqeRFZGSk0q/yTKShEiIjI5VOakjORcmlzZ0/NjaWtLQ01NXViYqKxNjYWOFlM+d9ctOyZSvZBISBgQGTJ0+W25DYyMiIJUuW8NtvvzJshGSz+ZcvX9Ggfh0WzJtFsWLFpPcwlum1sqykvCxR7+TSyms0JjY2TlYWgNNnznHhwiW2b9uk9HpZZGZmMm/BElo0b8bJU2dlv7WqOvjcdZ2Zmcm8efNlq9he5hr8jYqKok6dOqipqXHlyhUSExPR0dGRXevmzTBAMiDwuTQrY9Omzejq6uLomB0W5vHjxwDMmutOevoHatWsilOD2qxe783wMVPY4b0SE2PJ7xEZ9Q4ry4rKLk3ku2iJFmPF58rExIjYuHhZOcqXL0fI9VskJiaho6MtSxdy4xYAbyPznlhet24durq6NKxfQ2WaqHcx1Kxmr3DcxMRQWpZorCwr5Hmfv8vTZ684HnyB5s0aqFw1FxX1jhrVFVd5yT+H3ymch8I9h0WKFqV+vdo0beJISVNTXrx4iZfPLkaP+5mli2bLJm6zVnNdv3GT2rWy96q4cuUKAO8i5QdMo6PeYaTk/kbGEluMjsx/b4pPSWRkpNI9+LLC20RFKX9W4uLiSE9Lk6VTmjcyCgsdHV5IJ2kWzpmDjZ0d0+bM5s3rN2xet46Jo0azYZsPmpqaSu9z7NBhAJorCS8n0Redj328+1f8dLZ9NKJkSROJfXjvZPTYySxdPDffiX15zVHUqFFNyT1z+m5LFZrz8oOKbUtBcR06mJcvXrJ+/UbWrZOEUNLS0sLd3Z0G9RX3fpIvi+KeLf+8LPI+/e8SFfVORV1n2UckVlaq7CNKLq2iPsW69tm2A4/lq2R/16lTixnTfstTY9Zq89bScFFfY52WKFGCnj17UPX77ymuXpyQa9fZuWsXN2/exGvLJoXJliy+xrJERkYqv6apqey8MuKk91OlJyuvTiFXWGhqatK+fXtq1q6Nro4Od+7cwXvrVgb9+CMpKSnUqVNHIc+/XX9RkVEYGxvl0WfKbqd+nvwT79/HMn/+QubPXwhI+tSrVq6kqpJVnoDKj+C+Fj+Rxdq1kvBqZZW8F5rI2jVV9iHxB8raxJx5c9pH8PHjTP012z/Y2tnx69SpsvcNZQQePcrHjx9p2Vp5m5gfX3ufRCAQCAT/DpkZBY/WIPjyiAkigeAzUrlyZfz8/Dh//jxnzpzh8uXLeHl5sXfvXry9vbFV8mVacnIy165dY/LkyXIhHypUqICZmRk3b96kcePGnD17FgMDA+rVqycXNqdBgwZMnz6djx8/ygY/9fT0ZJNDWX83aNCAGzdu/OMy2tjYyE0YVKhQQaYj97GsEBohISEkJSXRqlUrBe0pKSlEREQofTlVRUpKitKXNA0NybGsfZWUkZqaAqA0v7q6hiy/uro6qampCpuHS+6TlS5F4dzy5R6kpqbx6NEjAgICSM6xSXQWRkZG2FhXplqPKniuXIutrTXXQkKZNmMOC+bNKkRZUqW6FTWq58ivrq5Oeno6Cxe707VrJyp9p3xSIQvfgwHcv/+QBfNmcfTY8a+urn19fbl//z4LFsxXcV/JNXv16sWJEyf4+edfGD16FO/fxwDIVj0p0/6p7SOL9evXc/HiRaZMmYKenp7seFKSJASasbEhcfEJVKxgTv++3ShZ0oQpf/zFoSMnKFfWTHp91eFSUlPS8ihH1m8nGezo3qUdp05f5Off5jJ6xAC0tDTZuduP23ciZOVVWY5N2zl37hzTpk2jhJ7ywbusexVXYqcaUi0peZTln5CckspPv81DQ0OdsSNVr1BITU1DXdlvqV4QO5fWtZL86uryz6FZ6VKs8Fggl6ZtmxZ07TGAxUtXyCYAbG0qU8XBlk1btlHS1JTatarx8NFT/lrgTvHixRX0SGxRyW9dgOf0c5CSkoKRdGA0J7JnKkW5vjTpcWW2k7tsycmSZ8fI2Ji/li6RfQ1vWqokf/72O4GHD9Mu1ybcIPki+/ixY1hZW1O+onLfmPX75ebf9tNmpUuxYvkiuTRt27Ska4/+LF7iWagJIpWaC2LTKXlplveDhaF48eJYlLfAxaUZzZo1JeNjBvsPHOSnn35i5QpPvv++itJ8qsuSrSX/sih7Pv5+WRT0/W3/IdWn7PnN5T+yaNWqOXZ2tsTExHD69DneRUfneY+MjAz8/f2xs7OTrXj9Guu0d2/5lSEuzs7UqFmTSZMmsXPXbgYN/FG5nq+wLCkpKRTPs/1VrilFelxZ3yK/vHnRvEULmucIIdekaVPq16/P0CFDyMzM/Cz1p6qdkvnRHO2ApqYmFcqXp1Spkjg5OZKUmIS3tw+TfvqJ9evWYWFhrnAdVSHkvhY/AXDo0GF2796Nnp4eeiX0FM7n9xtn91HzbxOzqFmrFstWeJIQH8+VS5eJiIggJUXx3SQnRw8fwdDQkNp1VU/c58XX3icRCAQCgeC/iJggEgg+M+rq6jRu3Fi2ouf06dMMGzYMT09Pli9frpA+Li6Ojx8/MnfuXObOnatw/tWrV4Bkuf/79+/lYpLnJDIyktLSfWiUrfgwNjbmwYMHCscLS4kS8mGksl5icw5y537BiYmRDMx37twZZWSVMTdpaWnExsbKHTMyMkJTU1Ppi2DWQK2ycFlZaGhoyq6teL9UufwaGhpK94DIKlfWtXJSu3ZtABwdG9KkSWO6d++BtrYWXbt2JTY2lpiY+/Tv35+fJo2jY/s2rN/ohZVlJXr26Mq06bM5c/Y8jg3rF7AsGlLdihrTcuXf6r2D9+9jGTFssNJrpaenExsbR2JiEss8VtKtWydMTU3Q0ND4quo6ISEBD4/l9O/fD2NjY6KiooiOlthXVlz9LM2NGzfm558n4+7uQa9evWXX7NChA/v370dbWzFsxqe2D5DsoeXpuYJOnTrRo0d3ad1L7DxrzwXnpo54+eyR6Wju7MQf0xcQGnoHU+lXmVmDKsrQ0FTPoxxZv50kjWOD2vw8aSTunhvo1X80AOblyjB6+ACWLl+PtorwIkeOncRz1Wa6detG7969SY6+KylLnHxce0ODEmhoqJOuxE5TpVo08yjL3+Xjx4/88scCHj5+hufiaZQ0NZbp0/wo+To3Of4dhoYGaGioy8K6KdOXt51L61pJ/rQC5NfXL0GH9q3ZuNmHN2/eUqqUZM+ohfNm8vOvM5j+5zwA1NSK8uOPA7l8+TIPHj7MpUGD9HQlv3UBntPPgaamJul5PVMqQmOpS48rs53cZVOXPm9NXVzkQiU1cXZmztRp3Aq9qXSC6Ma1a0S9fUv3Xr1IT08nLjaWYtJrJydk2cc/8YMF99PKkNnHJm85+8giPT2d5BTJoGHWqgRNDTXVmgti05p5aZb3g4Xhr3kLuHkzjG0+XrLfqGOnLrRr144FCxeyYf06hTbf0NAwj7LkryW7LMqej8KVJctXayVJ6js5MSbbPv62/5DqU/b8qshfxsyMMtI98lq3asGfs/5i+Ihx7Nu7XSHMXHp6OidPnuHNmzd069aNqKior6pO86N9+/bMmzePixcv0a9vn6/aPnKi2uflbRNZYUWV9S0K0p7kRc6+BkA5c3Ps7e25devWZ6k/Ve2UzI/msN2fJv9CMTU1li3LDkPdpEljOnbqgofHcn7++ScA2bOoqVEcdXV1UlIUP8z5Wmz62rUQZsz8E0dHR16/fq3cv+bzG2f3UQvenhgZG1NHuoK3mYsLmzZsYNzIUezct1fpSqQXz58TFhpKt5498lxllBdfW58k6+Orf4usj/+UfQT4T9HWlqzk/7c1w6fT/S1qhk+nW2iW51u0jyzNAsH/G2KCSCD4wjg5OWFjY6NyckZPT48iRYowbNgw2calOckKvaavr4+RkRFr1qxRep2ck0LR0dEK59+9e4epki+4Pwf6+voALF++XDaJlRNV4fdCQkLo31/+q/+goCBMTU2VhufIiuudVzlNTU3k0ubOr6+vL5vgMjEx5fLlK2RmZsqFxCjIfQDMzc2xtrYmIOAQlpaWDB3qKjv356x51KtTCxMTY6Ki3tGkkSTM2I0bN3FsWJ8oaViiLL1KyyKdKMhKK1+Wd+jrl0BdXZ34hATWbdhMj26dSUxMlMUnT0pKJjMzk5cvX3E3PIKJP/0qy7/VewfNmjTC0EBfNoEXFxfHy5cvMTU1/WJ1vWWLF+np6bRo0ZKgoCCmTMnWvGbNWurVq4eJibHMPn744Qc6duzIvXv3OHv2LGvXrqNkScm1LCzKfxbNOblw4QJ//DEVJydHfvtNov3GjRtytgFQvHgxTIyNiIqSTH6pqamhr1+CuPgEoqTh40yVhO+QlUMahi7qXYySckSjn2uj+B+6d6Bjuxbcu/+Q4sWKY135O/b7HgHAwqKsYjkuXuOPGQtxaliHGTNmyI5fv3mXoaN+l0vrv3cNJsaGRCrVEiMti+Kk9j9l5lxPTp29wpzpbtSp9b1qfQe2yZ5DRX3/3nOYF6Wlg/6xcfGyCYCSJU3ZuG45T54+5927aCzMy2LxnQOOjo6UzfX1tJGJMVFvFX1i9DuJLRrlof9zYGpqygslHwK8k4X1Ue5HSpQoQXF1dVk6pXmlZcv639BY3pbU1NQooa9PfHyc0nscO3yYokWL4tyyBWGhoUwYPkLuvL/vDkxMjPKxjzyexU9kH1ncuBGG78FDALLws/5++zExMVFxzwL4bpO8/GDBNOcmPT2dAwd8GdC/n9wEXvHixXFycsLb25urV68xYuQouXz+fr7Ssij3yf+sLPI+PT9u3LjBUNfh8voO7imA/yiIPuW/VUHq2sW5KXv3+XLtWggNGtSTO3fjxk1++lkSXsrT0xNPT8+vqk4LQunSpYmLi1Ve/19pWUxNTZV+/JQVOkyVphLS+/3d8uTFjRs3GO4q39do6OhIkSJF/n6fuhD1Z2JqwuUrefWZJNd6/vw5586d44/f5cMm6uvrU61aVa5cvUrzFvKhz/z9fDE2NubFC8X9DL8Gmw6/d4/xE9yoVKkS7u7ujB49mpfK7EPWrqmyD4k/UNYm5pc3i2bOzqz2XMGpkyfp3LWrwvmjhyUhV1tKw1H+Hb62PomyPUf/DbLCQv+b1KxZE/h0muHf1/0taoZPr1tolvAt2keWZkH+ZOaIgCT4+hETRALBZyQqKkohfnVKSgqvXr3C0lJ53GttbW2qVavGw4cPqVJFeXgVkIRjW7duHcWLF8fGRnEz45zEx8dz/vx5WZi5+Ph4zp07R58+fQpZon+H6tWro6WlxevXr2nevHmB89nY2LBx40a5Y6amptjY2HD16lUyMjLkzoWF3URTU5Py5RUH/rMoWbIkhoaG3L6t2EkJC7uFtXVl2d/W1pXZt28fDx8+olKl73KkC5Odz4/U1FTS0tKoXLkyK1euZPv27Zw8eZJlS+ZhbGyEdWVLQq6Hyr4G/CBtZMNu3ZKURUkYjeyymGJoaMDtO3cVzoXduo11ZcneQPFx8SQlJbNpiw+btvgopG3boTsNG9RjpecSNm/x4cLFywAMGioZqHv5ShIqcP36Daxfv4Ht27d9sbp+/fo1cXFxdOvWTek9Bw0aTN26dbl9+7bMPrS0tKhatSq+vr5oamry4MFDNDU1qVZNcU+RT2kfN2/exM1tInZ2dsybN0/2ZWaWbQBERESwePFikpJSsK78HSHXb5GRkcHHjx95HxuLoYE+YWHhaGpqUF7JxE12OUwwNNTn9h3FjYDDbodjXVlxPwwtLU2qVsne+Pji5RA0NTSoVlV+1eLNsLu4/TwTO1sr5s3+Ve4LU2vLiqxaNkMuvYmRIdZWFQm5IflNcg4O37x9L9+y/B0We2zkgH8QP40fQusWjRT0aZSwACAl8V32cxgSqqAvLOyO9DlUvYdc9nOouIl12K27WKvY8yAnz19I9tEyNDRQOFfeopzs/vfv3ycyMpJmbeQHbr6zsuLG1WskJiTKbQodfkuyj1Slyvn7qk+JjY0NFy5eJDEhQW5T7jtSfZYq9BUtWpTvKlUiXMlL5Z1btyhTtiza0r0WKkvbxdyDUllfzRsYKO7HlZaWxqnjJ6hWowYmpqZoaGiwcPlyjKXXTEmKkdqHFSHXldjHrTuF8NPK7OMO1pULYx/6CucqV7akcaOGnDx1VtZeGhsbY21tRUjIdUXNN6VtS3mLPDRL/aCSeg+7dQvrv2FP79/H8uHDRz7marcBPnz4QEZGBt99V5GVKz3lzknKUvmrKIvEV3uiqSn5sjQlOS6HfdxQ4j+y9BXAPm4ra8fvyNrxvMgKS5aQkKhwrkKF8mhpaVGhQgUmT55MSkrSV1Wn+ZGZmcmLFy+wrlxZVv85+VrLYmNjw8WLF0lISJDbOymrf1DZ2lppvqJFi2Jpacnt27cV9YSFUbZcuULvP5RF5cqV8ZT2NbJwX7oUDU1NuT6T7H7/cv1ZV67Mvn37efjoEZW+U9Jnqiypk3fSj2A+ZigOOn348IEiRYrI7CDrWTQ2NqZSpUq8ePFCthL7U5WjsDx79pzRo8dgZGSIh8cydHR0ZPaRu028lWUfebSJlSwtuXNH0T5uh4VRtmzZfO0ja5V7YkKC0vNHDx+hbLlyOOTxTpofX1ufRFmI939CcnIyjx8/pkKFCmipWGX/T/m3NcOn1/0tagZhH/BtaobPo1sg+H9CTBAJBJ+R9u3b07RpUxwdHSlZsiRv3rxh69atxMTEMGDAAJX5Jk+ezIABAxg/fjxt27alRIkSvH79mnPnztGlSxfq1q1Lw4YNadq0KUOGDGHIkCFYW1uTnJzM/fv3efLkCbNnz5Zdz8DAgN9++42xY8eip6fH2rVryczMzFPDp6REiRKMHTuWBQsW8Pr1a+rUqYOamhrPnj0jKCgIDw8PpY26vr6+3N5GWbRq1YojR45w9OhRGjVyAiRh7I4dC6RRo0ZyX/k9eybZuNzcPHuAxtnZGT8/P16/fi1b0XTx4kWePHkiN4nWpEkTFi5cxK5dO/nll18AyWDFrl27KVmyJFWrSiYYPnz4QFJSkkL4vbCwMO7fv0+rVq0oUaIE9erV5fHjx5w8eZL372PR0NDAxbkpgUHBeHhKNpy2sa5MzPv3HAs8QSOnhvJleS75MtK8XPZgunOzJvj5HeL16zeULl1KUpZLV3jy9Bl9evcEwNDIkMUL5yjU47btuwm9Gcbc2dMxMTGmioM9+vol6NE9OxRgyPVQvLZuB6BDh/Y0adIEbW3tL1bXvXr9QNOmTeTKER0dzaxZs2X6YmPjmDFjhlL7+P777wkODqZbt27o6el9Fs0ADx8+ZOzYcZQpUwZ392VoamaHn8uyDZCsANi8eTPHgk4xbEhfAo+fIejEWeLi4vn4MYMqDtYsdl9HI8d6uWxDMoBsXq5MdjmaOuLnH8jrN5GULiX5ovTi5RCePH1Bn15dyIvrobc5HnyWbl3aoZfj5f7ho6eMdZtKGbNSuC+aoRDOqEQJXerVqaZwvebNGhB44hxBwedp3kyyWi7mfRzHjp+lsWNtuXj6z56/kpbFLE+Nqti0dS9bfPYzeEA3+vRsr1SflpFkMiEpTnIvl2aNCQw6SdCJUzR3biLV955jQcE0cqpfgOewEX5+R3j9+i2lS0tWeFy8dFX6HGZPZkbHvMco1yTQ27eRHDh4CCurSnmuCsvIyGDBggVoaWnRpot8uE7HZs3Y4+3Dof376dZXYqNpaWkcO+iPtb09pqUkvuHt69ekpqRgLt0n7nPRqlUrNmzYwMF9+/mhX1+ZvkMH/bB1cKCk1He9ef2alJQUyufQ19i5GWuWe3L39m1s7CQTmE8fP+HalSv0zPE8VqtZE0MjIwIPH6bPwB9lIWwOH/Qj4+NHatVV3Ofu4tmzJMTH4yLdiFuvRAlq1a2DWQnJRExS/BsAXJwbExgUTNDxUzR3aQKQw083KIB9NMbP73AuP51lHz1k6VTah2+A1D4Uv7ouUUJPtsIoq71MSozFxdmZwMDjBB0/QXMXZ4nmmPccCwyiUSOnXL77uUSzefZEqLNzU/z8/OU1X7zEkydP6dNHfq+YgmBkZIienh4nTgQzcsQwWXjaxMRETpw4QcUKFShZsiQlS5ZUyCspSxBBx4/TXLrSWlKWwAKWpZkSn55Vlt4UlBIlSlCvbl20dSQhdZMSJKt+XFyaEhh0gqDjwTR3aZZD3wkaNWqYv75mTfHzC1Bsx588lbXjANExMRgZKk507j/gR5EiRbCxVZx0CA0NIzk5mb59+9KgQQOSEuMlmr+SOs2JsvL5+PgQHR1Ngwb1ZfWfm6+xLFk+b9/evfSTroRPS0vjoK8vDg4Osvu8fvWKlJQUKuTY/6yZiwvL3d25ffs2dlKf9/jxY65cvkzffv3+lp6YmBgMDQ2pm6P+zpw5Q3h4OA0aNODcuXOSPpOTtH3+BPXXpEljFi5azK6du/jll58BaZ9p9x5pn0my0tfcwpyiRYty9OgxunXtKltt9ObNG0JCrlOtWjWZHciexcR4Gjdy4tSpUzx69ChHub+sHURFRTFy1CiKFCnKCs/lMvvOso/9e/fRp7/kN01LS8Pf9yD2Dg6UktnHa6l9VJBds6lzM1Z4LOfO7dvYSu3jyePHXL1yhd59+8rSvY95j76BvtxqLQDf/fsBsLG1Izfhd+/y+NEjBg4Z8rfKm8XX1if5VOGitLS0Ptm1P2WIq0+l+1vUDMI+cvItaoZPq1sg+H9CTBAJBJ+R0aNHc+LECf766y+io6MxNDTE2tqaTZs2Ua9ePZX5atSogY+PDx4eHkyZMoX09HRKly5NvXr15FZouLu7s2bNGrZt28aLFy/Q09PDysqKLl3kB3tNTU2ZNGkS8+fP5+nTp1hZWbF+/XqF1U2fk0GDBlGqVCk2btzI1q1bKVasGBYWFjRp0kTpZrx50bJlS6pVq8aUKVPo378/hoYG7Ny5i4yMDEaMkA8/MmyY5O+AAH/ZscGDBxEYGIirqyu9evUmKSmJLVu2YGVlSceOHWTpSpUqRZ8+vdm8eQsfPnzAzs6e4OAThISEMGfObNTU1ADJ1yutWrWmRYsWVKpUCS0tTe7fv8+BA77o6uoydOhQ2TU7d+7Mhg0bmDVnAXfD71GxQnmMjAzxPXgIQ0MDoqOjGeo6RlKWXPsFDRsxTlKWg7uzyzKwH4GBJ3AdPpZeP3QnKTmZLV4+WFlWomOHNgBoaWrStEkjcnMi+DRht+7InbO1scbWJnuQqZFTQ65cvcGdO3eIjIwkMjIST88VX6yubW1tFb5AevlSMjlSqVIlmjZtysePHzlw4AC//PILenp62NjYcOfOHZKTk7l+/TpWVlaMGTP6s2lOTExk1KjRxMXF0b9/f06fPi2nv1y5crLJJHV1dSZPnszPP//Mtp37KWNWil+nziMjI4Ny5czw8tlHxscMRrj2lbvGsNGSCaqA/Vuyy/HjDwQGncZ15GR69exEUlIyW7x3Y2VZgY7tslfyvXz1hp9/m0Njp3oYGxvy4OET9uwNwMqyImNG/ChLl5iYxKhxvxEXn0D/vt04ffaSRLO2ZPKplEEmVasoX93o0rQB3ztYM222Ow8fPcPAoAQ79x6SlGWI/GCz65ipABzatzaHxrf4Hw4G4Pbd+wCs3bgTALPSprRr3RSA48HnWeq5GQvzMnxXwVyWJ4t6daphbGSgqM+5MVW22zF95jwePnyCoYE+O3fvl9i560D5uh7pJqlr3x056rovgYHBuI4YT68fuknqeut2rCy/o2P77NU+y9xX8ezFS+rWroGpiQkvX71mz15fkpNTmDxxtNx95i/0kK4+tOTDhw8cPhJI2K27/PXXX5TMFarTxsEeJ+dmbFqxktiYGMzKlSMoIIA3r14x/vfsMIwLZ8zk5rUQDl08LzuWmJCA785dkroNDQXAd9cudPX00NHTpUP37rK0N0NCCAu5DkBsTAwpycls2yBZteJQvRpVqldXqFuAqlWr0sTFmbWenryPiaZsOXOO+Pvz+uVLJucIIzRn2nRuXLtG8OVLsmOdunXDb/8Bpkxwo2ffPqipFWOXjw9GRkb07Js9QaSurs7wsWOYO30G41yH0aJNa968fsOe7dv5vno1nJo2VdB17PARiqur06hZM6W6s3BxbkKVKruZPnMuDx89ltjHLql9DBskl3bYiAkABBzcKTs2eKDUPoZL7SM5mS1e2yT20SGnfazk2fMX1K1dE1NTE16+zGkfY+Xu8/LVa/z9JWEgs1YnrVixAgATY0Nat25JFR8Hpk//k4cPH2FoYMDOXbslmofLh5kaNlyyWjTA/0C25kEDCQwMwtV1BL1695TY9JatWFla0rGD/MSrn18Ar16/IiVZ8mX6tWshrF23HoC2bdpQpowZampq9O/XB88Vq+g/YBDt2rbhY0YGvr6SAdnZs/5UXf8uzlTxqcL06TNzlEXa5g8flqssI6RlOZirLIG4ug6nV+8fpGXxkpalg1x+Pz9/JWVZJy1LW8qUUZy4dnFuSpUq9kyfMYeHD6X2sXsvGRkfGTFMfqB12AjJ7xjgtzeHvv4EBh7HddhoevXqIdHn5S1tx9vK0q1fv5nrN0JpUL8eZqVLERsXR9DxYG7dusMPPbthYa640jHg8BHU1dVp2bLlV1+nbdu2o0XzFlhaVUJDXYOQ69c5cuQotra2dFUSCutrLkvVqlVxad6c5cuXEx0djbm5OX5+frx89Yo/pk6VXW/q1Klcu3qVK9euyY51796d/Xv3Mn7sWPr260exYsXw9vbGyMhIYYLo1MmT3IuIACQfK0VERLBOqqdxo0ZYSVdqDPrxR6xtbLC1tUVXV5e7d+/i6+tLqdKl+X3qVH795Rdpn7rfJ6u/UqVK0ad3LzZv8ZL0meztCT4RLOkzzZ4l6zMZGRrSsWMH9u3bz7BhI2jWrCmJSUns2rWb1NRUBg38UU7T/v37efLkEUmJkj0ogo6fwHXYcLS0NHny+OkXtYNRo8fy/PkLfhzQn5CQ64SEXJftl1etenVWLl9OTEw05czNCfDz49XLl/w69Q/ZfWZOm0rI1Wucv3pFdqxL9+4c2LefiePG07tfX4oVK8b2rd4YGhnRq1923/DwoQD27d5D4yZNKFOuLEmJSVw8f55LFy/i2MiJWnVqk5sjh7LCy7VSOFcYPlefRCAQCARflgwlq30FXy9FMnOvsxYIBP/X/PLLL4SFheHn5/elpXxSYmNjmT9/PoGBgaSkpGBvb8+ECROwt5f/Iq5NG8ngSs4JAIAHDx6waNEiQkKuS/dAcMTNzQ1jY/kv+DMyMti4cRN79uwhKioKCwsLBg0aSJs2bWRp0tPTWbp0KZcvX+GV9GtQU1NT6taty9ChQyhTJntVh7a2Dm/evGHRwnlcuXqNt2+j0NPTRU9Pj5iY96SlpWFvZ8OE8aOxt5MfbG/TXrISIecEkaQsD1m0ZDkh10MpXrwYTo4NcBs/GmPjvPd1mTp9NoFBwZw7fSzPdE+eR9GpUyfZqpcvWdfKePnyJW3btmPChPGyPavS0z8wa9YsAgICZCFJTExMaNu2LUOGDJaF4PgcmrP0qaJ9+/bMnCkJy6atLdG1d+dGNm7ZyaPHTylatCiZmVC0aBHs7SozYexQ7G3lw3O06SQpd84JIoAHDx+zaOkaQm7ckpSjYW3cxrpibJz9lXZcXDzT/lxM2K27xMYlUNLUmOYujRjy4w/o6GR/jfXy5Wvadv5RdTnaNOPPP8apPB8Xl8CS5Rs5ceoiKalp2Nta4TbmR+xt5UMote4smVDNOUF0+dpNhb2DsqhZ3YH1KyQrKFeu28bq9dtValjrOYvaNaoorCCS6ItniftKgoPPSPTZWTNh3AjF57CD5Iv+nBNEAA8ePGLR0hWEXL8peQ4b1sNt/Ei55/DQkSB27/Hl0eMnxMfFo6unS41q3zNkcD9sbeR/U9+Dh/Detptnz19QtGhR7O1sGDV6HPXq1ePhe8V95tJSU9myeg3HDx8hIT6eipaV6D/MlZo5Pk6YPGKkwmDMm5ev+LGz8hVlJc1Ks3n/PtnfW9euw1s68J+bPkMG03eo4lfH3xlIyv848i0bVq3m2KFDxMfHU8nSkkHDh1FHGgoVYNyw4QoTRABv37zBc8kSrly4SEZmJtVq1GCU2wTKmSuG7go6ehSfTZt5+uQJurq6NHFxZujIkbJQdFkkJiTQuVVr6jVowMz58+TO5V5BBFL7WLZCah+pUj89UomflqwIyjlBBFL7WLI82z4c6+M2fpS8fRwOZPfeAzx6lMM+qn/PkMH95SbuAa5cCWHocOXPW82aNVi3dhVxcXEsWepOcPBJUlJSsbe3Y8KEsdjb5fLdbTtKNOeYIJJofsCiRUsJuX5D4j8cG+LmNk7BDw4ZOpyrV6+hjLVrVlKrVnYs90OHDuOzbQdPnjwlPT0Na2sbBg8ejJOj4mrhnEjKsozg4OAcZRmvpCztpWU5KHdcUpYlhFyX+nRHR9zcxispi2seZVlFrVq1FFYQZevzJDj4lMQ+7G2l7bj8Bw1t2kmetZwTRBJ9D1m02F3ajheX2MeEsXL2ceHCJbZt38Wdu+HExLxHQ0MdK0tLOndqT/v2bRRWCiQkJOLSoi0NGzZg5crVEs3SFURfW50CzPxzFjduhPLmzRtSU1MxMzOjVatWDB8+nKJF8n6d/ZrKkmUfUdHRrFqxgoBDh4iPi8PSyooRI0ZQP8fKeNehQxUmiECyWmbxokVcuHCBzIwMatasidvEiZhbyIdJmz5tGn4H5cuSxbTp02kvndhY4enJmTNnePniBSkpKZiYmODo5MRQV1eMjY3J+PBB2qc+9knrLyMjg42bNrNnz15pn8mcQQMH0iZX2NQPHz6we/ce9h84IFvtY29nx9ChQ6hdu5YsnbaOHv369ePSJfk2I4vKla2YOvWPL2bT1WvUUpoGoGr1atg7VOFIQICkTbSyxHX4COo1yG4TR7q6KkwQgaRNXLpoMZcuXCAzM5PqNWsybqKb3Gr4O7dvs3XzFm6HhREdHY2amhoW5cvTsk1ruvfsKRceGCS/Tae27TAyMmKT91a5c0a6EptW1vdQxefok+RHVv/j3yYpKYk7d+5ga2v7Ta1a+BZ1C82fh29RM3y7uv+fODlb+ceBXwONfwv50hK+OsQEkUDwH+O/MkGURVKSYsz9r5msCYCkeMXNW79WtPUkK0S+pbqW1fM3pBly6H7/KJ+UXw/aBpLQOMnRintofK0omyD6FtAuIfkquTCDNF+arAGaV3GxX1hJwVE2QfQtoK0nCduTlPjt1LW2jrSuc0xcfO0omyD62tHWlQxwf0v1DPIhxL4VsjTHJ347/Q896QT6t1TP8G3bR3TCt6P570wQfQ2ICSJ5vkXdQvPn4VvUDN+u7v8nxATRt4UIMScQCAQCgUAgEAgEAoFAIBAIBAKB4B+T+VGEmPuWEBNEAsF/jL/++utLSxAIBAKBQCAQCAQCgUAgEAgEAsEXpuiXFiAQCAQCgUAgEAgEAoFAIBAIBAKBQCD4vIgVRAKBQCAQCAQCgUAgEAgEAoFAIBAI/jEZGZlfWoKgEIgVRAKBQCAQCAQCgUAgEAgEAoFAIBAIBP8xxASRQCAQCAQCgUAgEAgEAoFAIBAIBALBfwwRYk4gEAgEAoFAIBAIBAKBQCAQCAQCwT8mIyPjS0sQFIIimZmZIiigQCAQCAQCgUAgEAgEAoFAIBAIBIJ/ROBU+y8tQSUuM299aQlfHSLEnEAgEAgEAoFAIBAIBAKBQCAQCAQCwX8MEWJOIBD8XxOVEP+lJRQKE109AN4nJHxhJQXHQFcXgKSkxC+spOBoa+sAEP2N2YeR1D7uxkR9YSUFx8bQBID77999YSUFx9LAGICH76O/sJLC8Z2BEQBJca++sJKCo13CDICkhJgvrKTgaOsaAhCb+O34aQB9HamvToz9wkoKjraOPgDxid9O+6KnI2lfvsV2PDEp6QsrKRw62trAt9XXy+rnJcW/+cJKCo62Xing2/V536L/SIqP/MJKCo62nikAye/CvrCSwqFl7AB8m32mT0FSUhJ37tzB1tYWbalv/doRmj8P36Jm+HZ1/z+RkSECln1LiBVEAoFAIBAIBAKBQCAQCAQCgUAgEAgE/zHEBJFAIBAIBAKBQCAQCAQCgUAgEAgEAsF/DBFiTiAQCAQCgUAgEAgEAoFAIBAIBALBP0aEmPu2ECuIBAKBQCAQCAQCgUAgEAgEAoFAIBAI/mOICSKBQCAQCAQCgUAgEAgEAoFAIBAIBIL/GCLEnEAg+L8nLS2NdatWcdg/gPj4eCwtLRk6cgR16tXLN2/k27e4L1rMpQsXyMjMpEatmox1c6NsuXIq89wIuc7IIUMA8A8MxMDQQHbuyePH7N+zh9tht7h39y5paWnsPuiLWZkyCprXrFrFIX9/meZhI0dStwCa3759y9JFi7go1VyzVi0m5NL85vVrDvr6cvbMGZ49fUrRokWpZGnJwMGDqVO3bp7Xn/PnnxzYv5+Gjo4sXraMuLg4FixYwNGjR0lJScHBwQE3twnY2trmqxXg4cOHLFq0iJCQ6xQvXhwnJ0fc3CZiZGQoly4jI4MtW7awa9duoqKiKF/egoEDB9G6dSu5NH5+fgQFHSc8PJzY2FjKli1Ly5Yt6d+/HxoaGrK0r169YvNWL3z37Sc6OprMzEy0tbUZMHgQ/X/8sUD1vCyHbdSsVZNxueo5JSWFRfPnczssjDev35CRkUHZcuVo16EDXbt3p1hx+Wb40oULrF+zlvC7d1FXV6dWndqMGT9ewT6UkZ6Whs+adZw4fJjE+HjKV7Kk77ChVKtbJ898z5884fC+/dy7dZuH4fdIT0tjzd7dlCpjppB23dJl3Lp2nbevX5GWmkbJ0qVxdHGmU59eaGlr56tRmWavNWs5cegICfFxVLC0pP8wV6oXQHPA3v2E37rFA6nmDfv2KNV86lggF8+c4V7YbV4+f06VGtX5a6VnobXmR5q0LMcPHSYhPo6Klpb0HzaMGgUoi//efYTfusV9aVk27durtCyFJT4+nqXuqzkefJqUlFQc7G1wGz8SW5vKBcr/8NETFi1eTsiNm5Jns2E93CaMwiiHT3v58hVtO/ZSmn/u7D9o1cJZ7tjRYyfY6rOTR4+foqamRuXK1gwZMoQ6tarK6162nOMnTkp8ir0dbhPGYmtrU0Ddj1i0aBkh129IdDs2wM1tHEaG2T7l0aPHHPA9yPkLl3j+/AXaWlrY2FgzfPhQ7O3kfdeq1WtZvWa9wn2KFy/OD717Z/tpK0uGF8JPL1m0iIvnL5CZ5acnKvpp3wM5/LRaUSpVsmTQEEU/HRUZyfZt27gVFsad23dISkpi5ZrV1KxVS6WG+Ph4li714PiJYKnvtsdtwriC1/PDRyxatCRHPTfEbeJ4uXoGWLduAzfDbhEWdovo6GiGuQ5h+HBXheu1aduRV69eKb1XuXLlaObsTICsrq0YMXIk9QpY14sXLeLC+fOyunabOJFyudrx3bt2cfnyZcLCwnjz+jXt2rdn+owZ+V5/1p9/sn/fPhwdHVnq7i47/rW143fu3GHtqlXcuXOH5KQkypQpg6GREY8fPSI+Ph5ra2uGjxhR4DpdtHAh56V1WqtWLSZOmqRQpwD79+1ji5cXL1+8oFSpUvTq1Ysfesn7jOPHj7N7927uR0QQGxuLoaEhVapUYdjw4VhaWsqlTUpKwtPTk6DAQGJiYjA3N6dDly5ERr79Kvp561evZsOatQp51NXVOXH+nNLrSXz1Ko6fOCX11ba4TRiJrY11vvoBHj56LPHV129SvHgxnBrWx81ttKKv7tBTaf65s6fRqmW2rw4Lu42v32HCwm4TEfGADx8/Eh4eTlpaGqtXrvpkPg8kz+GVy5e5Je03tW3fjmlKnsPhQ125dvWq0nupFVPj/KVLsr/T0tJYtXLlV+E/rl29ipeXF/fCw4mJiUFPT4/KlSszeOhQqlWrplSDxD5WcPzEaWmbaIvbhNGFtA/3HPbRQGofhirzBBw6ym9/zERLS4tzp4/JjmdkZODnf5ig4ycJvxdBbGwc5ubmtGnTht6d6qGhoa7ymnHxiSz13MKJU5dITknFwc6SiWN+xNb6u3zLcPN2BL7+Jwi7HUHE/Sd8+PiR6+f25Jsv5MYdBo74HYATARsxNCiRb57cfI6+VBbPnr9gxaoNXLx0laSkJEqWNKWFS1NGjxxSaN0CgUDwpcnIzPjSEgSFQEwQCQT/Z3To0IHw8HC8vb2plcfAUG6eP3/Ovn376NGjB6VKlZIdv3jxIv3792f37t1UqVLlU0j+5MyePp0TgUH06N0bcwtzAg76MWnsODxWr6Zq9Woq8yUlJTFm2HASEhLoP2ggasWKsdPbh9Guw9jk442+gYFCnoyMDJYsmI+WlhbJyckK58NCb7J7+w4qVKxI+YoViAi/p/TeM6dP53hgID/07o25hQX+Bw8yYexYVqxeTbXq1fPUPHLYMBISEvhx0CCKFSvGNm9vhru6stXHR6b51MmTbNm0icZNmtCmXTs+fvhAgL8/Y0aO5Pdp02jfoYPS69+5fRu/gwdlEy0ZGRkMd3UlPDyc/v37YWBgwM6duxg61BVvb2/Kl7dQqRXgzZs3DB48BD09XUaPHk1ychJbtngREXGfrVu9KF68uCzt8uWebNy4kS5dOmNvb09wcDC//vorRYoUoVWrloBkQmbatOlUqVKFbt26YmRkRGhoKKtWreLSpUusWbOaIkWKABAUFMTmDRslL/y1a6Gvb8DZM2dY6bGcxIQERowenWc9j5baxgCpbezw9mGk6zC25LCN1NRUHj14SP2GDTEzK0ORokW4GRrKssWLuRUWxsw5s2XXPHPqND9PnIi1jQ0jx4whMTGBndu2M2zwEDb7eGOYx4s8wLI/Z3Pu+Ana/9CDMubmBPkHMNNtErM8PbCrVlVlvvCbYfjv3I15xQqUq1CeR/ciVKa9f/sudtWq4lyuDerqGjy8d489Xlu5cfkKc1Z5UrRo4RYmL545i7PHT9Dxh56UMS9HoH8A0yZMZO6K5djnofnOzTAO7tyFecUKmFcoz8M8NAfs3cf9u+FY2doQFxdbKH2FYfHMWZw5fpxOP/SkjLk5gf7+TJ3gxl8rPHHIpyy+O3dhUYCyFIaMjAzGjJ/CvYj7DOj3Awb6+uzcfYChw8fjvWUN5S1UD34CvHnzlsGuY9HT1WH0yKEkJyezZesOIu4/ZOvmVXLPJkCrls44NpAflP6+ir3c39t27GX+QnecHOsxdrQraalp+B0KYtiwYSxcMBfnZk0luse5ce/efQb07yPxKbv2MHTYSLy3bqK8RX4+5S2Dh4xAT1eX0aOGS3R7+RBx/wFbt2yQ6d6335f9Bw7i3KwJPbp3JSEhgT179jPgxyEs91hCPSUTe79OmYy2thbqGjoAeG3dio/3Vnr1kvhpv4MHGT92LCsL4KdHuA4jMaef9vFm2FBXtm7zwUDqP04Gn2TLZomfbtuuHR8/fiDAz5/RI0byx7RptO+Y7aefPHnClk2bMbewoJKlJTdDQ/Osp4yMDMaMncC9exEM6N9XWs+7Geo6Am/vzQWo5zcMHjJMUs+jR5KclMQWL28i7t9nq9cmOfvwXLEKExNjbKwrc+78BZXX/GnSBJKS5NvNqHcxLF26lCJFiuDt7U3vXr1kdT1u7FhWF6Cuh7u6kpCQwEBpXfv4+DBs6FC8t22T1TXA5k2bSEpKwt7enqioqDzLn8Xt27c5mKNNzMnX1I7fuXOHoQMHYm5hQf8BA9DQ1GTD2rU8ePAAaxsbxo4dy759+xg7Zgyr16yhej76XIcOJSEhgUGDB0vq1NuboUOGsG37drk63b17N3Nmz8bZ2Zm+ffsScu0a8+fPJyUlhR8HDpSlux8RQQk9PXr37o2BgQFR797he+AA/fv1Y9OmTVS2lgyEf/z4kVEjR3L79m169OiBpaUlZ86cYenChRQpWpQf+vT54v28LCZN+QXtHB9OqGofJT7vZ+5FPJD4agN9du7ez9Bh4/D2Wkt5C3OV9wCpzxs6RurzhpKclMyWrduJePCQrZtXK/HVLjg2lJ8Y+f57eV995uwF9u33w8qqEmXLluHJ02cAzJw2naCgwE/m8wC8Nm0msQDP4cDBg+jYqZPcseTkZP6aM0dh4mf6tGkEBQV9Ff7jqXQyt0vXrhibmBAfF8ehgABchwxh6bJltGzRQi69xD4mS9vyXlL72MfQYWPw9lpfQPsYLWnLR7lK7WMbEQ8esHXzWgX7yCr3UvcVaGlpKZxLSUlh2ow5VKliT7cuHTEyMuTWnft4eHhw9nQgaz1myPrZCuWYNJt7958woHdHDAz02Ln3MENGTcVn43zKm+f9IdSZc9fYdzCIypblKVu2FE+evswzfdY9/1q8Hi0tTZKTU/JNr+oan6svFR4ewZDh4ylpakq/Pj3Q1y/B69dvefPm7d/SLhAIBAJBYRATRALB/xERERGEh4cDcPDgwUJNEL148YLly5fTpEkTuQmib53bYWEEHjnKqHHj6N2/HwCt2ralX4+erHB3Z/XGDSrz7tu1i2dPn7Juy2Zs7SUvz/UbNKRfz55s2+rN8NGjFPIc2LuXt6/f0K5TJ3Zt26Zw3qlxI5o4n0BHRwefLV5KJ4hCQ0M5duQIY8aNo2///gC0aduW3j16sNzdnXUbN6rUvEeqeeOWLdjJNDegd8+eeG/dykjppEfNWrXw9ffHIMekQ5du3ejXqxdrVq1SOkGUmZnJogULaNOuHVekX2YeDwwkJCSEZcuW0aiREwDNm7egU6dOrFq1irlz56jUCrB+/QZSUlLw8fHGzEyyYsLe3oERI0bg6+tL165dAckXnF5eXvTs2YNffvkFgM6dOzN48BCWLl1K8+YuqKmpUbx4cTZu3Ei1HAPyXbp0wcysDKtWreLixUvUqycZxDYwMCAjI4PR48bRR2ob8fHxtHFpjs9W7zwniPZK63n9ls056rkhfXv2lOaV2Ia+vj7rNm+Sy9ulWzd0dXXZvWMn49wmYGxiAsAKDw/KlC3L6g3rZS+Mjo0a8WOfvnht3MRYtwkq9dy7dZvTxwL5ccwoOvfpDUDT1q0Y06cfmzxXMH/tapV56zg54X2sCdo6Ouzz9slzguivNSsVjpUuW5aNHsuJuH0bawcHlXlzE37rNqeOBTJozGi69pVodm7TmpG9+7JhuSeL1q1RmbeekxMNAyWa92z1yXNSZeL0qRibmlK0aFFG9upTYH2FIfzWLU4eO8bgMaPp1ldyD5c2rRneuw8bli9n8TrFr8mzqOfkyK7Ao2jr6LB7q/e/NkEUGHSSG6FhzP9rOs2dmwDQvHlTOnXty6o1G5k7648886/f6E1Kcgo+XmswKy1pE+ztbBgxehK+Bw/TtUt7ufS21la0bdNC2aVkbN+5F3s7G5YtnisbQOrVdxBOTk4c9AvAuVlTAgOPc+PGTebPm0Nzl2ZS3c506tyDVavWMXfOzLx1b9hESnIyPls3YWZWWqLb3o4RI8fie9Cfrl06AdCqVQuGDxsiN4DbsUN7unT7gdWr1ymdIHJxboahoQHauoaEhoZyMzSUseNz+Ol2benVvQcey9xZv0m1n969U+I/Nnll++kGDRvQq0dPfLy2MnKM1E/XrsVBJX667w+9WL1qldwEkY2tLcdOHEdfX5+gwECmTM57gigwMIgbN0KZP38uzV0kKweat3ChU6durFq1hrlzZuWZf/2GTaSkJOPjvSW7nh3sGTFiNL6+fnTt2lmW1t9vP2XKlCEm5j3NnFXbSNOmTRSObdrsDcCzZ88YN348/aR13bZdO3p27477smVs2LRJ5TV37dzJ06dP2ezlhb20rhs2bEjPHj3w9vJi1JgxsrRr1q6ltJkZRYoUwalhwzzLD5I2ceH8+bRt25bLOVYrwNfXju/bI/nSftXatejr63MrLIzIyEjKlC3L82fP6NmzJ506daJN27YsW7qUTZs3q9S3U1qnXlu3ytVpj+7d8fLyYoy0TlNSUljh6YmjkxMLFi6U6OvShYzMTNauXUuXrl0pUULyNb/rsGEK9+ncuTOtW7Vi165d/Pa7ZAXA8ePHuXHjBlOnTaNTp07oaGvj4OBAUFAQRYsUoU//fhgaGX3Rfl4WTZ1d5FYWqSIwKFjqq2fS3KUJAM2bN6NTl96sWr2RubOn5pl//catEl+9dV22r7a3ZcQoN3wPHqJrF/n+nK1N/r66e7dO/DigD5qaGvw1bwlPnj4jNDSUo0eOfFKfBxIbLW1WmiJFitC4oaPKaypbtXTIPwCAlq1by45l6f5a/Eenzp3p1Lmz3LHu3bvTsUMHtvn4KEwQBQad4EboTeb/9SfNXZoCWfbRi1Wr1zN39nSV9wJYv3GLtE1ch1nprDbRlhGjJuB7MICuXToq5Fm7fjM62trUrlWDE8Gn5c4VL16cjetXUq1q9keDffubUrZsWTw8PLh4JZR6tRU/ijl24jw3boazYNYkmjerD0CLZg3o+MMYVq7bwV8zVPdxAXp0acnAfp3Q1NBg7qK1BZog2nPgGG/eRtG5vTM+O/3zTa+Mz9WXysjI4Pdpc6hYwYI1K5eiqan40YFAIBAIBJ8SsQeRQPB/xMGDBylatCh169bl8OHDpKenf2lJX5wTQUGoqanRsUv2y5iGhgbtOnYkLDSUN69f55nX1t5ONmgAUL5iBWrWrs3xY8cU0sfFxrJ2xUqGDB+Onp6u0muW0NdHR0cnT82HDx9GTU2NTl26yGlu37EjN/PRfDwoCDt7e9kLOECFihWpVbs2QTk0f1epktygEkjCnzRo2JC3b96QmJiocO1D/v48ePCAESNHyt3PxMSEFjleaI2MDGnRojnBwcGkpaXlWdagoCCcnJxkk0MA9erVpXz58hw9mq03ODiYDx8+0L17D9mxIkWK0L17d968eUOo9Gv54sWLy00OZdGsmeSl+tGjR7Jjt2/fltZztm3o6elhZ2/Ph/R0Hj18pHCdnOW2tbfLVc8VFOpZFWZmki8l4+MTAIiNjeXRw4c0btpE7mtCq8qVqVCxAseOHs3zeueOn6ComhotO2W/6KtraNC8fTvCb4YR+eaNyrx6+iXQzscm86KkdHA4UVqWgnJWqrl1Ls0t2rfn7r+o2bRUqUKvbCosZ2Rl6SQ7pq6hQcv27bmTb1n0/1H9qyLw+EmMjQxxbtpIdszI0IAWLk0JPnk2/2fzxCmcnOrLBjQA6tWtRXkLc44GnlCaJzk5Oc92JzEhESMjA7mvi3V1ddHR0ZGtwAgMOoGxsRHOzZrk0G1Ii+bOBJ88lb/u4ydwcnKUTVpIdNehfHkLjh4LlB2zs7WRmxwCMDDQp3r1qjx6/FjptTPJJCEhkczMTJV+ukOnf+anA3P4j0qq/LSjop/W0dFBX19f5T1zExh0XFrPTWXHJPXsQnBwAeo5qGD1DFCmACEyVeHn54euri5qamp0zlXXHTt1IjQ0lNd51HWQtK7tc9V17dq1OZbLV5uVKaP0y3dV+EvbxJGjFCcRvrZ2PDExEXV1dfT09GT3UFNTo7K1NRqamjJ9nTp2zL9OAwOxz1WnFStWpHadOnJ1euXyZd6/f0+P7t3l8vfo0YPk5GROn5YfeM6NkZERmpqaxMfHy46FXLsGQMuWLWXHDh8+TNGiRfn48SOng0/KyvKl+nlZZJJJYkICmZmZeaYLDDopfRaV+eozBfB5J3FyavCv+mpjYyOFAerP4fMAzMqYFeo5zMmRw4fR0tKicZMmCrq/Nv+RE00tLQwMDeVsPYvAoGCpfTSWHTMyNKSFS7NC2kdOX11bah/HFdI/efoMb5+duE0Yg5qamsL54sWLy00OZdG8eXMAHj1+oVRH4InzGBsZ4NwkXiIcOwABAABJREFUe6WxkaE+LZo1IPj0ZdLS8n5nNTYyQFPJSk1VxMbF47lmGyOG/ICe7t/vY32uvtT5C5e5/+ARrkN+RFNTg+SUFD5+/Pi3dQsEAsHXQEZG5lf7T6CImCASCP5PyMzMxM/Pj3r16jFw4EDev38v9/Kdnp7OvHnzaNKkCQ4ODjg6OjJ8+HDi4+NlYeQAunXrhrW1NdbW8nGt4+LimDhxItWrV6dp06asXSv/Rfwvv/xCu3btOHfuHO3bt+f777+nb9++PH/+nPfv3zNu3Dhq1KiBi4sLAQEBcnmDg4MZOHAg9evXp0aNGnTv3p1Tp079K/VyLzwccwsLdHTlX+TtHCQvexH3lId4y8jI4EHEfWxs7RTO2drb8+L5c4VJlLUrV2FkYkzHrl0U8hSGO3fuYG5hgW4uzfbS1Rn38tB8PyJC6d4/dvb2PFeiOTfv3r1DU1MTTemAURaJiYksd3fnx4EDZSteAMLDw7Gzs1MYgLe3dyAlJYUnT56ovNfbt2+Jjo7Gzk5Rr4ODvWw1HMDdu+FoaWnx3XcVFdJlnc+vXIBcOJCses5tG8XVJfHTnz5Vrj3LNmwLYRvp6em8j3nPm9evCT5+Ah8vL0qbmVHOXBKaIl36YqyhoalwTQ1NTaIiI3mXR8iSh/fuUcbcXGGiwcpOojGvVUGF5eOHD8S9f8+7yEhCLl7Ee/VatLS1ZfcqKA/u3aOsuTnauV7cK9tLrvNvraT5HGSVRUdFWR6oeGY/JXfDI7Cxqazk2bSRPJtPn6vM+/ZtJNHRMdjZKu5v4GBvQ/i9+wrHV6/bTINGranbsAV9+g/j/IXLCmlq1qzGufOX2LZjLy9fvuLR4yfMmDGD+Ph4evfqKdUdjo2NtRLddlKf8jQP3W8luu0U99BxsLcjXEVIz5y8e/dOzk/kpH2Hrjg1dqZGjRocOHCAMmXLKvhpO3upn1ZxL5mfVuL37B3+mZ8uDHfv3sPGxkaxnh0KWs/R2Clpaxzs5X33P+Hu3XAePHiAvr4+FsraROmg7T0V98uqazslvsnewaFAda2KxMREPNzdGThoECY52sQsvrZ2vGbNmiQmJvLX7Nk8evSIm6GhGBgYcObUKQbk2HMvS5+q3zAjI4MIFXXqYG/P82fPZPruSq+Rc1IAkPUZwu/eVbhGfHw8MdHRREREMHPGDBISEuT2U0pLT5etFs7izp07mJiaSu559072fb5wP697h460aNyE5k6NmPH7H0RL+yG5uRt+DxtrKyU+z1bqq5+pvEfevtqW8HDFdnT12k00cGpJ3QYu9OnvyvkLlxTSKOPOnTtKn8PP4fMKQkxMDBcvXqBxkyZyodFU6f6S/gMgISGB9zExPH70CE8PDx7cv0/tOoorV++GR2BjrawttyuEfahqExXtY+Eid2rXqo6TY/1ClScrrJ6Bvp7S83fvPcLGuqJCORzsLElJSeXJs/xXBBUGzzXbMTYyoFun5v/oOp+rL3XxkmQ/LXX14vTu70oDp1bUd2rFz7/OIDY27h+VQSAQCASCgiBCzAkE/ydcu3aNFy9eMGrUKBwdHTEwMMDPz49mzSQhelavXs327duZNGkSVlZWxMTEcPas5Msne3t7pk6dysyZM5k7dy7ffae4Wei0adPo2LEjnp6eBAYGsnDhQqytrWnUKPuLqsjISP766y9GjBhBsWLFmDVrFpMmTUJLS4tatWrRo0cPdu7cyU8//UTVqlUpW7YsINn/qGnTpgwaNIiiRYty6tQpXF1d2bx5M3WVbLRcGN5FRclNaGSRdSwqMlJpvrjYONLS0pTmNcmRN2s10P2ICA7s3cuCZcuUfnFXGCIjI5UOOGVpiVSpObZQmnPz7Nkzgk+coJmLi0IZ1q9di4amJr36yIfoehcVRV0lL7QmObRaWVkpvV9kZJRc2tz5Y6XlUVdXJyoqEmNjY4WvM03yqZMsNm3ajK6uLo6O2WE/IiMjFerq2bNnhF6/DqByMKewtgEQfPw4U3/9Tfa3rZ0dv06dSrFikmbYyNgIPT09Qm/ckLte7Pv3PJauZIqMjMSqgvwEWRYx795hZGKscNxQeiy6gPtpFIT7d+8yeUh2OKCy5S34bcE89PQLt/FvTFSUUs1GxlLNkf+e5k9NdJTy+jcyltjDlyhLVNQ7alRXXE1nItUZGRmFlaXyjaEjo97Jpc2dP1b6DKirq1OkaFHq16tN0yaOlDQ15cWLl3j57GL0uJ9Zumi23CDTz5PG8v59LPMXujN/oTsAhoaGbNq0CWurCtm6ayjuCZH9rEdhZWWpcF5et7JnU163Mq6FXCc0NIwhgwfKHS+hV4KePbtRtUoViqsX52bYXbZs2YKGhgYJCQlyA48mpgXz06r8HuTjp58+I/i4cj9dGKKioqhRo5pKDRLfraqe8/Ld+ddzQQk4dBiAYsWKKb+XdFLgn9R1ZB51nRfr1qxBU0OD3rnaxCy+tna8Y+fOPHz4kH179nBg/37Z8Z+nTKFLt26yv03z0RebV53m+D10dHSIiopCTU0NIyMjuXTFixdHX19f6T0G9O/PY+kKPm1tbYYMGUKnHCszK5Qvz8ePH7l586Zsn6TIyEjZ4G3U2+xrfql+np5eCbr27IFDle8prl6cGyHX2btzJ3du3WK91xZMdOUH0KOiovPx1e+wsqyk9F5/z1c3omRJE4mv9t7J6LGTWbp4br4TAsr6TPDpfV5BOXbkKB8/fKRVm9Zyx1U9i1/SfwBM+flnzp8/D0ieiS5duzJk6FCFdAVry/+5fQCcPnOOCxcusX3bpkKXZ926dejqaNOwfg2l56PevadmNcXJNhNjQ2k5orGqVL7Q91XGvfuP2XPgKB4Lf/vH72Sfqy/19Jlk5dXPU6bToH4dBv3Yh3v3HrBxkzdv3kSycZ3H316hJhAIBAJBQRATRALB/wl+fn5oaGjQokULihcvTsuWLfH19SUxMREdHR1u3ryJo6MjfXIMZuQM0WFpKRkIsrKyokoVxdABLVq0kMWVr1+/PsHBwRw5ckRugig2NpatW7fKJgTevn3Ln3/+ydChQxklDcFSpUoVjh07RmBgIAMGDACgb9++smtkZGRQt25d7t+/z86dO//xBFFqSirF1RU3YM16GUpNTVWeLzVFmk5JXg3FvEsXLKBegwbUra8YE72wpKSkYKJkYE0jX82pUs2KedWlYRlU5U1JTubXn39GQ0NDLqY6wNMnT9ixbRt/zpmjcO3U1FSl99NQUkeKerPqWIle9Wy96urqpKamKt1IV0NWLtWbz65fv56LFy8yZcoUWXgdyKrn7GumJKfw288/o66hQXp6+r9mGyDZK2LZCk8S4uO5cukyERERpKRkb25dtGhROnXpgtfmzazwWE77jh0kq7aWucvCwKSmqK7LNBX1k1W3aXn8DoXFvGJFZrgvJTUlhbuhN7lx+QopeWzUrQrJb6r42xcvgO18bagqiyp7+BykpqahruyZycePZOUFlObP6TvV1dUxK12KFR4L5NK0bdOCrj0GsHjpCrlBR01NDSqUt6BUSVOcnOqTlJiMz459jBkzhnVrV2Bhbi657t/WnZqHbnmfkpvo6Gh+/W0qZcuU4ccBfeXO9e7dU+7vDh274u/vz7t379izaxcDBmZPKBXUTyu1F/X8/fQUqZ8ePXaM0jQFRaXvLkg9p2S1Ncp8YN71XFAyMjI4cuQYdnZ2xMfHy1Z2yt0rH60psroufB8gL548ecK2bduYPXeuyjJ+be24mpoaZcuVo179+ji7uOCxbBkAC+fPx9jYmI7t2xfoHjL7LcDvkZqSorTuQdJ2K7vHtOnTSUxM5MXz5/j6+pKamsrHjx9lE0CtWrdmzZo1zJg+nV+mTMG6cmWioqKIi4tT0P2l+nk9eveS+7upszN29vbM+P139u7azYRcv80/60fl9Swq8dXLF8mladumJV179GfxEs98J4hSUlIw/Qc2/Xd8XmE4cvgwhoaGcivOQKL7a/IfWYweO5Y+/frx5vVr/P38SE9PVxpSTPL7Kev//rv2kZ6ezsLF7nTt2olK3yn/GEkVq1at4ty5c/w6aSgl9JRPmKWmpinvx0vrMiU171BthWHekg00rFedBnWr/eNrfa6+VHKSpB9tZ2fD7D8le665NGuMpqYGHp5ruXjpKvXqFnxvYYFAIPgayMjI+NISBIVATBAJBP8HfPjwgcOHD9O4cWPZAHj79u3ZsWMHx44do1OnTtjZ2bF+/Xo8PDxo3LgxDg4OhdqXw9Exe6PYIkWKUKlSJYW43SVLlpRbLVKhQgUAGjRoIDtWokQJjIyM5PK+fv2aJUuWcO7cOSIjI2Xx2u1zhSX5O2hoasjCd+UkK2a0hop41lmhvpTFxE5Llc8bePQoN2+E4rVzxz/WC6CpqUm6kpjWqflq1pBqVsybNUGgLO/Hjx/5/ddfefTwIUvd3TGVflWZxeKFC3GoUoWqVavKwpx9/PiRzMxMNDQ0lN4vNTVvrZJzWXWsRG+avF4N6aSN4n2y0ikPtXTkyBE8PVfQqVMnevSQ3wdBU1NT9vt+/PiRP36dwuOHj/hpyhTmzJz5r9hGFkbGxtSRroxp5uLCpg0bGDdyFDv37ZV9kTt0xHDev3+P95YteEk3Ta5brx7tO3Zk3549aGlroQp1FfWTVbfqhYjbnh/aOjpUq1Nboq+REyePHGXO5F9YvHkDFVWsFlOG5DdV/O3TC2A7XxuqyqLKHv5N0tPTiZcOjuqlSwaXNIt9RENDnTRlz0w+fkRyTjqxmIdN5ZVfX78EHdq3ZuNmH968eUupUiUB+OmX6RRTU2PZkrmkp6cTGxtHnfqN+eGHH1i8eBmLFs6T+JS/rVsjD92qfWBycjJjx08iMTGJjetXK+xNpAwjIyNi42K5dPGS3ARRQf20UnvJQ+PHjx/5bYrUT3so+mlVSOo5VnJ96QCUpoaaat9dkHrWzGprlPlA1WUoDFevXuPt27cMHDiQvXv3Km0T87NFTVld/z07VsWiBQv4vmpVnJ2dVab52trxzRs3smPbNnbv34+2tjZeW7ZgZGRERkYGC+bNo23r1hQrVizf309mvwX4PTQ0NVXuc5Oamqr0HlWrZn+p37JVK7pK942Z4OYGSFZuLFm6lD9+/52RI0YAkg8sLMqX5/GjR3Khxb6mfl6L1q3wWLyY82fO0PeHHwBITniHoaHBP+xH5fUsFsJXb/KW89XKkPSZ/r5NF9bnFYYXz59zMzSU7j17ylZm59T9NfmPLHKG8m7Tti29e/Viyi+/MO+vv4Dc9qGs//vv2sdW7x28fx/LiGGDC1WOI0eDWLp0Kd26daNHl1aSNidOfk9KQ4MSaGioK+/HS+tSU+OfrTiV6Qk8y42b4ezZuqRQ+bL6JDmR1P/n6UtpaErStmop3660buWCh+daboTekpsgSkpKyrdMhSVZ+rFX8t/46CsvsvpU35Jm+HS6hWZ5vkX7KMh7gkDwLSImiASC/wPOnj1LdHQ0TZs2lX1FWblyZUxNTfHz86NTp06MGDGCokWLsm/fPpYvX46RkRF9+vRh1KhRBVqynnPlBUi+qMu9mWqJEiUU0ijLm7UiBCRfFYwYMYL4+HjGjh1L+fLl0dLSwt3dnVevXhWuIpRgbGIiF3Iki6yJDhMVg2wl9Eugrq6udN+XqFx5VyxdRlMXF4oXL86rl5IY2vHxkpejt29ek/4hvcCDeQCmpqa8VFL2LC2qrlVCX7/AmnMyZ9Yszpw+zYxZs6iVK1zclUuXOH/uHK7Dh9Mmx4ozgFKlS2NgYKB0g9+ofLRKzpnIpc2dX19aHgATE1MuX75CZmamnL3mdZ8LFy7wxx9TcXJy5LffflVy/+x6njtrFmdPn2H6rD8xlIbD+TdsQxXNnJ1Z7bmCUydP0rlrV0DyvPw69Q+GjxrJ06dPMTIywqJ8eab++htFixalnLm5yusZGhvzTkkYsxhpeAsjJSFS/i3qN2nM0hl/cvpYYKEmiAxNTHin5NnMCu1nZPrpNP/bGJkYK/Uz0e8kv8mnLMud0Jv8PHKU3DH/A9swMTEmKkoxTGLWMdM8NJlKw6Goyq8vfQbyorR0oDE2Lp5SpUry/PlLzp2/xB+/TgLgRmgYQ4dPkKU/eeoMb968kepW/WwVTLey/Mp1p6enM3HSL0RE3Mdz+VIsVYTqUbiXqSlPnj4lLi5W/j6RBfPTeZVRqZ/+U+KnZ86epXSfClWE3rjBCNdhcsf8/fZjYmKi4vctgO82yct3F8w+8iPg0GGKFi1K27ZtOX36tNL+QFbosH9S14VpmwEuX7rEuXPnWLBwIS9fZu+Z8fHjR1JTU3n58iVlzcy+qnYcYM+uXdSqXVs2qGFiYsLbt2/p1LkzSxcv5sWLF5QvX14WPlCVPv286jTX72FiYsLHjx+Jjo6WCzOXNWmZX92XKFGC2rVrc+jQIdkEEUj2Uzro58f9+/fJzMhg2bJlPH8hCc9kXt5Clu5r6+fpltDjxvXrch9c+fvuwMTEKB9frRieKotP4atV3svUVMVz+Gl8XmE4fFgSjrJV69YK51Tr/vz+QxXFixfHunJlDh8+nMs+dn2Wtjw+IYF1GzbTo1tnEhMTZXsrJSUlk5mZycuXr9DU1MTIyFDuGhcuXOaPabNo0qQJM2bMID32LtdvhjN09DS5dP57VmJibEDkuxhFHdJjpqZGCuf+Dks8t9C8WX2KFS/Gi1dvAYhPkJTnzZso0tM/UFLJvXL3SeDz9qWy2lXjXHVsZGggKUOud+47d+7wqcgK8/lvUbNmTeDb0gyfXrfQLOFbtI8szQLB/xtigkgg+D/g4MGDAEyZMoUpU6bInYuJieHdu3cYGxszZswYxowZw5MnT9izZw8eHh6UK1dOLr775+bJkyfcvn0bT09PXFxcZMdTUlSHDCsMVpWtCblylcSEBHRy7BNxKyxMer6y0nxFixblO0tL7t65rXDudlgYZcqWlcUdf/PmDccOH+aY9AU1JwP79MWycmU2b/MpsGYbGxsuXryosLdFlubKeWiuZGmptIN1KyyMsjk0Z+G+dCl+vr5MmDiRlq1aKeTLmvxZs2qVwrmboaEAxMXFKSwfDgu7iaamJuXLq44nXrJkSQwNDbl9W1FvWNgtrK2zy2ltXZl9+/bx8OEjKlX6Lke6MNl5OW03b+LmNhE7OzvmzZun8EUpZNfz4vkL8Pc9yPiJE2nRqhWbNmwAClLPym1DWT3nJmuCNDEhQeGckbGxbB+ejx8/EnL1KnYODnl+rVSxshU3r4WQlJiIdo5737t1S3b+U5Genk5GRgZJCYXbrPk7KytCr14jKSERbd1szeFSzd99Qs3/Nt9ZWXHj6jUSExLRUVKWSips6d+gopUlczwk4aLMdCWT9MbGRlhXtiQkJJSMjAy51aJhYXckz6ZFOZXXLFnSFENDA27fUdy8O+zWXaxV7E2Tk+cvJIOohtLBjXfRkkGgjxmSVU6VrSxZuXwhmjrGLF68mMePH2NsbIx15cqEXL+uRPctqU+xQBXZPuWuEt23sc71O2RkZPD71BlcunyFeX/NolZN5XsnKMPGxoZz586hm2s/EZmfts7Hfyjxe7fCwihbTomfXrKUg76+uE1S7qfzwqpyZZavXAGAjqZkdYWxsTHW1laEhCip55uFqGclbU3YrVsK9VxY0tLSCAo6Qa2aNShVqpTKNjFMVteKG4CDpK4tLS25fVvRV4eFhVG2XLlC7x+S1Sb+NGmSwrm3b9/SoV07pkyZ8lW14yAJofgxRzttVbkyV69cIUk6EPzhwwcgZ5v69+q0XI46zbrG7Vu3cHRykqW7fesWGRkZKn+3nKSmppKgpJ1UU1PD2toaHW1t7O3tuXTpEgC16mSHF/ua+nmZmZm8j3mPta0tv0yeDEBKUozUV1sRcl2Jr76V5atVfxySt6++g3Xlwvhq/TzT5WvT/6LPKyxHDx2mXLlyVPleMUT21+Q/8iLrHWXZsmWUKFGClKT32W25Uvu4VQj7UNUmSvpZ8XHxJCUls2mLD5u2KNpx2w7dadLYiSWL5sqO3Qy7hdtPv2Jna8PSpUspVqwY6YC1ZQVWLZsql9/EyABrq4qE3LijUI6btyLQ1NSgvHmZglVUPrx+E8Who6c5dPS0wrkfBv5EZasK7Ny8SOFcVp8kJ5+zL2VrWxn2w9tcH3tFRkoml7L6UtnpbVXe9++SnJzM48ePqVChgtxqzH+Lb1Ez/Pu6hWblfKv2IcibjIzMLy1BUAjEBJFA8I2TnJxMUFAQLi4u9O/fX+5cVFQUbm5uBAQE0K9fP9nx8uXL4+bmxo4dO3j48CGQvdrnc++VkaokxveLFy8ICQmRhaj7JzR1dmablxcH9u6jd39JHaSlpRHgexA7BwdKlS4NwOtXr0lNSaF8xQo58jZjpcdy7ty+ja2dZGPVJ48fc+3KFXrl2Ddp7kL5FwqAwKNHCDp6jD9mzsC0ZKlCaW7VqhUbNmxg/9699JX+pmlpaRz09cVeTvMrUlJSqFAxO1Z4M2dnPD08FDRfvXKFPjk0A3ht2YK3lxc/DhrED717K9VSq3Zt5isp39zZsyltZkb1GjXw2bqVo0eP0qiRZAAoJiaGY8cCadSokdyXq8+ePQPAPMdKGGdnZ/z8/Hj9+jWlpeW6ePEiT548kdsvq0mTJixcuIhdu3byyy+/AJIBl127dlOyZEm5sDQPHz5k7NhxlClTBnf3ZWhqKg8/l1XPu3bsYMCggfTs3Yu0tDT8fQ/mqufX0nquIMvb1LkZK5TYxtUrV+ido57fx7xH30BfYZWer3STcBtbxQ17c+Lj5SV5jif/lGe6Bk2bst97G0f2H6BzH8lvmZ6WRpBfAJXt7TAtJbHByNevSU1JpVyFwm8EnBAfj6aWlsJk27EDkglqS1ubQl2vYbOm7PX24dD+A3Ttm6058KA/1vb2Ms1vX0ueTfN/wR98KhybNWOPtw+H9u+nW1+J3aalpXHsM5RFr0QJqktXDHxnIPkqNinuFS7NGhMYdJKgE6do7twEgJj37zkWFEwjp/ryz+Zz6df35crKjjk3a4Sf3xFev35L6dKSr8ovXrrKk6fP6NM7e1P76Jj3si9cs3j7NpIDBw9hZVVJ9gWtuXlZihYtytFjJ+jWpQMlSuhRr24t4pKK8ODBA6pV+x4NDQ1cXJoSGHScoOPBNHdpJtEd855jgcdp1Mgxl095Lr129gCNc7Mm+PkF8Pr1G0qXLiXVfZknT57Sp/cPcjrnzV/E0aOB/P7bLzg3a6qyjqNjYjAyNFR6LufEbVpaGn6+vjjk56ddnPF09+D27dvY5fAfVy5foU+/XH568xa25uOn86JEiRKyPTn0dSQDkEmJsbg4OxMYeJyg4ydo7iIJaSOp5yAaNXLKv56dm+Ln5y9fzxcvSeq5j/weLIXlzJmzxMfH07q1ZLIjy1fv27uXfrnaRAcHB1nbobyuXVju7i5X148fP+bK5cv0zdEvKii1a9dm4SLFwcXZs2ZhZmbGoMGDqfr998TExHw17TiAhYUFly5eJPb9e/QNDGjm7Iy3lxf79u1DW0cHCwsL0tLS8D1wAIcqVWR1+kqqr2IOfS4uLri7u3P71i3spKGAHz9+zOXLl+X6mrVr10ZfX59du3fLTRDt2r0bTU1NnHIcy73KCODly5dcunQp30GjBg0asGHDBoxNTKhdt46srr9UPy8mJgbDXP5i367dxMXGMmDwIFnY5aT4N5L6dG5MYFAwQcdP0dylieQa799zLPAEjZwaFMBXN8bP73Aun5flq3vI0qn01b4BUl+d90pXVX3Tf9vnFZbwu3d59OgRg4cOyVP31+A/QLmtx8fHc+bMGUqVLk0r6SRvUrxkhZOLc1OpfZykuYukncq2j4YFsI8m+PkdymUfV6T2Idlfz9DIkMUL5yho3bZ9N6E3w5g7ezomJtkr2R4+eszYcZMpY1Ya96Xz5PrZJUroUq92VYVrNW9an8AT5wkKvkjzZvWl5Yjj2InzNG5YS26fpGfPX0vLUTrvylTC4rmTFY4dCTzLkaCzzPpjDKVKKl+Rl9Unyc3n6ks1adSQBYs88D14iA7tWskmo/Yd8AegXh15bZ8yxJWWltYnuf63qBk+nW6hWZ5v1T4Egv8nxASRQPCNExQURFJSEv369aNuro1ZAdatW4efnx/nz5/H3t4eOzs7tLS0OHHiBLGxsdSrJ9lst0KFCqipqbFnzx6KFSuGmpoaVaoofon3b/Pdd99RunRpFi1aJFmFkJSEu7s7JUuqDnNRGOyrONDMxYVVy5cTExNNOXNzDvn58erlS6ZM/UOWbta0qYRcvcbZq1dkxzp3747vvv38NG48vfr1pVixYuzY6o2hkRE/5HihbdS0icJ9I+5Jvhar16AhBjleyBPiE9i9YzsAN29IVuDs2bETXT1ddPX0GD54CFWrVsXZxYUVy5cTExNDOXNzAqSaf5+a/VXejGnTuHb1KhevXpUd69q9Owf27WPCuHH06dePYsWKsW3rVoyMjOid42U2+Phxli9bhrmFBRUqVuRQQICc/jp162JsbExpMzNKm5kplG/JokUYGRkxeuxYboeFMWXKFPr374+hoQE7d+6Shg4cLpdn2DDJ3wEB/rJjgwcPIjAwEFdXV3r16k1SUhJbtmzBysqSjh07yNKVKlWKPn16s3nzFj58+ICdnT3BwScICQlhzpzZqKmpAZCYmMioUaOJi4ujf//+nD4t/wVhuXLlZJNJb9++zfF73WP2jJncuB7CyxcvcGnRnOh37zAyNmam1DbO57CNLt27c2DffiaOG09vqW1sl9pGrxy2cfhQAPt276FxkyaUKVeWpMQkLp4/z6WLF3Fs5EQt6V4+AIcDAjgRdJxqNaqjraXN5UuXCDp2jA6dOtE0j70uAKwd7Gno3AyvFauIjY7BzLwcx/0P8fbVK8b8lr2qcOmMWYSFhHDgwlnZscSEBPx37gYk4coAAnbvQUdXFx09Xdp2l7zAhl0LYe3ipTRo2oQy5uZ8+JDOres3uBB8EktbGxq3kg9BmB82DvY4Ojdj84qVxMbEYFauLEEBh3jz6hXjfs/WvHjGn9y8FoL/xXNymg/u3AXAbanmg7t2o6uni46eHu27Z790h4WEEBZyHYDYmPekJKewfcNGAByqV8OhevVC6VZVFifnZmySlaUcQQEBvHn1ivG/Z4c3XDhjJjevhXDo4nm5svjKyiLxCb67dqGrp4eOni4dusvvnVVQXJwbU2W7HdNnzuPhwycYGuizc/d+ybPpOlAu7bCRkvBNAb7Z+2sM/rEvgYHBuI4YT68fupGUlMyWrduxsvyOju2zw/gsc1/FsxcvqVu7BqYmJrx89Zo9e31JTk5h8sTRsnRGhgZ0bN+afQf8GTbSjWZNnUhMTGb33oOkpqYyaOAAqe5mVKmyg+kzZvHw4SOp7r1kZHxkxLCh8rpHSK4f4Lc/W/egHwkMPI7rsFH06tVDotvLGyvLSnTs0E6WzttnOzt37eH776ugqamBf8AhuWs3a9pE9rVh27adaNHCBUvLSmioq3Pz1l38/f3R1dPj3NmzuC9dhrm5Of5+frx89ZLfcvjp6VMlfvrStWw/3a17dw7s3Yfb2Gw/7eMt8dN9cvjpE8eP4yH10xUrVuSQfy4/XU/ip7NYv24dAI8eSD78CPAP4Pr165J6GSI/eOri0owqPg5Mn/6ntJ4N2Llrt8Q+hrvK1/PwUdLrHchRzwMJDAzC1XUEvXr3lNTzlq1YWVrSsUN7ufx+fgG8ev2KlGTJByHXroWwdt16Sd22aUOZMvJtTMChI6irq+PsLJkgrFq1Ki7Nm7N8+XKio6MxNzfHz8+Pl69e8UeOup46dSrXrl7lyrVrsmPdu3dn/969jB87lr7Suvb29sbIyEhhgPfUyZPci4gAJCtqIiIiWCet08aNGmFVubLKNnHRwoUYGRnRpGlT9KQTLl9LOw7Q/8cfmfbHHwwaMIBOXbqgoaGBvr4+kW/fUrVaNfbu3cu+fft49eoVU6dlh4ea+scfXL16lWshIdl12qMHe/ftY+zYsfTr319Sp1J9OSeINDU1GTFyJH/Nncvkn36ifv36hISEEODvz6jRo9HXz16x0qN7d+rUqUNla2tKlCjB06dPObB/Px8+fGDs2LFy5RoyeDDff/895ubmxMXFsXPnTooVK8b7mBhWenh88X5e17btcG7RgkqWlVBX1yD0+nUCjx7Fyroynbp0VbiOi3MTqlTZzfSZc3n46LHE5+2S+uphg+TSDhshCYEVcHCn7NjggVJfPVzqq5OT2eK1TeKrO+T01St59vwFdWvXxNTUhJcvc/pq+Tp++eo1/v5HAGSrH86ePct3lSqx3N2D6OiYT+LzAE6fPMW9iHuA5Dm8HxEh822NGjXGKtfq4sOHJL5bWXg5+Lr8B8DY0aMpWaoUDg4Osj1ZD/r6EhkZyRzp/kM5kdiHPdNnzslhH/uk9iG/X9CwEeMACDi4W3Zs8MB+BAaewHX4WHr90F1qHz7SNrENAFqamjRt0kjh3ieCTxN2647cucTEJEaNdiMuPp7+/Xpx+sx51DUlq7HSE55TrmxpqlZRXJXl0rQe39tXZtqc5Tx8/AwD/RLs3HuYjI8ZjBjSUy6t69jpABzamx294OWrt/gfPgXA7bsPAFi7UVJOs9ImtGvdBIBmjRXfhcMjHgPQsH4NDA1KKJzPi8/VlzIxMWbwwH6sXL2BUWMn07SxI/ciHrB3vx+tWjpjb1+4j7AEAoFAICgsYoJIIPjG8fPzo0yZMkonhwA6derEnDlzmDhxIkeOHGHjxo18/PiRihUrsnDhQtmXjEZGRkydOpV169bh6+vLhw8fCA9XXBL/b6Ouro6HhwczZ85k3LhxmJmZMWLECC5cuCAL//BP+X3mDEqtNOOIfwDx8fFUsrJkwdKlVKuRdzghHR0dlq9ZjfuixWxet56MzExq1KzJ2IluCl+HFpT4+DjWrpQP17Zt61YASpuZMXywZBBv2syZlF65kkP+/sTHx2NpZcXipUupXgDNK9asYemiRWxct45MqebxEyfKaY6QvsQ+e/qU6X/8oXCdFatXyw08qkJNTY01a9Ywf/58tm/fTkpKCvb29syYMaNAK8BKly7NunVrWbRoEe7u7hQvXhwnJ0fc3NwU4uaPHTsWPb0S7NmzB1/fg1hYWDB79ixa5xgUiI2NlYUAcnd3V7hf+/btZRNEd+9mh9w4d+asXLpN6zdQu04dWai33EjqeTVLFy1m07r1ZGZmUr1mTcblso2q1apx80Yox44cITo6GjU1NSzKl2es2wS695R/ITa3sCAuLo6N69aTmppK+fLlmfzrFDpJN+nOj/FTf8e7dCmCDx8hIT6eCpaV+H3RAuyrV8szX0JcPN5r1sod2++zDYCSpUvLJojKV/qOKjWrc+n0aaKj3gGZlC5blp6DBtK5b2+5VYAFZeK0P/AqXZrjhw6TEB9PRctKTFu8IN9Jm4S4eLxWy2vel6XZrLTcBNGNK1fxWbdBLm1W3t5DBv0rE0QAk6ZNZUvpNQTlKMuMxQupUoCybFm9Ru7Y3hxl+bsTRGpqaixfOo8l7ivZvmMPKalp2NtZM2PaL1SooDp8WBalS5dk3eplLFq6AvflayhevBhODevhNn6k3LNZr15tnu/xZceu/cTHxaOrp0uN6lUZMrgftjbyIYd+/WUClStXYv+BADw8Jb9BlSrfM2/ePL53sM7W7b6YJUs92L59Jympqdjb2zJj+h9UKMDKt9KlS7Fu7UoWLV6Gu8cKiU9xbIDbhLFyusPDJQOQoaE3CZVOMubE/2BV2QRR69YtuRF6k6DjJ0hNTaNs2bIMGTKEbj174LV5C4cC/ImPy/bTNfIJVaejo8PKtWtYsmgRG9avIzND4qcn5PbT97L99DQlfnrlGnk/vXrFSrnzBw/kmNDJNUGkpqbGco+lLFnqzvbtO0hJScXe3o4ZM6YWop5XsWjRUtzdPaX13BA3t3EKvnv/AV+uXs0edL185SqXr0gGj6tXqyY3QZSQkMCZM2dxdGyInl52OKgZM2ditmIFAQEBxMfFYWllxdKlS6mRTxx4HR0dVq9dy+JFi1i/fj2ZGRnUrFkTt1x1DXD8+HH8pCF7QbIyIVzaTpQqWVJlqDJVfE3teKs2bTAwMGDzpk1s3bKFxMREzM3Nsbax4cH9+8yaNQtra2uWLluWb2x9HR0d1q5dy6KFC1m/bh0ZGRnUrFWLiRMnyvbwy6JHjx4UK1aMrV5enDx5klKlSzNx0iR651rt1K17d86cPs25c+dISkrC0NCQevXqMWjwYKxy7W1na2tLYGAgb9++RVdXlwYNGvDDgP74+x78Kvp5LVq35mZoKMHHj5OWmkppMzP69O9P/8GD0NRSXNGspqbG8mXzWbJsBdu375H4PDsbZkyfUkBfXYp1a9xZtGQ57stXS3y1Y33cxo+S99V1a/P8xUt27NqX7atrfM+Qwf2xtZEf0H/54hUrVq2XO7ZsmSSUaclSpT6ZzwM4fjwI/4N+sr/D74YTflfyPiJ5DrPtISMjg2NHjmJjY0P5PPqcX5P/6NCxI0ePHMHH25v4hARK6OnhUKUKs2bPVuobJPaxQGofu3PYx2+FsA8PqX2sktpHA9zGj/5be8XFxsby+o3kAyv35Yrhp9u3aaJ0gkhNTY3li35jiecWtu0KkPRJbC2Z+ftoKpQvq5A+Ny9evcVz7Ta5Y1l/16xuL5sg+rf5XH0pgKGD+1GihC7bd+xjweLlmBgbMXhgX1yHDvgkZRMIBIJPjQgx921RJDMzU/xiAoHg/5aohPj8E31FmEj3s3ivJOb+14qBNG56UlLh9qD5kmhrS+LGR39j9mEktY+7MYqbJn+t2BhKwtbcf6+4Se/XiqWBZFD14fvoL6ykcOQMMfetoF1CMjmQlKC4efXXirauZGAwNvHb8dMgH2LuW0FbR7LKJD7x22lf9KT7knyL7XhiUtIXVlI4dKQhY76lvl5WPy8rxNy3gLaeJDTZt+rzvkX/kRVi7ltAW88UgOR3/86HfZ8LLWMH4NvsM30KkpKSuHPnDra2tt9MOC6h+fPwLWqGb1f3/xN7J3yXf6IvRJclD7+0hK+OovknEQgEAoFAIBAIBAKBQCAQCAQCgUAgEPw/IULMCQQCgUAgEAgEAoFAIBAIBAKBQCD4x2RkZHxpCYJCIFYQCQQCgUAgEAgEAoFAIBAIBAKBQCAQ/McQE0QCgUAgEAgEAoFAIBAIBAKBQCAQCAT/MUSIOYFAIBAIBAKBQCAQCAQCgUAgEAgE/5iMjMwvLUFQCMQKIoFAIBAIBAKBQCAQCAQCgUAgEAgEgv8YYoJIIBAIBAKBQCAQCAQCgUAgEAgEAoHgP4YIMScQCAQCgUAgEAgEAoFAIBAIBAKB4B8jQsx9WxTJzMwUv5hAIBAIBAKBQCAQCAQCgUAgEAgEgn/E9lEWX1qCSn7wfPqlJXx1iBBzAoFAIBAIBAKBQCAQCAQCgUAgEAgE/zFEiDmBQPB/za3ot19aQqGwNyoJQHRC/BdWUnCMdPUASEqI+cJKCo62riEAT2K/Hc0A5fUluu+/f/eFlRQcSwNjAGITE76wkoKjr6MLwM1vzH9UkfqPezFRX1hJwalsaAJAYlLSF1ZScHS0tQGIT0z8wkoKh56ODgBJibFfWEnB0dbRB75N+0hK+nbsQ1s7yza+nb4HgLaOpP/xLfnqLD+d/C70CyspOFrG3wPf1nMI3/izGPvkCyspONr65QFIjrz0hZUUDi3TOsC3aR9R39B7oon0PfFTkJSUxJ07d7C1tUVb+rx/7QjNn49vVff/ExmZGV9agqAQiBVEAoFAIBAIBAKBQCAQCAQCgUAgEAgE/zHEBJFAIBAIBAKBQCAQCAQCgUAgEAgEAsF/DBFiTiAQCAQCgUAgEAgEAoFAIBAIBALBPyYjI/NLSxAUArGCSCAQCAQCgUAgEAgEAoFAIBAIBAKB4D+GmCASCAQCgUAgEAgEAoFAIBAIBAKBQCD4jyFCzAkEgv8k6WlpbFu7npOHj5AYF095y0r0GjaUanVq55nvxZOnHNm3n4hbd3h47x7paWms2ruTkmZmCmmHde5O5OvXCsdbdOrI8J8n5XmftLQ01q5axWH/AOLi47G0tGTYyBHUqVcv37K9ffuWZYsWc+nCBTIyM6lZqybj3NwoW66cLE1KSgqL5s/ndlgYb16/ISMjg7LlytGuQwe6du9OseLZzYO/70FmzZih9F5+Rw5jpKuncDw+Pp6ly5Zz/MRJUlJScLC3w23CWGxtbfLVD/Dw0SMWLVpGyPUbFC9eHCfHBri5jcPI0FCW5tGjxxzwPcj5C5d4/vwF2lpa2NhYM3z4UOztbBWueeHiJdav38T9+w/4mJFBhQoVaN6xA8+fPCHw0GES4uOpaFmJH4cPo2bduvlqjHr7llVLlnH14kUyMzOoWrMmwyeMx6xsWbl0Me/esd5zBRfPniM5KQmLCuX5YcAAGrk4y6V79uQJfnv2EX7rFhHh4aSnpbFl/15KlylToDpLT0vDa81aThw6QkJ8HBUsLek/zJXqdevkme/5kycE7N1P+K1bPAiX2PSGfXsoVUbepuNiYznm68fFM2d49vgJHz98oFz58nTq1ZNGzV3y1ZeWlsbqlas45O9PfHw8llaWDB85kroFtOklixZx8fwFMjMzqVmrFhMmyts0wO5du7hy+TK3pHbdtn07pimx3eFDXbl29arSe6kVU+P2rdt56klPS2P72vWckvoPC6n/qFoA/3FU6j8eSf3HChX+Y4QK/9G8U0eG5eM/VGn2XrOOE4cltl6hkiV9hw0tkH0c2refe7duy+xj3d7dSu0j8KAfl86czWEfFnT8oSdOuewjp5bE+ASsra0ZPmIE9QpoC4sWLuT8+fNkZmZSq1YtJk6aRLlctgCwf98+tnh58fLFC0qVKkWvXr34oVcvuTSrVq1izerVCnnV1dW5cPGi3LF3797h7u7O2TNnSExMpELFigwcOBCX5s3l0qWlpbFq5UoCZLZuxYiRIwtcvsWLFnFBWr6atWrhNnGiQvl279rF5cuXCQsL483r17Rr357pKvy0KuLj41m61IPjJ4IlftrBHrcJ4wrupx8+YtGiJTn8dEPcJo6X89MA69Zt4GbYLcLCbhEdHc0w1yEMH+6qcL02bTvy6tUrpfcyNTXlyNGj+Wr6t+2jbZs2KjWZm5tzwNdX4XhcXByTJ0/mxIkTAFSrVpXJkydja6vYLinj4cOHLFq0iJCQ65J6dXLEzW0iRkby9ZqRkcGWLVvYtWs3UVFRlC9vwcCBg2jdupVcGj8/P4KCjhMeHk5sbCxly5alZcuW9O/fDw0NDblr7ty1W2ZXr1+/wcLCgri4uBz2MaGQ9rGYkOvXc9iHmxL7WM/NsLAc9jGU4cOHKVzv8ePH7N69h5tht7h79y5paWkEBQUp/W3h2/TTOYmLT2SppxcnTl0iOSUNBztLJo7pj631d/nmvXk7Al//YMJuRxBx/ykfPn7k+rld+eYLuXGHgSOmAnAiYD2GBiUU0qSlpbFy5Ur8/fyIj4/HysqKkaNGfXX++1hgIH/NncuxY8dITk7GwcEBN7cJX+Q5zE16ejo9e/7Ao0ePmDBhPP3795ed8/DwYPny5Srzqqur830VW9zGuWJrY1Wwsjx6yqIlqwi5ESYpS8M6uI0fhpGhgVy6yKh3rFqzhQsXr/EuOgZTE2MaN6rPkIG9MZDaQkZGBn4BgQSdOEN4+H1i4+IxN7egTZs29O7wPRoa6ip1xMUnsnTFdk6cvkpySioOtpWYOLo3ttYV8i3DzdsP8A04TdjtB0Q8eCax6TNeCukOBJxi2py1Kq8ze+pw2rZoSFx8InPc//iq7CMjI4Pdu/ewZ88enjx5gqamJpUrWzFx4iSsrSsD8Pz5c5ydnRXyAvwxcwYPHzzgsH+ApO9hacnQAr47Rr59i3uOd8catWoy1k2xn52TGyHXGTlkCAD+gYEY5LIngUAgyMjI+NISBIVATBAJ/lN4eHiwYcMGQkJC5I7/9ddfbNq0iT///JOrV68SFhaGn59fntfq2LEjtra2/PXXX59Sskr27t3LlClTZH9ra2tTqlQpqlevTq9evfj+++/l0vfr1w9tbW1WK3mR+i/iMWsO548H065nd8zMzTnhf4jZbj8x09Md26rfq8wXHhZGwK49lKtQgXLly/MoIiLP+1S0sqJD755yx8qYm+erb9b06RwPDKJn796YW5jjf9APt7Hj8Fy9mqrVq6nMl5SUxOhhw0lISGDAoIGoFSvGDm8fRroOY4uPN/oGBgCkpqby6MFD6jdsiJlZGYoULcLN0FCWLV7MrbAwZs6ZrXDtocOHU6as/GSFrp7i5FBGRgZjxrlx7959BvTvg4GBATt37WHosJF4b91EeQuLPMv+5s1bBg8ZgZ6uLqNHDSc5OZktXj5E3H/A1i0bKF68OAD79vuy/8BBnJs1oUf3riQkJLBnz34G/DiE5R5LqJdj4Dv45CncJv7M9987MGzYEDQ0dTh06BCLZ82maNGidOndi7Lm5hzz8+f38W4sWOmJQzXV9ZyclMRPI0aRmJhArx8HoFasGHu3bWfisBGs2upFCQN9ABITEpngOoz30dF06tkTI2NjTgYGMevX3/jlwweatWopu+admzc5sHMnFhUrYlGhAg/u3cuznnKzeOYszh4/QccfelLGvByB/gFMmzCRuSuWY1+tqsp8d26GcXDnLswrVsC8Qnke3lNu03dvhrFl1WpqNajPDwMHoKZWjLMnTjDv96k8ffSYvq5D8tQ3c9p0goIC6dWrN+YWFvgdPMj4sWNZuXo11apXV5kvKSmJEa7DSExI4MdBgyhWrBjbfLwZNtSVrdt8MJDaNIDXps0kJiVhb29PVFSUymsOHDyIjp06yR1LTk7mrzlzCjTItXzWHC4cD6ZtDv8xx+0npufjP+6FhXFI6j/Kli/P43z8RwUl/sOsAP5DGUv/nM3Z4yfo8EMPypibE+QfwAy3Scz29MjTPu7eDMNv5+4C2YfXqjXUbFCfngMHoKamxrkTwcz/YxpPHz+mz9Bs+8ippbq1Lfv27WPsmDGsXrOG6vnYguvQoSQkJDBo8GCKFSuGj7c3Q4cMYdv27XK2sHv3bubMno2zszN9+/Yl5No15s+fT0pKCj8OHKhw7V9//RUtbW3Z32pF5RfZJyQkMGjgQKKjo+nfvz+mpqb4+fnxy88/M+vDB1q1bi1LO33aNIKCgujdq5fM1seNHcvqAtj6cFdXEhISGCi1dR8fH4YNHYr3tm1y5du8aRNJBbB1VWRkZDBm7ATu3YtgQP++Uj+9m6GuI/D23lwAP/2GwUOGSfz06JEkJyWxxcubiPv32eq1SeanATxXrMLExBgb68qcO39B5TV/mjSBpKRkduzcxa1bt2lQvx4amloEBQURFRVFSEjIZ7ePST/9RFJSktx9Xr16xQpPT+rVr6+0Xl1dXbl+/TrFihXjw4cPxMS8Z+hQV7y9vSlfvgD1OngIenq6jB49muTkJLZs8SIi4j5bt3rJ1evy5Z5s3LiRLl06Y29vT3BwML/++itFihShlbRtSUlJYdq06VSpUoVu3bpiZGREaGgoq1at4tKlS6xZs5oiRYrIrrlp02aSkpKws7Pj9es3vHjxgqFDBuewj2F4e3sV0D6GSu1jlNQ+tkraca/NuexjpdQ+rDl3/rzKa4aG3mTb9h18911FKlasQHh43m3kt+ins8jIyGDMpLncu/+YAb07YmCgx869Rxgyajo+G+dR3lxxsionZ86FsO9gEJUty1O2bEmePFU+yZn7nn8t3oCWlgbJyakq002bOpWgoCB69e6NhYUFB319vzr/XQQYO2YMERERDB48GB0dbXbu3PXFnsPcbN++g9dKJhYBmjdvjoWFBWnJEr+ekZHJug0+PHv+AnV1dcaOGsyefQEMHfET3ps9KW9RVul1sssSyeBhE9HT1WH0yIEkJ6WwxXs3EfcfsXWTh6wsSUnJDBg8nuTkFHp0a0+pkqbci3jIjl2+XLl6A58tnhQtWpSUlFSmzVxIFQdbunVph5GRAbfuPsXDw4Ozp6xZ6z5FzqdkkZGRwZjJi7h3/ykDerXBQF+PnfuCGDJmNj7r/6S8eek8y3Hm/A32+QVTuZIFZcuY8uSZ8vqrWdWG2X8MVzi+dcdh7j14St2a9jItEQ9efFX2MX36DA4dOkTbtm3p2bMnKSnJ3L0bTkxMtIKG5i1bUt+xodyxoGOBXDh7lh7Sd8eAg35MGjsOjwK8O46Rvjv2l7477vT2YbTrMDbleHfMSUZGBksWzEdLS4vk5OQ860sgEAgE3wZigkjwn2fBggVs2rSJGTNm0L17d+rWraswGPA1s27dOvT09EhOTubRo0fs2bOHHj164Obmhqtr9he606ZNo2hREVUSIOLWbc4cC6L/6JF06iP5GrFJ65aM7zOALctXMnftSpV5azs64nW0CVo62uz33pbvBJGRqQmNVbwgqiI0NJRjR44yetw4+vTvB0Drtm3p06Mny93dWbtxg8q8e3ft4tnTp6zfshk7e3sA6jdoSN+ePfHZ6s2I0aMA0NfXZ93mTXJ5u3Trhq6uLrt37GSc2wSMTUzkztdv2ABbO7t89QcGHufGjZvMnzeH5i7NAGje3JlOnXuwatU65s6ZmWf+9Rs2kZKcjM/WTZiZSV4Y7e3tGDFyLL4H/enapRMArVq1YPiwIWjnGBTo2KE9Xbr9wOrV6+QmiHbs2I2JiQlrVnmirq6Otq4htra29OrVCwNDQ1zHjpHobNMa1159WOfhydL1qr9APLh7Dy+ePcNj0waspXVSu0F9XHv1YbePD4NGjgDAf98+Xj57zjzP5VSvXQuAdl27MG7QENYsc8fJuZnsRbKekxN7g46hraPDrq3ehZogCr91m1PHAhk0ZjRd+/YGwLlNa0b27suG5Z4sWrdGZd56Tk40DGyCto4Oe7b6qJwAsPiuImt375D7irptty78Nnosu7220q1fHzS1tJTmDQ0N5eiRI4wdP46+0i9l27RrS6/uPfBY5s76TRtV6tu9U2LTm7y2yGy6QcMG9OrREx+vrYwcM1qWdtXatZQ2K02RIkVo3NBR5TWVrVo65B8AQMscA/3KiLh1m7PHgug3eiQdpf6jceuWuPUZgNfylczJw3/UcnRks9R/HPDelu/Ao5GpCY0K6T+UcU9qHwPHjKJLH4l9NGvditF9+rHJcwUL1qr+cKCukxMNjknsY6933vaxetcOSpplD/K06dqF38eMY4+XN137Suwjt5bKhiZ06tSJNm3bsmzpUjZt3qxSy86dO3n69CleW7diL7WFhg0b0qN7d7y8vBgzRvIcp6SksMLTE0cnJxYsXAhAly5dyMjMZO3atXTp2pUSJeS/jHd2ccEw18qGnOzZs4dnz56xavVqmjZpAkC7Dh34ccAAlixZgrOLC8WLFycsLIyjR44wbvx4+kltvW27dvTs3h33ZcvYsGmTynvskpZvs5eXXPl69uiBt5cXo6TlA1izdi2lzcwoUqQITg0bqrqkSgIDg7hxI5T58+fSXLqasXkLFzp16saqVWuYO2dWnvnXb9hESkoyPt5bsv20gz0jRozG19ePrl07y9L6++2nTJkyxMS8p5lzC5XXbNq0CWFht7h5M4wJ48fSv39fNm32JigoCFNT0y9iH02bNlW4z7q1krahjRJfERgYSEhICNra2nTq1BEfn20sWbKYAQN+ZNWqVcydOyePWoX16zeQkpKCj483ZlJfa2/vwIgRI/D19aVr166AZCWGl5cXPXv24JdffgGgc+fODB48hKVLl9K8uQtqamoUL16cjRs3Ui3HJHCXLl0wMyvDqlWruHjxEvXqZa+YXbf2f+yddVyV1//A3zQqDSIWFg12BwZg5+yO2TED106dzulmd6HO1tlTMMGYzlYMsLAw6O4Q7u+PG9zLvYSb+4q/nffrdV/Kec55ns85z+f5nP6cjZQvb8OZM/5cuXKFOnVqM3astC3Ztl1bevToyfr1G1igYRGJSj62/CbTj5359GMiR48eo1evnoq4fr5HlfSj4N2orVq15M8L5yhTpgzbt+8odILoU7TTypw5d5W79x+zaJ43bT2kE5HtPJrSvf8U1m36nV/mTC00fd+e7RgxpDuGBgYsWLKpWBNEB//wJzIqls+6erJ733GNcYKCgjh16hRTp01T7Hrp0qULffr0KVH2+/Tp09y9e5cVK1bQoUMH0tJSadu2HT169Pgo36EycXFxbNy4keHDh7NunboeOjk54eTkRFpiqDQvZy7w6vVbADp39GRg/8/o0L4NPXp/zvqN21kw7zu1e6jkZeseMtIz2L19DeVtrGV5cWT8pG856nuaXp91BuDCn1cID49k5dKfcG+RZxNMTY3ZuGknT0Ke4+Roh56eLr9tWkadWq6KOINNq1CxYkVWrVrFtZvBNGnopibHmXM3uHs/hEU/fUHbNtL2eTuPxnQf8BXrNh/ilx8nFJqPvp95MmJwFwwN9FmwdFuBE0SVKlpTqaK1SlhGZhbzl2ylYT0XrCzNOBVwjbv3Q0qUfpw+fZpjx46xZMliPDw8Cn0+gIOTE+07dVL8/SAoiL/+/JOJU6YwUNZ37NC5M0P69mPtypVsKKTveFjWd9y0fRvOSn3HIf36sWfnLsbJ+o7K/HHoEFERkXTp0YP9e/YUKa9AIBAISj5itFjwn2bZsmVs2rSJWbNm0a+fdPWfra0tTk7Fc59REnB1daVOnTo0bdqUgQMHsn//frp27crSpUu5efOmIp6dnR3VqxftluK/wJVz59HW0aFdj26KMH0DAzy7duZxUBAxkZEFpjU2NaFUmdIFXtdEdnY2Ge+xuurkyZPo6OjQo2feAJuBgQFdu3cn6N49IgtYdQhwNiAAZ1cXxUA6QNVqVWnQsCEBZ84U+ezy5aU7hJKTUzReT01NJScnp9B7+Aecw9LSAk+P1oowC3Nz2rX15PyFP8nKyio0fcDZc7i7t1AMKgE0adyIKlVsOX3GXxHm4uykMjkEYGZmSt26tXnx8qWa3CYmxujr57m+8PeX3svSuqwiTN/AgPbduvLg/n2iCtGDi2fP4ejiopgcArCtWpW6DRrwp3+AIizozh1Mzc0Vk0MA2tratPTyJC42lnu3byvCTUxNKV2mTIHPLIy/zp5DW0eHjj26q+SlXdeuPLofRHQROl2c59pUqKDmYkdLS4smrVqSnZVFxNuwAtPm6XTeoKCBgQHdenTnfjF02sXVNZ9OV6NBw4b459Pp8hXKa1y5WhxOnTxJqVKlaCUb/C+IqzL70Taf/fDo2pknJcB+aEKuHx3y6Ufbrl0+sH6orgDW0tKiSUt3Ff3QJIuBgQE9unfn3r17Ba6qBgjw98fV1VUxuAhQrVo1GjZqxBklXbh54wYJCQn07dNHJX3fvn1JT0/n4sWL6jeXSEhJSUEikWh8duDt25ibm9OoUd7Es7a2Nm3btiU2JoZbMpeFAf7+6Ojo8Fk+Xe/eo0fR+ZPpums+XW/YsKFK/gDKV6jwt3UdwD/grMxO502ASO20F+fPF8NOBxTPTgNUKKabTJBOXOno6NBTthDA19eXSpUq0bdv34+rH0qcOHGCihUrUlvDLtMTJ06gpaXF9OnTMZbtsDUzM6Ndu7acP3++GOUagLu7u2LQEaBJk8ZUqVKF06fz8nD+/HnevXtHnz59FWFaWlr06dOHyMhI7t27B4Cenp7K5JAcD9l7f/HihUp4BZkN9Q+Q1mPKcuTpx4Vi5OOsLB/K+tH4H+mHqakpZYpZR36KdloZ/3NXsbQwxbN13kC9hbkp7Tyacv7iTbKysgtNb2lhhmE+94GFkZiUzJqNexk/qh/GRgWXsb/MvvXMZ99Kmv0O8PfH0tKSdu3yJqQtLMw/2neozMqVK6latSqdO3dSu6YJ/7MXKV1auvimYwfpZL6FuRntvFpy/s/LRefl3CXcWzRWTA4BNGlUjyq2lTjt/6ciLCVVujgyv4s0K0sLAIXrOD09PZXJITltZa5WX4Rqbgv6n78u1elWee1hC3MT2nk05vylW8XQaVMMC3FfVxgXLgWSmpZBp3bNVGQpSfqxc+dO3Nzc8PDwIDc3t1i7ctLT08nOlpbbuQBp3dk9X9+xSzH6judkfUdnpW+zSrWq1G/YkLMa+o5JiYn4rF3HqHHjMDY2KlJOgUDw3yU3V1JifwJ1xASR4D/LqlWrWL9+PTNnzmTgwIGK8G+//ZYuXbqoxL19+zY9e/akZs2adOnShQsXLqjdT57u2rVr9OjRgzp16tC7d2+CgoJU4kkkEjZv3kz79u1xc3PD09OTrUorih8/foyjoyN//fWXSrqcnBzc3d1ZuHBhofnS1tZmxowZ6Ovrs0dpRc+QIUMYOzbPp3tERARTpkyhWbNm1KxZEw8PD+bPV10x9ezZM8aPH0/9+vWpU6cOY8aM4dWrVypxtmzZQq9evahfvz5NmzZl7NixagMOISEhjB49msaNG1O7dm3at2+Pj4/q7ozAwECGDh1KnTp1qF+/PtOnTyc2NrbQvP5dnj8JoULlSmqDnvayc2tePHn6wZ51/9ZtBrRpy0CPdoz9rA++vxftA/7hw4dUtrWljJFqo9vFTdpwf1LAzpLc3FyehTzF2Vl9l4+zqytv37whNTVVJTw7O5uE+AQiIyI4f/Ycu3fswKZ8eSpVVvc5PWnsOLxatqJN8xZ8NW0ar/PpgpxHjx/j5OSotmPN1dWFjIwMQkM1pwPparu4uHhcXNQnad1cXYp0KQPSc0LM8rlDqF+/Hs+ePWfN2g28ev2aV69ecVp2nsWA4cNU4jrJJn0K2sGTm5vL86dPsddwDoOjqwthb96QJivn7KxstTMeAAwMpWEhjx4XmZ/i8OzJEypWrkzpfAM7Dq7SvBS06+NDEC/7TuVu9TTx8OFDbG1tMcqv067SVaZPCnivubm5PA0JwVnDmVKubq680aDTf4f4+HiuXbtKq9atKVXALig5LwqwH3YyGV9+QPsRdOs2g9q0ZbBHO8Z/1ge/YtgPTTyX60c+mR1kuv7iX9UPqWsUuX4UJIurm1QXHj/W/E3k5uYSEhKCi4ZdjG6urrx5/VqhC49k91CeVARwcXFBW1ubx48eqd2ja9eutHR3p0Xz5syYMUOt/snK1vwtGxoaSp/58KFCfk26Lh8UfVJI/p4WkD9XN7cPputyHj16gpOTk7qddiuunY7DRcNZDW6urgW+w2LJ9fiJovwePXrMs2fP6NKly0fXD4V8jx7x4sULFZeCyty6eZNSpUoxIN9ZKa6ubrJyDS3w3opy1WDv3NxUy/XRo8eUKlWK6tWrqcWTXy8MuX7nryuV76+tra02Cenq5vpR9aO4fIp2WplHT17g5Fhd7ft0c7EjIyOT0NcFL8j4O6zZ+DuWFmb07lH4eYKPHz3SbN9KmP0OfvBAs337yN9hUFAQx4758uWX04s9wf9Ipqs25cpSv27NvLy4OEp14dXbQvISQ1xcAi7ODup5cXXk8eO876Be3Zpoa2uzaOla7t1/SGRkNBf/us7m33bTplUzqlUt3O2a3NWpmam662mARyGhODlU0aDT1cnIyCpwR9CH4MSZyxga6CsmpwqS5WPpR0pKCkFBwbi6urBq1Src3VvSrFlzunTpquir5GeLjw9eLdxp07QZI4cM5ea164X2HUOK6Ds6vUff0WfdeiysLOmutBNUIBAIBJ8+wsWc4D/JunXrWL16Nd999x2DBw8uNG50dDQjR47E0dGR5cuXk5SUxJw5c0hLS1M7yDI6Opp58+YxZswYjI2NWbJkCZMmTeLMmTMKN1I///wz+/fvZ9y4cdSuXZvbt2+zePFiDAwMGDBgAI6OjtSuXZuDBw/SXMltzMWLF4mKilJsWy8MMzMzXF1d1c5aUubrr78mKiqKH374AUtLS8LDw1Ums16/fk3//v2xt7fnl19+QUtLi/Xr1zN8+HBOnjyp2IkRERHB4MGDqVChAikpKezdu5f+/ftz6tQpxcDDuHHjsLKy4ueff8bIyIhXr16prDIMDAxkyJAhtGrVimXLlpGens7y5cuZMGECv//+e5H5fV/iY2Mxt7RUCze3kobF/Y3zHDRRxa4GzrVrUtHWluTEJM4dP8GW5SuJi4lh6MTxBaaLjo5Wc+8GYCULi4mO1pguKTGJrKysItMqr8A9f/Yss76fofjb2cWF72fNQlc3r3owMDSkc9eu1GtQnzJljHj08CF7d+1izIjP2bprJxZ2qp3BmJhY6tVT90MvlyE6OgZ7ezvNeY+JVYmrmt6SRFkelXcCKXM78A737gUxaqSqj/oxoz8nLCyMzVu2smmz1J2ZlpYW1ezsaJHPhZCF7Nmx0Zr1IDkpieysLEU81bRSHYqNiaF0mTJUqmJL4I0bRIaHU05ppWHQnbvSeFFRGp/xvsTHxCierSKPTM/jCsjLPyU5MYnTfxzDtU5tjeUhp0CdLmuluK6JpMREsrKyCtAHzTr9dzhz6jQ573Lo0Klw93IgtR9m/yP74VS7JhVk9uP88RP8JrMfQwqxH5qIi41VyKdJ5tgPJHN+khOTOHNUVT8KkqWsVeG6kFiYLpQtq0hbpkwZYmJi0NHRwcLCQiWenp4epqamKs8wMTGhX79+1KpdG309PW4HBrJ/3z6Cg4LYuWuXYiC0apUqXL92jbCwMOzt8uyXvJ6Nkn3LMTExRcqoieLoevQH0HU5MTEx1KtXp9BnFWynY1TiqqYv2k4XJVdZmX4cP3ESgG7duilc//6v9SM/J45LXW911DBB9OTJE1JSUmjRooWaWynVctV8sHx0dGHlaqXIo76+PjEx0VhaWqoNMlsV8R3J2bp1G0ZGRrTId4aFnJiYGI0D2P9cP1Tz8W/xKdppZWJi46lfR30A2spSursjOjoe+xpV/vb9lXnyNJSDf5xh1eLv1fRWTa6YGMX3pExJs985OTnU0bDD72N+hxKJhF9/XUi7du2oXbs2YWHFm+SLjoolIzOTvr26qjzHSqbL0dGx2NtV05w2Jk4W10LtmpWlBYlJyYq81KhehR++m8KylT4MGzlFEa9r57bMmuFdpJybNm3CqEwpmjfRfL5XTGwC9Ws7apDDTCZrPPY1/tnZXZpITErhr2v3aONenzKynVgFyvKR9OPNmzdIJBJOnTqNjo4OU6ZMwdjYiN279/Dtt99RpkwZxZiAtrY2LVq0oIl7C8paWxP25i17d+0iMiICOw0yWyq1lTXxvn3HpyEh/HHoEItWrCjSXggEAoHg00JMEAn+c6SlpbF8+XL69OnD8OHDi4y/bds2tLS08PHxUbgLsbGx0Zg2MTGRnTt3KhqVpUqVYujQody9e5cGDRrw6tUrdu7cyZw5cxQu7Zo1a0ZGRgZr1qyhX79+aGtr06dPH3766ScSExMxNZWuuj548CB169alRo0axcpn+fLlCQ4OLvD6/fv38fb2ppOS/+IeSoe2r169GlNTU3777TfFqul69erh6enJ/v37GTRoECA9GFZOTk4OzZs3p2nTppw6dYp+/foRFxfHmzdvmDFjhsKncv5D4JcsWYKbmxurV69WNKIdHBwUu7VatWpVrDwXl6zMTPQ0DEzo6Rsorn8Ivl/0i8rfHl068dO0Lzm253c69emFlbW1xnQZGRlY6euphcsHUzILkC8zM0MWT0NaA81p6zdowIq1a0hJTubm9RuEhISQkaHq1sCrXVu82rVV/N2qTWuaNG3K+NGj2bplC7/OX5BPjkz09dRlMChCfuVrmtLry95PZmamxoGluLg4vp8xi4oVKjB8mOrEr56eHra2tnh5euDh0RpdPUN++OEHQp8/5+H9IJxr5vlLl5dVQXpQHBnlaTt274bfocPM+34G46ZNxdzCggv+Afx1/kKRZfE+ZGZmoqenQacLeO8fgtzcXBbN/pGUlBTGTS988CAjI4OyGt5ZUTohD9eUN2V9+KecOnlS6j6sceMi4xZkP/K/+3/Ktxrsx8/TvsRXZj8sC7AfmsjKzFQ5NFmO/Dv6UDIrk5uby+LZc0hJSWHs9GlFy2JQ+PtU6ILGslfVo8yMDI3PAKnLFeVnKO8gBulZFm5ubsz4/nv279vHiM8/B6DHZ59x4MABvv3mG2bMmIGVlRVH/viD8+fOqT67QP0oXNczFLr+/rb/71CQHS2Wnc6Q2UCNdU3hdro4cunp65Obm8upU2dwcXGhRo0aPJatfv5f64cyUplO4eTkpNFl7yLZDu/KldUHOQ2KYYvz6vDC7Z2+vr7M5muoZxXln1HgczZv3sy1a9f47rvvFO1adVkyNU4QGRTD7ubph4Z8/EP9KC6fop1WJjMzS/P7lX1zGZmFu8B6H35dtoXmTerSrLG6K0J1uTS370qi/da0y/1jfodHjx7l6dOnLFpUuCcINXlk7s46dlA9l0auC3+7Ta0oi7zJWmtrK9xcHGnRvBHlbay5fSeIvb8fwczMFO8pY9TuIWf9+vVcvnyZ76cPw8RY8yKG/6VOK3Pm3HWys98p3MsVKstH0g/5AoiEhAS2b99GzZrSnWKtWrWic+cubNq0WTFBVKFCBTZv3kxMSrLifh06d6KzV1vevH6tQaYP23dcvmgRTZo1o3FT9bM8BQKBID/CldunhZggEvznMDQ0pGbNmvj6+vLZZ59Rv379QuPfvXuXxo0bq3SimzZtqtEth7W1tcqKIzvZKuNIma/zy5cvA9CuXTvevXuniNesWTN8fHwIDw+nYsWKdO7cmQULFuDr68ugQYOIi4vj3Llz/Pjjj8XOp0QiKdR9gYuLC1u2bEFHR4fmzZtTpYrqSsS//vqLTp06oaOjo5DVxMQEFxcXlZ1Gd+7cYcWKFTx48ICEhARF+EvZGTDm5uZUrFiRpUuXkpiYSNOmTbGxyfNJn56ezu3bt/n6669VzrapWrUq5cuX5/79+x98gkjfwIBsDf6ls7MyFdf/DbS0tOjavy93rl0n+HYgrQo41NjQ0FCjL265T2xNbo6k4YayeBrSZmpOa2FpSSPZKlsPLy+2btnClAkT2Xf4kMbVZHJq162Ds4sLVy9fUayAS09NxNzcDAMDA7Ky1WXILEJ+5Wua0mfJ3o+m9Onp6Uye+iWpqWn8tnmD2tlEvyxcwv37QezZtQ1tbW1KG5mzYcMGXr9+zdqlS1mldHirvKwK0oPiyChPW93enm9/msvKX35l2ihp59rC0pLx06ay8teFlMon59/FwMCA7GwNOl3Ae/8QrF+8lFtXrjJ99kyqO2heaSlHqtPq8hWlE/JwTXkrTB/eh7dv3nD/3j369OunsnOuIAqyH/nf/YdGS0uLLkr2430ORdc3MFD4qVdG/k7+DZk3LFnG7atXmTZ7JtWU6sUCZcks/H0qdEFj2avqkYGhocZngHSgoyid6dixI8uWLuXatWuKCSIHBwfmz5/P/PnzFe7DLK2s8P7yS36ZP5/SMteEBgXqR+G6bqjQ9fe3/YWRnZ1NYmIiABmyQShDAx2pnf4b3yTkucjUXNf8s+9SXn63bt0mKiqKESNGFOu+/wv9uHXrFlFRUQwaNEilXEF61sSdO3cKtnXFsMV5dXjR9s6ggO8oU1FOhhqfcerUKdasWUuPHj3o27ePIh+lSkl1Iz0tBXNz80L0o+j3m6cfGvLxD/WjuHwqdjo7O5vEJNUzH83NTDAw0Nf8fmXf3N89iyU/p/z/4u79xxzcubRY8Qtq332s7zP/dwjSPtaM778nPDxcQ/qP8x2mpKSwatVqhg4dotIHUkbtW0yKw8zMBABjYyMc7FUnpeW68Lfb1IqykOrSnbvBTPGeybbNK3F1kbqka9O6OUZlSrNh0066d21Pjerqu9ZOnTnP8uXL6d27N30/8yI7+91H1WllsrPfcfT4nxgblcbRvgoxsQmFy/KR9EP+b8WKFRWTQwClS5emVauW+Pkd5927dwW2UU1MTTE2MSExIYGoyEisy5VTkunD9R39T5/m/t177Nj397x7yCfCPiTys5qKc2bT+yLvS35ouYXMqvxbMsO/J3f+cQaB4P8LYoJI8J9DW1ubdevWMWTIEMaNG8fOnTtxdFTfZi4nOjpabfIEUHN9ANIJFGXkq4bkDcH4+HgkEonaDho58gmi0qVL06VLFw4cOMCgQYM4evQoenp6Gl2aFERERITG7e9yli1bxrJly1i+fDlz5syhWrVqeHt7Kw7sjI+PZ9u2bWzbtk0trTxfYWFhfP7557i5uTFnzhysra3R09Nj7NixijxraWmxefNmli1bxty5c0lLS8PV1ZXvvvuOhg0bkpSURE5ODgsWLGDBggVqz9LUwfunmFtaEqdhq328zL1ZYa6y/ilW5aSrSVOSkguMU7ZsWcI05Fvu31uTew8AE1MT9PX1NbqLKiqtHA9PTzasWcufFy7wWRHuDA0MDIgID6dFixaKML9jh7CyslQ8T5MMZcsWXL5y10Ka08diKsujMtnZ2Uz/8ltCQp6yZvVy7OxqqF3/48hRhg0brOJv3NramsioKEIePiI7O1uh13LXM5YFyGlsYoKevr5GFzVxMh1Snlxr6elB05buPA8JITcnFzsnR+7eug1ARdsP407D3MqK2Ch1nY6TnTNhUUiZ/x12b9qM38FDDJ84Ho9iuGUrW7asxm85JjpGcV0TJqamMjcdf1+ni+LkSakbq4LOFMnPx7QfljL7kVyI/dCEhaWlRpeJ8Rr09UOwZ9MWjh88xLAJ4/Ho2KFYskTHFK4LpoXpgux9yNNaWVmRk5NDXFycSl0tH4Ar6BnKlCtXjqSkJJUwr7ZtadW6Na9CQ8nNzcW2alVu3bwJgK2snWBlZUW0BteR+WXMT3F0vThy5+fu3buMG6O68tvP9whWVlbExKif81ecZ8ndSb2PnS4uVlZWREVFc/zESbS1tencuTNQMvTjxPHjaGtr06FDB+7evcuY0aNVrrdq1YonISG8fv2aN2/ekJws/U4jIyMVZzMWWq5lCyvXGEUepXkoy40bN9UWAxX2/q5evcrMmbNwd2/BjBnS3d93795l9Oj8+nEUKysr3r5VP9vkn+uHaj7+LT4VO33n/hNGT/pRJczv4BqsLM2Jjk1Qix8TGw9A2bLm/1hOgGVrdtDWoym6erq8DZfareQU6XkjkZGxZGe/w7ps3jci/T7V7dvH+j41fYe+fn7o6+trHBAslv7+C9/h9u07yM7Opl279grXcvLFg0lJSYSFhfHq1SvGj5+g8ryF839AIpFgYW6mQZZY2TPUXSkq8iJzLRcjczWnkj42DlMTY0VeDhzyw8LCXDE5JKdVy6as99nB3XsP1CaIrl67xcwfF9G6dWvmzJlDdvxt7twPYfRk1TNt/fYvxcrSrACdTpDJ+mF0WpmzF25yL/gZAB17TS1alo+kH/J/NY0tmJtb8O7dO9LT0wvc8QnSbywxIYGkpCSVCaLYItrK79N3XLt8BW28vNDT0yNcpsfJydLJwKjICLLfZRdadg9lZzX+G8gXpn5I5IuI/y25hcxS/m2Z4cPLXdQCc4HgU0VMEAn+kxgbG7N582YGDBjAyJEj2bNnj0aXICBttOU/rBqk7qzeF1NTU7S0tNi9e7fGLefVquX5kO7Tpw+///47jx494tChQ3Ts2LHYZw/Ex8cTFBRE+/YFr1y0trZmwYIF5ObmEhQUxLp165g2bRonT56kcuXKmJqa0qpVKzX3DYBCjosXL5KWlsbq1asVk2Pv3r1TW81XrVo1Vq5cSXZ2NoGBgSxdupRx48bx559/YmxsjJaWFmPHjsXLS/1wXHPzD99hqGZvR9DtQNJSU1UOMH4S/EB63UGzX/0PQeRbaYPapICDoQGcnJy4du0aqSkpKoeNBst2bjk4qB82C9LJzxp2djx8+EDt2oOgICpWrFikDskn9lJTUgqNB9IVkdbW1vz6668AZKQnY2lpiaODA4F37pCbm6syIRMUFIyhoSFVqhR80K21tTXm5uY8eKB+CHFQ8AMc8+U9NzeXH2bN4fqNm/z6yzwa1K+nli4hIZF3OTnk5OSqhDs5OXHlyhUkEgm5OTkg+yYfyVwz1iiknKvVqEHIQ3UZHwUHU75iRbWDsfX09HBUOpw58Pp1AOo1bKTxGe9LdXt77t26TVpKKqWN8p79WJaXonb4vA+++w+yy2cz3fv3o8/QIcVKI9fplJQUlcOtFTrtWIROP1DvNAQHBVGxUtE6XRSnT5ykUqVK1KxVs+jIQNUC7EeIzH5U/R/YD9NC7IcmqjnYc0+DzHL9qPYB9cPvwEF2b9pMt/596T1U/Yy/gmSR70wtaMGGtrY2dnZ2PHigbt+CgoKoVKmSQhfk93gQHEwLd3dFvAfBweTm5uJQyKIQkO7ADQsLw9HJSe2anp4etWpJz1hITk3l2rVrAAr3hI4ODty6eVNN14MUuv738ldRKX/vg4ODA2vWrQOgtKF0pbClpSWOjvYEBmqw0/ffw05r6MwHBQer2en3wdHBgZs3bxEdHU2D+vUoJxvo+tj6kZWVRUBAAPUbNKCstTUGhoask5UrwPjx47lwQeo6NDwsDE9PT8W1AQMGYmpqKivXgs+Nyav/NJRrUDCOSnbS0dGBw4cP8/z5C2rUqK4UL0hxXRmpW+HpuLi48OuvvypWojs4OLBu3ToMZbqRkZEm0w8HXr9+jUSi6hrkY+tHcflU7LSjXRXWr5ipEmZlYYajfVUC7z5U+z7vB4dgaGhAlcoVPoisEZGxnDh9iROnL6ld6z/iaxzsq7Bv22JFmIOjIzcLsW//6+9Trr/KWFhYIJFIyMrK0tAOvf9RvsOIiAiSkpLo3bu32j03b97C5s1b2LTJR/VbTI3k9BmpTUlKSlbPS/AjqS7YViwkL1aYm5vy4OET9bwEP8bRIW9BVVxcPLn52smAwouEspcHgPtBD/H+eg4uzvYsX74cXV1dsgFHO1vWL/tGJa6VhSmOdrYE3nuiQaefYWioT5XKmndW/ROeh0q/xelfDMS+euUiZflY+mFtXVa6uETDpHZ0dDQGBgZF1v/yHQ36+Vwyy9vZ9oX0aarb2fGogL5jBaW+Y2RkJGdOnuSMbGGVMiMGDcbOwYFte3YXKGP+s5s/BOnp6bx8+ZKqVatSSraT+0PzoeUWMmvmU9UPQeHk5qrXK/9Fzp49y/Lly3nx4gUVKlRgzJgxRZ4tv2rVKlavXq3xWr9+/Zg7d26h8X788UeF14viol10FIHg/yeWlpZs2bIFLS0tPv/88wIPVq1VqxbXrl1TrAQFuHLlioo7teLStGlTQOpjuGbNmmo/5c5WzZo1cXZ2Zt68eTx+/LhIAyInNzeX+fPnk52drTgnqDC0tbWpVasWU6dO5d27d4SGhipkDQkJwcXFRU1Oue/9jIwMtLS0VLa8nzhxQsV9njJ6eno0atSIMWPGkJKSQlRUFKVLl6ZOnTo8f/5cY5lUqlSpWPl+H5p6tCY3J4fTR44qwrKzsjjndwJ7VxesZANS0RGRvHkZ+reekZyYpNaZevfuHYd27EJXTw+3+nULTNuhQwdycnI4cuiwIiwrKwu/o8dwdXOjnMw9RUR4BC9fvFRJ28bTg4fBD3io1AkPffmSWzdv4qE0AZcQn6A28ANw9MgRAJyc8yYz4uPj1eJdvnSJkCdPaO3hQbNmzWjWrBlNGjfCwMAAL682xMbGEXD2vNI9Ejjjf5aWLVuorBx+/foNr1+/Ubm3p0drLl68REREpCLs2vUbhIa+wstL1Qf7rwuXcPq0P999+xWeHm3U5ASwsDDH2NiYc+cvqLh6aNWqFRKJBFNzMwwM81xGnPL1xcnNVbECLyoiglf5Vh65e7Th8YMHPFHqIL4ODeXOzVu09FSVMT9vX73C7/BhGrdoTqVCBtneh+YebcjNyeHEkT8UYdlZWfgf88PR1ZWySnl5/Q9WUf15xp8NS5fRukM7Rk+dXOx0eTp9SBGWlZWF79GjuKnodDgvZSvt5Xh4efIgOFhlYCn05Utu3riJp4ZJ5ffh8aNHvHjxgvb5drkURhOZ/ThTDPvx9gPbjyMy++FaiP3QRPM2Uv04mV8/fI/j6OqSTz/+nswAF8/4s3Hpclq3b8eoKZr1Q5MsWVlZHP3jD9xq1lS43wkPD1fsupDj5eVFcHAwD5TO13v58iU3btxQWWDQsGFDTE1N2X/ggEr6/QcOYGhoiLvSoGO8hsUe+/fvJz4+nmbNmqldU+bVq1ccOngQd3d3xYCSp5cXOTk5HM6n68dkum5TqK57qen6y5cvuZkvf++DiYkJjRs3pnHjxgpbbWBggJenp8xOn1PEldrpAFq2dC/aTnu2UbfT165L7XRbT/4uXl4e5OTkkJKSQkfZd/kx9UPOpUuXSE5OVuzkNjExoXGTJorfkqVLWbJ0KYOHSCfNR44cqdiR/e2335CdnU3Lli3zletrXuc7M8LT05OLFy8SERGhCLt27RqhoaF4eeWdBdi6dWt0dXXZv3+fIkwikbB//wGsra2pXTvvPJnnz58zefIUKlSowMqVKxQD0PJ8NGnSWKkeb6zQD3k5y5Hqh38x9cNDQz7+uX4Ul0/FTpuYGNGkYS2Vn4GBPm3bNCE2LpGA89cUceMTkjhz7iqtmtdXOS/k9ZsIXr+J0HT7Ilm64Cu1X3tPqd2bN3MSX00erhLfS2bfDuWzbx/r+8x5907lO2zcpAlHjx4lOzub7OxsTp8+rYgbHx/PmTP+H+U7HDCgP0uXLlH5/fDDDAC6devK0qVLcHBwUPkW69erxbnzf1G1SmXiExIJOJc3iRefkMiZgIu0dG+impc3Ybx+E6aalzbuXLx0jYjIvJ1f164HEvrqDV6eLRVhtraViI2L5+atuyrpT56S1hFOjnmTSc9fvGLytJlUKF+OlUt/ymdTytCkoZvKT6rTjaQ6feGmUj6SOXPuOq2a11XV6beRvH6bV7f8Xc79eZPy5SwZ3LeDRllKin4AtGvXloiICK5evaoi04ULF2jYsKFiIkvTAtXoqCheyfrvl/78UxGelZXF8aPHcMnXdwwtZt/xdr6+44LFi9V+nrIzamfOncNk78LPIy1duvQH/8kH/UuVKvXB7/1vyS1k/t/I/G/KLRC8Dzdv3mTSpEnUqVMHHx8fOnbsyIwZMxReTApCvmFA+ffll18C0LJlS5W4hoaGanHl/ZD3QewgEvynqVSpEps3b2bw4MGMGjWKnTt3qsUZNmwYu3fvZvTo0YwePZqkpCRWrVql8QyioqhWrRqDBg3i66+/ZuTIkdSuXZvs7GxevnzJtWvXWLt2rUr8Pn36MHfuXKpVq1bgVtbg4GCMjY3JyMjgxYsXHDx4kODgYL766ivq1tXcOU1OTmbkyJF0796datWqkZ2dzY4dOxRnDAFMnjyZ3r17M3LkSPr27StzRxPD9evXadCgAV26dFG4yvvuu+/o378/ISEh/Pbbbyqu9h49esSvv/5Kp06dqFy5MikpKWzYsIGKFStiaysdHP/6668ZNmwYU6dOpXPnzpiYmBAREcHly5fp2bMnjYtxcPz74ODqSjOPNuxat4Gk+HhsKlXi3PETRIWHM+H7vFVvK+fOIzjwDoeuXFSEpaakcHz/QWne7t0H4Pj+Q5QxNqKMkRGd+kgn8m5cusSB37bT1KM11uXLk5KUxMXT/rx6/pxB48ZgblmwS4jatWvj4eXFutWriY+Po1Llyhz39SU8LIzvZ+WtNJ07exaBt25z5VZeZ6tnnz78cfgI06dMZeCQwejq6rJ35y7MLSwYMCRvNf/JE8c5fOAgrVq3pkKliqSlpnHtyhWuX7tGi5buNGjUUBF3zIjPcXB0xNnFmTJGRjx+9AjfP45Srlw5hn0+Qk1+L08Patb8nR/nzOP58xeYm5my78AhcnNzGD9W1RXI2PGTpGXoe0QRNvLz4fj7n2XM2IkMGNCXtLR0tu/Yhb1dDbp366KIt2v3XvbtP0itWjUxNDTA7/gJlXt7tGlNqVKl0NHRYeiQgaxZu4Ghw0bSpUsndHQNOCAbfEhOTMJn5SoqVK7MGT8/IsPC8Z4xQ3GfhT/O4d7tQE5fz+u0de3dixN/HOUHb296DxqErq4uB3fvwdzCgl6DVHfdjerXn5aenpQtV46IsDB8Dx7C2MSEKd+qrrBMTUnhyO/STmTwvXsAHN1/gDJGRhgZG9O9bx+1spbj5OZKC08Ptq1dR2J8POUrVSTg+Akiw8OZ8sN3inhL5/zE/duB+F27rPLcY/v2A/BAptPH9h/AyNiIMsbGdO0jXfH6OPgBS+b8hLGpCXUaNODcyVMqMjjXqkn5ippXstauXRvPtl6sWb2auLh4KleujJ+vL2HhYcyYNUsR78dZs7l96xbXb99ShPXu04c/Dh3Ge/IUBg0Zgq6uLrt37cTCwoJBQ1R3MF288CdPQqQrZd+9e8fTkBA2b9oEQMuWrbDPt1Pm5AmpzhTXvRxI7UdTjzbsVrIf54+fIDqf/Vg1dx4PAu9wIJ/9OJHPfpxQsh8dZfbj5qVLHPxtO02U7Mclmf0YWIT90ISjmyvNPT3YvnY9iXHxlK9cibN+Ups3eUaefiybM4+gwECOXf1LRWbffdJvRa4fvgcOYmRkRBljI7rI9ONJ8AOWzp2HsakJtRs24PzJ0yjjXMsNm4oV1WSp4+jE4cOHCQ8PZ9bs2Yr4s2bO5NatW9wODFSE9enbl0OHDzN58mSGDB2Krq4uu3ZKdWGIki4YGhoyfsIEflmwgK+/+oqmTZsSGBjIcT8/Jk6ahKmpqSJu586daduuHfZ2dugbGHAnMJBTp07h6OiotjCjV8+eeLVtSxVbW968ecOePXswMTHhOyV74VazJl5t27J69Wri4uKoXLkyvr6+hIWHM1NJ12fNmsXtW7e4eft2Xv769OHIoUNMnTyZwTJd37VrFxYWFoqJBzl/XrjAk5AQQKrrISEhbJLpequWLQtcLSzHy8uDmrvd+PHHn2R22ox9+w+Qm5vL+HGqLsfGjpsIwHG/vEm9kZ+PwN8/gDFjxjNgYD+pnd6+E3s7O7p366qS3tf3OOER4WSkS3eo3r4diM+mzdLy79SJChXKK+LWrOmGtbU1UVFRPHkSwu+///5R9UPOiePH0dfXV9kZpEybNtIFCi1btiTo/n327NmDi4t0Nezevb+jpaXF+PHjVMt1rPTv48f98sp15Of4+/szZswYBgwYSFpaGtu3b8fe3o7u3bsp4pUrV45Bgwaybdt23r17h4uLK+fPnyMwMJD5839GR0cHgNTUVCZOnERSUhJDhw7l4sWLKjJUqlRJZZDygsyG5ubmoqWlRWBgIGPGjqNUKUOeP38p04+xqvkYN16aD79jefn4fIQsH+MYMLC/TD92yPSjm0p6X18/Dfoh1eXOnTor9CM5OYW9v+8F4M4daR25a9cujI2NSdHRUthP+DTttDJebZpQy9We2fPX8vzlG8xMTdh36BS5ObmMH9VXJe6YydIVpCcO5fUhwsKj8TspHSh+8Og5AD6/SfNU3saKLh2lZ3t6tFLfxfw45CUAzZvWxdxM1XV2zZo1adu2LatXrcqzb8eOlTj77eDggJ6eHt999x1Pnz7FyKgM+/btl+rvR/gOnZ2d1VbHy13N1ahRQ2E/lLly5SYJiUmMHzsU3+MB/PjTEp6/eIW5mQn7DhyT5mXMUNW8TJTq9vE/duTlZUR//AP+ZMz4rxnQrwdp6els33kAe7tqdO+aN3jUv283jvqeYsr0WfTv253yNtbcun2fk6fP0aRxPWq6SeVPTU1j4uTvSEpOYejgPlz86xr6paRu3LKTn1OpojW13dR3JXu1bkQt11PMnu/D85dvMTM1Zt9hf2k+RqrWtWOm/ALAiQPL8sorIga/k9JJsgePpJOPPluPADKd7tBC5R5Pn7/mybPXfD64i9qZvHJZSop+AHz++eecPn2GL7/8isGDB2FkZMSBAwd59+4dkyZNUsRbtGgRr169onb9elhZlSU8PIw/Dh4iOzubuvXrsV6p73hC1nf8TqnvOE/Wd/xLqe/4WZ8+HD18hK+mTGWArO/4u6zv2F+p79iyTWvyE/LkMQBNmjXHTIMrRIFAIPivs27dOmrVqqXY8dOkSRNev37NypUr6dCh4EWqNjY2aucW7t27F1NTU7UJIm1tberUqfOPZRUTRIL/PA4ODmzYsIERI0YwduxYrK2tVa5bW1vj4+PDvHnzmDJlCra2tsyaNYtly5YVcMfC+eGHH6hWrRq///47a9asoUyZMlSrVk2jcWjbti1z584tdPfQqFGjAOmqC2tra+rVq8esWbMULnA0YWBggIODAzt27CA8PBxDQ0Pc3NzYvHmzwv9xlSpV2L9/v+KMorS0NMqWLUvDhg0V7h8cHR1ZsGABq1evZuzYsTg7O7NixQqmTp2qeFbZstJt8xs2bCAyMhJjY2MaNGjAokWLFA3jevXqsXv3blatWsV3331HdnY2NjY2NGnSpNBt/v+EybNmsGdjOc6fPEVqcgpVatTg+8W/4lq3TqHpUpOT2bNxk0rY0T3SAYuyNjaKCaIqNWpQqVpVLpw8TVJCArp6ulSzt+fLeXNp5ql5p4sys+bOYeO68pz0O05ycjI17O1YvHw5deupu1BTpkyZMqzduIHlS5ayddNmJBIJdevXZ8p0bxV3fbXr1OH+3XucOXWKuLg4dHR0sK1Shcne0+jTr5/KPb3ateWvS5e4fvUqGRkZWFlZ0f2zzxg5ZjQWGgZAdHR0WL1yKcuWr2Lv3n1kZGbi6urMnB9nUrVq0e/TxqYcm3zWsWTpClauWouenh7uLZrhPW2yyqq+x4+lEwH37t3nnmwQRxm/Y7UVK4dGjRxBxQoV2L3ndzZs3Ex2djaOjo5899McQh4/IeDESZKTk6luZ8dPS5dQq17hK39LlynDonVrWb9sObu3/IZEIqFWvbqMmzYVs3xuEavb23PqmC8JcXGYmJnRysuTIWNGY57P13hyUhLbNmxUCTuwS+qqoVx5m0IniACmz57JDhsbzp44SUpyMtXsajB76SLcCpgolpOSlMyODT4qYYd37wHAuryNYoLo1YsXvMvOJjE+geXz5qvdZ+rMGQVOEAH8OHcuG9au48RxP5KTkrGzt2fp8uXU0+AWUJkyZcqwzmcjy5YsYcvmTUhyJdSrX59p06eruaA8ezYAv2O+ir8fP3rM40fSzms5a2uVCaLc3FzOnDqNk5MTVapWLVSG/HwxawZ7N5bjgpL9+G7xr7gUw37szWc/jinZD/nAo63MfvypZD+q2tvjXUz7oQnvWT+w06Yc506eIiU5map2NZi1ZBFuRcickpTMzo2q+nFErh82NooJImX9WKFBP6b88D02Mv1QlsV3/wEcHR1ZvmJFkT69y5Qpg4+PD0sWL2bzpk3k5uZSv0EDpk+frvY99e3bF11dXXbu2MGFCxcoZ2PD9C+/VHOb2rFjR+7evcvZgAAyMzMpX748w4YNY+SoUWruKBwcHDh29CixsbGYm5vj1bYtY8eNUzs3YM7cuZRfu5bjx4+TnJSEnb3UBU+9YuRvg48PS5csYfPmzUhyc6lfvz7eGnX9LL7H8gbkHz96xONHUreXUl0vfIJIR0eH1auWs2z5Svbu/Z2MjExcXV2YM2fWe9jp9SxZspyVK9fI7HRzvL2nqJ0vc+SPo9y6lTcRduPmLW7clE4C161TR2WCKCUlhYSEBGxtK3PG35+Dhw5/VP2Qy3Tp0iVatGhR6BkQIC3XjRs3snDhQnx9pe/H1NSUefPmUbUYdsbGxoZNm3xYsmQJK1eulJarewu8vb3VynXy5MkYG5tw8OBBjh49hq2tLT//PE/lvMrExETFKveVK1eqPa9r164qE0QBZ89yTMmGSiRw44Z0ILFqlSps2LCu+Pnw2ciSJctYuXK1TD9a4O09VYN+/JFPP25yQ3a2l7J+JCcnsXbtepW0W7ZsAVTtp5xP0U7L0dHRYfWS71m2Zgd79p8gIzMLV+cazP1hIlWrFFzPynkbHsUan70qYfK/69d1UUwQ/R3m/vQTa9eu5bifH0lJSdjb25dI+52Tk8PqVavYsWMHGRkZuLq6MmfOnI/yHf4djp86i66uLu3btqZDuzYsW+nD3t+PSNvULo7MmfUVVasUfY6lTTlrNq1fzJLlG1i5ZrM0L80b4T1lrEpeqlapzO7ta1izbivHTwQQExtP2bKWDB3cm3FKE1GJiUlEREq9bqxcs1nteV07ttA4QaSjo83qRV+ybO0e9hw4LdVpp+rMnTGGqrbl1eLn521YNGs2HVQJk/9dv46T2gTR8dPShVAd26rvBJbLsnKLf4nRD0tLS377bQvLli1j167dvHv3jlq1avLzz/NU3NY1b96c169fc3DffpKTkjA2NqZ2vXoMHzmSqtWr4bNuPaeU+o6Lli+nTjH6jqs3bmDlkqVs27SZXIm0nT05X99RIBAI3pfcXHWPNf8lsrKyuHbtmmLnj5xOnTrh6+vLmzdviu0xKTMzkzNnztCpU6d/7SxPLYkmH0MCgaBEcODAAWbPns358+f/1uHUAgiOUz9MtyTjaiGdoIxLeb9D6D8mFkbSAbO0FHVXdCWV0kbSDk9o4qcjM0AVU6ncTxPUz0UrqdiZSScRE1OLPteqpGBaRuru8/4nZj9qyuzHk3j1w4ZLKg7m0gOfU9PSPrIkxaeMzL1EcmrqR5bk/TCWnSOQlppYRMySQ+ky0t0Cn6J+pKV9OvpRurRcNz6dtgdA6TLS9senZKvldjo99t5HlqT4lLKULjr7lL5D+MS/xcS/7+71f01pU+migvTo6x9ZkvejVFnpDrpPUT9iPqF+opVR4Qsr/glpaWk8fPgQZ2fnT8b1l5D5f8enKvf/JzYOtfrYIhTImO3/fn/56dOndO7cGR8fH5VdPy9fvqR9+/Zq4YVx8uRJpkyZwvbt21U8LK1atYq1a9diampKUlISVatWZfjw4fTt27eQu2lG7CASCEogb968ITQ0lLVr19KxY0cxOSQQCAQCgUAgEAgEAoFAIBAIBP+AgtxGywkICPjHz0hMlC7KUz6CQ/lv+fXi4OvrS7ly5WjYsKFKuK2tLV9++SUuLi5kZmZy7NgxZs6cqThW5H0QE0QCQQlk9erV+Pr6UrduXb799tuPLY5AIBAIBAKBQCAQCAQCgUAgEBTJ/0cXc8nJyURFFb1zvXLlot3AFpekpCQuXLjA4MGD0dbWVrnWvXt3lb9bt25NdnY269atY+jQoejp6RX7OWKCSCAogfzyyy/88ssvH1sMgUAgEAgEAoFAIBAIBAKBQCD4f8Hf3SF08uRJfvjhhyLjHT9+HFNTqavs5GRVt6BJSUkAiutFcerUKbKysujatWux4nfs2JFTp07x6tUratSoUaw0ICaIBAKBQCAQCAQCgUAgEAgEAoFAIBAINNKnTx/69OlTrLhZWVno6enx/Plz3N3dFeHPnz8HoHr16sW6j6+vL9WrV8fFxeX9BX4PtIuOIhAIBAKBQCAQCAQCgUAgEAgEAoFAUDi5ubkl9ve/QF9fn8aNG3Pq1CmV8OPHj1OjRg0qVapU5D2ioqK4fv06Xbp0KfZzjx8/jomJCba2tu8lr9hBJBAIBAKBQCAQCAQCgUAgEAgEAoFA8AEYP348Q4cO5ccff6Rjx45cu3YNX19fli1bphLPxcWFHj16MH/+fJXw48ePk5ubW6B7uZ49e9KjRw+qV69ORkYGx44d4/Tp03z//ffvdf4QiAkigUAgEAgEAoFAIBAIBAKBQCAQCASCD0KDBg1YtWoVy5cv58CBA1SoUIF58+bRsWNHlXg5OTkadzYdO3aMWrVqFbgbyNbWlq1btxITE4OWlhYODg4sWrSIbt26vbesYoJIIBAIBAKBQCAQCAQCgUAgEAgEAsE/Jlci+dgilAg8PT3x9PQsNM7jx481hh88eLDQdMuXL/+7YqmhJZGINyYQCAQCgUAgEAgEAoFAIBAIBAKB4J+xeoDZxxahQCbtSfjYIpQ4tD+2AAKBQCAQCAQCgUAgEAgEAoFAIBAIBIL/LcLFnEAg+H9NaGL8xxbhvahiag5AXEryR5ak+FgYGQOQlpb6kSUpPqVLlwEgKjnpI0vyflgbmwCfqH4kR35kSYpPaeNyAIQnJX5kSd6P8iamABx9FfKRJSk+3WztAQiOi/rIkhQfVwtrANISQz+yJO9HadMqwKf5LaalfDp1eWkjaT2elhL7kSUpPqWNLIFPV6c/yTrxE9SP1LS0jyzJ+1GmdGkA0lI/Hf0oXebTbVN/SnUL5NUvn1JfQN4P+BT1IyL502pT2xib/iv3TUtL4+HDhzg7O1NaZqNKOp+izPDpyv3/CU1n6ghKLmIHkUAgEAgEAoFAIBAIBAKBQCAQCAQCwX8MMUEkEAgEAoFAIBAIBAKBQCAQCAQCgUDwH0O4mBMIBAKBQCAQCAQCgUAgEAgEAoFA8I/JzZV8bBEE74HYQSQQCAQCgUAgEAgEAoFAIBAIBAKBQPAfQ0wQCQQCgUAgEAgEAoFAIBAIBAKBQCAQ/McQLuYEgn+Jo0ePsn37dl68eIFEIqFcuXLUq1cPb29vLC0tAfDw8KB169bMmjWrwPs4Ojry9ddfM3LkyPeWIS4ujo0bN3Lu3DnCwsLQ09PDxcWF7t2707NnT3R0dP52/j4lsrKy2L5hI/4nTpKSnEw1uxoMHzeW+o0bF5k2JiqK9ctWcOvaNSSSXGrXr8+4aVMpX7GiSrz42Fg2r1nLtb8uk56Whm3VKvQfNoyWXp4q8S6dO4/focO8ePaM5MRETM3NcHJzY8joUVSrUUNFZp/16znpd5yk5GTs7OwYO2E8jZo0KVLmqKgoVixZyvWrV8mVSKjfoD5TvL2pWKmSIk5GRgZLFi7kQVAQkRGR5ObmUrFSJbp060avPn3Q1Su4eljw0zyOHjlCsxYtWLJiOUlJSSxatIjTp0+TkZGBm5sb3t7TcHZ2LlJWgOfPn7NkyRICA++gp6eHu3sLvL2nY2FhrhIvNzeX7du3s3//AWJiYqhSxZYRIz6nY8cOKvFmzZrNsWPH1J5TtWpVDh8+pPh71apVrF69ukC51mzaRK06tQuVPToqilVLl3FDVtb16tfnC+9pVFAq6/zcu3OHiaNGA3DM/wxmZmYq129eu8b2Lb/x/OlTcnJyqGxrS89+/ejQuZMiTknSjxvXr3PqxAnu3blLVGQkllZW1G/QgDHjx2NV1kqjDMnJySxfuZ6z5/4kIyMTN1dnvKdNwNnJsUj5AZ6/eMmSpasJvHMfPT1d3Js3xdt7EhbmZgWmOX7iNDNmzqNUqVJcvnhK7frpM2fZuWsfL16+QldXF3t7e7r17cOD+/c5ffwEycnJ1LCzY+T4cTQohu2IjopizbJl3Lh6DYlEQt369Zk4bRoVKlVUixsXG8tvGzZy5dIlEhMTsbC0pH7DBnw9c6Yizm8bN7LNZ5NaWj19fc78dalIed5lZXNq205u+58jLSWF8tWr0mH4EBzq1y003f2Ll7l74SKvHz8hOT4Bs7JWODduiNfg/pQyMlKLn5GWhv+uvdz78y+SYmMpY2JCFRcn+n/tjb6hYZFyKpOdlcUen81cOHmK1KRkqtjVYMDY0dRp1LDQdG9DX3Hq8BFCgh/y/MkTsrOyWH9oH9blyxeaLuLNW6YMGkp2VhYLt/hg5+xUbFmTk1NYvsqHs+cvS+2gqxPeU8bg7GRfrPTPX7xiybL1BN4NktrB5o3wnjpWTaejY2JZv3E7V6/dJjYunrJWlrRq2ZRRIwZiZmaiiHfoyHH8TgTwMvQ1ycmplLWyoEnT5kycOBELUz2ZzCX7O9TR0cbBwZFRo0bRqEGeLU5OTmb5itWcPXdBVtYueE+bjHMx39fzFy9YsmQFgXfuSsu6RTO8vadgYZ5X57x48ZI/jh7jytXrvHnzltKlSuHk5Mi4caNxdVGt2zp16UF4eITGZ1WuXImjR/bJZF4jK2u5zF/g7PweZb1kBYF37knLukUzvL0nq8gcFR3NihVrCH7wiOjoGLS1talSpTJ9+/Sia5eOaGlpKeIGnD3P6dMBBD94SGxMLDbly9OmTRtGDO6KsbGRrJxLjk7n5ubie9yfgHOXePz4KYlJyVSsYEOXrj0YOXJkiaoTAR49fIjP+g08eviQ9LQ0KlSsSLcePejVt49GGUqafuRnxIgRXL58mb79+uHt7c26devw8/UlOTkZe3t7JkycSJNilvWSxYu5cuUKEomEBg0aMP3LL6mkoc105PBhtu/YQdjbt5QrV44BAwbQf8AAjfc9deoUu3ftIiQkBF1dXapXr86EiRNp07p10YWHrPyXr+TsuXOydqwr3tOmFd+mPH/BkiVLCbwja8e2aI73dG+V8gfYtGkz94OCCAoKJi4ujrFjRjNu3FgVORb8spAzZ86Qnp7+0dvTQUFBHD16jKCg+4SEPOXdu3cEBt5We25GRgZz587lTuBtIiOjyMnNpXz5chiVKcOr12/+tfolLCyczt36aUy/4OfZdGif1wcLCnrAUd+TBAU9ICTkGe9ycnj8+DEgbVNvXr+BU8ePK9p6o8ePp2GT4rX1PmQ/oE/XbkSEh2tMV6FiRVo0b15i9ON97gnSct6yfgPHDh8hJTkZLS0tFq1aWexyXr10GTevXiNX1qae5F1wm3rLemmbOknWpq7XsAHfzMprU/959hxnz5zh0YMHxMXEYl2uHE3dWzB01EiMjY2LU5wCgaAYCBdznxZaEolEvDGB4APj4+PDkiVLGD58OM2aNUMikRASEsKxY8f45ZdfFA254kwQ3blzhwoVKmBtbf1eMoSGhjJ06FBycnIYMWIErq6uZGVlcfXqVfbu3cvChQvx8vL6R/n8FAhNjGf+DzO5GHCWzwb0p2Llypzx9ePxgwcsWrcGtzp1CkybnpbGhCHDSE1NoffAgejo6nJoz14kEgnrd+7AxMwUgNSUVCYOG0ZCXBw9+vXDwtKSC/4B3A8M5Nu5c/Do0F5xz52bNhP64gV2Dg6YmJkRHxvLqWO+xMXEsHzzJjwaNgJg0uQvOOsfQL+BA6lsWxm/Y748DA5mzYYN1K5bsMxpaWkMHzSYlJQUBg4ehI6uLr/v2o0E2L57F6ayTkhiYiLTJ0+hTr26lC9fAS1tLe7fu8ep4yfwateOufN/1nj/hw8eMHr4CHR0dWnQsCGLli1l0pixPH78mKFDh2BmZsa+ffuJjIxk165dVKliW+j7iYyMpH//ARgbG9G//wDS09PYvn0HNjY27Ny5Az09PUXclStX8dtvv9Gz52e4urpy/vx5Ll68xIIFC+igVMazZs3m1KlTzFLqCAAYGRnRqlUrAEqXLsOjR4+4cfcOh/bv51HwAxo1bYKFpSWnT5zkXXY2K9avo16DBoWW9cjBQ0hNSaHfoEHo6uqyb/duQMKWXXllrUxubi6jBg/hzevXpKenq3UML124wPdffoVrzZp4tW+Plhac9ffn7u1AJk2bxhfjxgElSz9GDB5CUlISHl6eVK5sy9u3bzmwbx+GhoZs370L+6rVpM9OjlSUweejJvEk5BnDhvTHzMyUfQeOEBkZxa4dPlSxrVyg/ACRkVH0HzQSYyMj+vfvRXpaOtt37sXGphw7t21Q0RnlfPfoNZiUlFQAtYHpPXsPsnDxCtxbNMW9RTMkWvocPnyYR48eoa2tTZ+BA6lUuTInfX159OABy9avo1YhtiMtLY0xQ4aQmpJK30ED0dXVZf/uPUgkEjbt2qmiG1ERkUwaNQqALj16YGVdlpjoaB4FP2D+0iWKePIJomnffkOpUqUV4To62ni2l+p/eROpTTr6KkRNpl0/L+Texb9w79kdq4oVuHnan9ePQxi3eD7V3FwLzMvsXgMxsbTArVkTzKzLEvHiJVf8TmBpY8PUdSvQMzBQxE1PTWWd97ckxsTSpFN7LCuWJzUhiRdBwfT/ZjqljdUnlLrZSgebg+Oi1K4tnfUjV86ep0u/PpSvXJlzfid4+vAhc9esxLl2rQJlPut3nLXzf6VS1aro6OjwIiSkWBNE87/6lqBbt8lITy90gsjVQlofpyWGAjKdHuPNk5DnDBvcR6bTx4iMimbXtjVUsVUfwFAmMjKa/kMmYGxUhv79upOelsH2XQewKVeWnVtXKXQ6LS2d3gPGkJ6eQd/eXSlnXZYnIc85eNiPGtWrsHv7GrS1pc4B5v+6koyMTOzsqmFibMTbsAiOHD1NTk4Oe3dvxsrSosR/h1lZmfge9+fRo0csXrQAT482MvsxlidPnjJs6CBpnbP/oLTO2bmVKrZF1TlR9B84VCZ3H9LT09m+Y7dU7u1bFHIvXbaSI38cw9OjNW5urqSkpHDw4BHCwsNZvWoZTRo3Utzz3LkLpKWnKf7WNyhDWFgYy5cvp2+fnnzztTefjxovk3mgTOZDMpl/K15ZDxwu1Q8VmW3YuX2TQuYnIU9ZuGgZdWrXxMbGhnfv3nH12nUuXLjE5yOG8sWkcYp7tvHoSNmyVrRu3RIbm3K8DH3L3r17qVTRht3b16Kvr1eidDotLZ3mrbtT082Zli0aY2Fhxr37Dznmd4YGDRpgYmbGuYCSUSc+eviQMSM+p7JtZbp0746hoSFX/7rMnxcu0Ld/f36aM0f67JRYQF4nliz9UCbg7HlmzZ5HWloaffv1IzEhgYCAAAYMHIitrS3Hjh7lwYMHbNi4kbp1C15wkJaWxsABA0hJSWHwkCHo6uqye9cuJBIJe/buVWkLHThwgPk//4ynpydNmzUj8PZt/Pz8mDx5MsNHjFC57/r16/HZuBEvLy8aNmrEu3fvePb0KbXr1KFf377SZ6cmFyhXbm4un48cxZMnIQyTt2P3H5C1Y3cUw6ZE0n/AIKlNGdCf9LQ0tu/YKS3/HdtUbGHdeg2wsrLEwd6By1euqEwQyeUICXnKyJEjKVOm9EdvT69fv57Nm7dgb29PWloaoaGhGieIsrKyGTNmDHVquVChgg2gxfqNW4iPT8CuRnV69+r2r9Qv8gmiDu29aNFcdYKybt1aVChvk5eXDVvY/NtO7O1rkJaaRuir14oJoglffMH5gAD6DBxA5cqVOeHry8PgB6zcsL7Itt6H7gf8ef486WlpKmkiwyPwWbcOC0tLMtLTS4x+FPeepUuXAWD8F19wISAAfX193r17R05ODlpaWizfUHSbevRgDW1qJGzW0KaeOFLWpv6sB1ZlyxIbHc3D4AcsWJbXpu7m2RbLsmVp0boV5WzK8fzpM44ePET5ihXZtHM7BoaG2BibFlqmf5e0tDQePnyIs7MzpUuXLjpBCeBTlBk+Xbn/P7G0l3rfr6TgfTDlY4tQ8pAIBIIPjru7u+Tbb7/VeC0nJ0fx/zZt2kjmzJnzr8jQu3dvSfPmzSURERFq196+fSt59OjRv/Lcf4v09PS/le7kXxclDg4OkkWrV0leJsRJXibESZ5Ehktae3hIevTqpQjT9Fu4coXEwcFBcuryJUXYn3duS5ycnSWz5v+cF2/VSomDg4Pk8JnTirDncTGSrj16SJo0bSoJiY4s9DmBz0Ikzs7OkmnffCORSCSSu3fvShwcHCQr16yRxCYnSWKTkyRhMdGSNh4ekp69eyvCNP1WrF4lcXBwkFy8ekURduvePYmzs7Nk3oIFhaaNTU6SfD/zB4mDg4PkyYvnatdikhIlPXv3lnh/9aWkZatWkuGffy75/eBBiYODg+TEiROS1NQUSWpqiuT169eS+vXrSyZPnqwIK+g3Y8YMSa1atSRPn4YowgICAiQODg6S7du3KcJevHgucXFxkcyc+YMiLCUlWdKvXz+Ju7u7JCkpURE+ffp0Se3atQt9rpxzly9LHBwcJMvXrJZEJiVK7j15LHFwcJDUqVtX0rN3L0lkUmKBv6WrpGV9/splRdj1e3clzs7OkrkL5mtMs2HLFknDhg0lM2bPkjg4OEgevwpVuT5oyBBJs+bNJa9johVhb+NiJW08PCQdO3cukfrhf+G8JDoxQSWe/4XzEgcHB8n8X39RlHVqUoQkNSlCcvjgbomDg4PkyKG9irDXoY8k9evXk0z+YoIirKDfjO+/ltSqWVPy9MldRVjAGV+pzmzdqDHN/J9/lLRr6yWZOmWiVDfyXffy8pB81qObJCUxXJKaJLWZV65ckTg4OEjatW8vCUtMkIQlJkheREVKWnt4SD7r1UsRpum3RGYTzl6+rAi7cveOxMnZWTJn/nyVuEOGD5e0at1a8jD0ZaH3/HnRQomDg4PkQSHx5PwR+kTlt+rUMYmDg4Nk2uJfFGEHQoIkTVu3krTt0U0tvvJv6dEDamEzN62TODg4SL5ft0olfNj0qZLa9epKfrv6Z6H3VP7JCYqNVPkd/vOcxMHBQTJv5XJF2O2wV5KWbdpIuvbsqRZf+XfleYjkxqsXkqDYSMm8lcul7yLoTqFpdvgdlbi4ukq+n/+zVD8vXSgwrkKnE15KUhNeSg7v3yZNc3C7Iuz1iztSnZ40VhFW0G/Gd95SnX50XREWcPqQVKd/W6MIO7B3i8TBwUFy0vd3lfSLF86VODg4SG5d8y/0Offv35c4ODhIVq1c/El8h6lJEZLk5GRJnTp1JKNHj5SkJsdJDh/cJ5X78AFJanKcJDU5TvL61TNpnfPFJEVYQb8Z338rk/uBIizA/6RU7m1bFGE3rl+WREe+UUn79vULSePGjSV9+/Qu9BkSiUSyZs0aiYODg+SvS+ckhw/+LpN5nyQ1OUaSmhwjef0qRCbzREVYQb8Z338jkzlIERbgf0Im86Yi048aOUJSu3ZtSVJCpCLswrnTKnEkEonk8OHDEgcHB8mOretKnE4nRIdI/vrTT+05q2T1cEmqE7/65huJq6ur5Pmb1ypx+/bvL6lbt26e/ZCVfUnUD/kvLuatpHXrVpLVq1dLHBwcJOMnTJA4ODhI1q5bJ0lJTZWkpKZKYuPiJB6enpLevXsrwjT9Vsu+iWvXryvC7gcFSZydnSULfvlFERYTGytp1KiR5PORI1XST5k6VVK7dm1JWHi4IuzylSsSR0dHyfoNGzQ+U1HWKUkF/g4fkrZjjxw5pAh7/TpU1o79otC0qSlJkhkzvpfUqlVT8jTkiSIsIOCMrPy3qsQNefJIkpqSJHnz+pXEwcFBsmTxIjU5Tpw4IZW5BLSnX70KlcTGxkhSU1MkM2W6XlibOn87b/iwIRIHBwdJ6PPgf6V+CXkUKHFwcJCsW7OsyHu+evFAEhsVKklNipDMnPGNxMHBQaVNLe8HRCYlSl5FR8nsx/++H6Dpt3DpUoWdK0n6Udx7KpdzvwEDJF5t20omTpksqVWrlqSNh4fks969JOFJCQX+FG3qK5cVYVfv3ZE4OztL5iyYrxJ3yPDhklZtWksevXpZ6D2Pnw1QC/tt9y6Jg4ODxGf7Vkl4Ul6b+kOTmpoquXnzpiRVyUaVdD5FmSWST1fu/08s6VmmxP4E6ogziASCf4GkpKQCd/zIV/dqIj4+nl69etGzZ0/i4uIAqYu5zZs3K+IMGTKEsWPHcvLkSdq3b0/dunUZOnQor169UsS5efMm9+7dY+zYsZQrV07tORUqVMDRUbrF/9mzZ0ybNo1WrVpRu3ZtOnXqxJYtW8jNzVXEf/PmDY6Ojvzxxx/MnTuXhg0b0qJFC3799VfevXuncu9nz54xadIkGjVqRO3atenWrRu+vr6K6xKJhM2bN9O+fXvc3Nzw9PRk69atKvdYtWoVdevW5d69e/Tr14+aNWuya9euAsutMC4GnEVbR4dOPXoowvQNDGjfrSsP7t8nKjKy4LRnz+Ho4oKji4sizLZqVeo2aMCf/gGKsKA7dzA1N6duw7zdJtra2rT08iQuNpZ7t9VX2yljZmGBgaEhKSnSFY4nT55ER0eHHj0/U8QxMDCga/fuBN27R2SEZlc2AGcDAnB2dcHFNW9HQNVqVWnQsCEBZ84UKgdA+fIVAKlrmfyc8PPj+bNnjJswQRF2LiAAKysr2rVrpwizsDCnXbu2nD9/nqysrEKfFxAQgLu7O+WVVvY3adKYKlWqcPp0nrznz5/n3bt39OnTVxGmpaVFnz59iIyM5N69e2r3zsnJISWl8JUh5wMC0NHRodtn0rL2P3UaAI+2bQm6d7/Qsr4QEICziwvOSmVdpWpV6jVsyLkz/mrxkxIT2bRuHSPHjcXISLP7gtTUVIyNjdHX11eE6erqYmpmhoFsp0ZJ04+69eqp2bW69ephYmrKyxcv1O7hH3ABS0sLPD1aKsIszM1o59WG8xcuFa0zZy/g7t6M8jZ5tq1J4wZUsa3Maf9zavFDX71m1+79eE+bWKBbzdTUNCwszFVc7Pz5558AVK5aVRFmYGBA527dCL5/n6iIgm3HhYCzOLm44OSaZzuqVK1K/YYNOOefpxuhL19y7fJl+g8ZjKmZGZmZmWo2VQ2JhNSUFCTvsQH83sW/0NbWpkmnPPcgevr6NOrQltAHj0iIii4wbQ0NO3XcmjcFIOrVa0VYekoKN07507hTByzK2/AuO5t3WdnFljE/V86dR1tHh3Y9uinC9A0M8OzamcdBQcQUYruNTU0oVab4KwXfvXvHlmUr6dK3NzaVKry3rP5nL2JpYY5nmxaKMKlOt+T8n5eL1ulzl3Bv0ZjyNnnthiaN6lHFthKn/f9UhKWkSlcV53fdYmVpAYCBgT6FUVHmGjU5OeWT+Q6NjIwoU6aMwv75B5yTyd1aSW5z2rX15PyFP4sh9znc3VtQXmlleZPGjahSxZbTSnbbxdlJbbWpmZkpdevW5sXLl4U+A8DX15eKFStQp3bNQmT24PyFi8WQ+Tzu7s3zydxQJvPZImUpX6E8GRkZZGfn2ZYGDeqpxZPvKn/x8lWJ02k9PT3q1FLf6di2bVtA2h4oKXViamoK+vr6am6KrKwsMdDgZrMk6oecrdt2kZubq3Bz/ebNG3R0dOjZs6cijoGBAT26d+fevXtEFFLWAf7+uLq64qpU1tWqVaNho0acUSrrmzdukJCQQN8+qu74+vbtS3p6OhcvXlSE7d61C0tLSwYOHIhEIiEt386L4uAfEIClpSWeHh6KMGn5e3H+/IVitGPPytqxyuXfWM2mgLT/VZQcJak9bWlpieF7uoaV5kVavzRqJLUzySkp/2r9ApCenk52dsFtDktLCwwNDdTC5W1qeT8AZG297t0+Sj9AE2dOncKwlCEWlhYlSj+Ke0+QlrO2tjb3795l4rSp6OjooKWlRafu3Qi+V7w2tXO+NnW9hg04f+bvtanrNqivFtayTWvpfV68LFAWgUDwfuTmSkrsT6COmCASCP4FXF1d2bt3L/v37yc6uuCBN2Wio6MZOnQo+vr6bNu2DQsLiwLjPnz4kM2bN/Pll1+yYMECXr16xVdffaW4fv36dQDc3d2LfG5UVBTVqlVj9uzZbNy4kb59+7JmzRrWrl2rFnf58uVoa2uzfPly+vfvz5YtW9i/f7/i+suXL+nXrx+hoaHMmDGDdevW0bNnT8LCwhRxfv75Z1auXEmPHj3YuHEjn332GYsXL2bPnj0qz8rOzmb69Ol069YNHx8fmjdvXmReNPH0yRMq2VamjFEZlXAn2aTPsydPNKbLzc3l+dOn2GtwMeTo6kLYmzekpUrd5GRnZSsGr5QxkHVEQh49VruWkpxMQnw8L54+Zem8+aSlpiommB4+fEhlW1vK5Dvfw0XmBupJITI/C3mKs7OL2jVnV1fevnlDqkxmOdnZ2STEJxAZEcH5s+fYvWMHNuXLU6myqu/s1NRU1q5cxbARI7C0yjtX5snjx7i4uKhNELi6upGRkUFoaKhGWUGqe3Fxcbi4qPvOdnNzVbh+AHj06DGlSpWievVqavHk15XJyMigRQt33N1b0qpVaxYsWKBx4CDk8WMqKZX1mZMnsS5XDs+20oGyp4WV9dOnOGqQ3cXVhbdK+iFn0/r1WFha0k1pYCU/devX48Xz52xat443r1/z9s0btm7axOOHDxk4dAhQMvUjP2lpaaSnpWl0r/Ho8ROcHO016IyzVGeUJh3yExUVTVxcPC4azmVwc3Xm8WN112qLl6yiYYO6uLdoWuB969erw+Ur19mz9yBhYeE8e/YMPz8/tLS06D94kEpc+aRPkbqhwSe8k4uriu24JbPV5haWeI+fQPsW7rRr4c7Xk6cQrmQ3lRnQ4zM6t/GgY6vWzJs5i7jY2ALzJSfs6XOsKlXEMN+kSWVHB+n1Z8+LvIcyyXHxAJQxzTvz5kXQA95lZWFVsTzb585nRpdefN+lJ6unfMXbp+93f4DnT0KoULkSpcuo2m572Tf34snT975nQfju3UdKcjK9Rwz7W+kfPXmKk5Oduk67OJKRkUnoq7cFpo2KiiEuLgEXZwe1a26ujjx+nJfPenVroq2tzaKla7l3/yGRkdFc/Os6m3/bTZtWzahWVd3FTEJCEnFx8QQ/eMJ3330HQOOG9T+J7/DFy1DmzJlDcnIyAwdIz5l49PgxTk6OGuR2kdU5rzTdWiZ3lFRuF/V63c3VhcePNX/TysTGxqqdG5efBw8e8OzZMzp2aCuT+UkRMhejrDXK7KxR5oyMTOLjEwgLC+foseMcPepHrVpuGgdHlYmJiQHAzMykROu0JpmtrKxKTJ1Yt359UlNT+fXn+bx88YLw8HAOHTjA+bPnGDp8uNqzSqp+hIdHsHXrDqZMnqCYJEiIj8fW1hajfGXt6uYGoNJuUyY3N5eQkBBcXNTL2s3VlTevXyvK+pHsHsqTdoCirfn40SNF2PXr13F1dWXPnj14enjQonlz2rVty969ezXKoYlHjwqwKW6uxbQpcbhoqO/dXF0LLI/3kuMjt6ffh+zsbOITEggOfkjZslbs3Pk75cvbUFl2Tsy/Vb9s8NlKM/f2NG7mxaChY7hy9XqxZX748KFKP0COfNLnf90PyM+TR48JffECPT19HBydSox+vM89QVrOBgYG1GvYgCYt8vr08kmfkCL645rKWW6nFW3qa9L3bmFhybTxE2jX3J12zd35qpA2tTLy9rSmvotAIBD8Fyj4FHKBQPC3mT17NpMmTeKHH34AoFKlSrRp04bhw4drPIg1LCyM4cOHU7FiRdasWVOkj9Tk5GSOHDmimERKS0vju+++IyIiAhsbGyJlK6sLW6kmp2nTpjRtKh2wkUgk1K9fn4yMDHbu3MmkSZNU4taqVUuRp+bNm3Pt2jVOnTrFANmhsatWSf3K79mzR9F5bNasmSL9q1ev2LlzJ3PmzKFfv36K6xkZGaxZs4Z+/fopGr7Z2dlMmzaNTp06FZmHwoiLicXC0kot3EI2yREbHaMxXXJSEtlZWYp4qmktpWljYihdpgyVqtgSeOMGkeHhlFNaRRV05640XpT62RqTPx/FG1ljvlTp0gz8fAQduklXykdHR6tMwsixkoXFFDDpmJSYRFZWVpFpyygNuJ4/e5ZZ389Q/O3s4sL3s2ahq6taPWzx2YSBoSH9Bw1UCY+NiaFxo0bkR/686Oho7O01H2gdHR2jEjd/+sTERLKystDX1ycmJhpLS0u1Q5SVn6McNmzYMJydncjNlXD58mX27dvPkych+PhsVMlbbEwMlrL3+eLZM56FhDBw6FAsy5aVlZdm/UhKKrisLZXK2lZW1k9DQjh66DALVywvcPU8wLBRowgPC2P7lt/YtnkLAIaGhvz066+4t26lyGtJ04/8/L57N9nZ2Xi1bad2LSYmjnp1a6uFW8neQ3R0LPZ2NTTeNzomViVu/vSJsjzKd2BdvHSFq1dvsHfPb4XK+81XU0hITGTh4hUsXLwCkO4CtHd0xLWW6g4axfuNKaCcZbajcN2IwbZMGd7KBkkWz5+Pk4sLs+f/TGREJNs2bWL6xEls2bNbMTBnbGzCZ3374FqzJnr6+twLvMOR/ft59CCYDdu2qQ1uqMgUF4eJhgODTWSr9BNj4wotn/yc//0g2tra1HTP6+THvJV2vo9v3o5lBRv6f+NNemoaZ3bsZsPX3/Olz1rF84pDfGws5pbq79lc9u7jYjR/m+9LfGws+3/bxrAvJqpNRhWXmJg46tWpqRauqtPV1K4DRMfEyeKql42VpQWJSckKna5RvQo/fDeFZSt9GDZyiiJe185tmTXDW+P923cZQJZsJ5eZmRk//PADTZo0/GS+Q3Nzc7Zu3YqjfVUAYmJiqVdP/ZyTvLogBnt7uyLk1mQD1eXOz+3AO9y7F8SokSM0Xpdz7NgxADp2bK8kcx2Nz5TKHI29fUFlHaMSVzW9lUaZd+/5nVWr1yv+btSoAXNmz1BLnx8fHx90dLTx8mjJ5t/2lFidVmbTpk1oa2tTUcOihY9VJ3b/7DNePH/OkYOHOHrkCAA6Ojp4f/0VPXv3VntWSdWPpctW4ejkQIf2bRVh6enp2Fapoha3rIa2mDLy9pzGb0/W3oqWlXVMTAw6OjpqC+X09PQwNTVVPCMpKYmEhATu3r3LjRs3GDN2LDY2Nhz94w8W/vorurq6DBs6VKM8ysTExBRhU6ILsSnFb8d+GDn+t+3p9yXg7J98N0N6xlZYeAQuLk78OOsbxffxoesXLW1tmjZpSJvWLbG2tuLt2zB27NrHpMlfs3zpgkIXJCieFx2t6Acoo9xe08S/1Q/Iz5mTJwDIysws1Fb9r/Xjfe4J0kWk6enpTJw2VSWuPE+xBdnpQsrZIl+b+s1rWZv65/k4urowe8HPREVEstVnE9MnTGLL3t2F7ojbvW07Ojo6tPb0KDCOQCAQ/H9GTBAJBP8CDg4O+Pr6cuXKFS5dusSNGzfYsWMHhw4dYteuXTgrrTR79eoVgwYNwsnJiRUrVhSrE+Hk5KTScbKzk3Zc5BNE70NmZiYbNmzg2LFjhIeHq2zPT01NVekYt2jRQiVtjRo1uHr1quLvq1ev0r59e7WVhXIuX74MQLt27VS2fDdr1gwfHx/Cw8MVLnAAWrVq9V550URWZiZ6+uqHZevL3JZkZWZqTJcpC9fXcNC2vr6BStqO3bvhd+gw876fwbhpUzG3sOCCfwB/nb+gci9lvpz5A2mpqYS/fctpXz+yMjMVbv0yMjKw0iSzTDc03U8aniGLV3B+86et36ABK9auISU5mZvXbxASEkJGRrpKnFehoezbs4e5839W08/MzEyNOmtQwPM0y6ueXl7G8vtnZmZqPPRcvnNLfi+AyZO/UInToUN7qlSxZfXqNfj7B6gcsJqZmYm+nvT5p0+eBKBtxw4YKMo6A01kZkjD9fQKl13OikWLadysKY2aNFGLr4yenh6VbW1p7elJyzZtyM3N4ejhw/w0axbL1qzGulnzEqcf+Qm8fZvNG33wbNuWBo0aapDjn+hMZrHyoK+vT3Z2NouXrqJXr+7UqF61UJkNDQ2oWqUy5azL4t6iGe9ydZk9ezYvnj3jzevXVKqcd6Cy4v1maJYzSxZemN2R5yNddrC9haUlvyxfppggL1vOmp9m/ID/yZN0kbnH7D2gv8q9Wnl44OzqwryZszhy4CCDhhe8+yU7MwtdDd+Pruw9vCvCNYkygWfPc/3kaVr37UXZSnn2OjNdqhdaWjB24c8YlCoFQMUa1Vk95UsuH/Wjw4ghxX6O1Har64lePvv7T9mxZj3lKlbAq1uXv32PzMwsjTppIAsrlk5rqmsU+pI3yGJtbYWbiyMtmjeivI01t+8Esff3I5iZmeI9ZYzaPVYv/5nMrCxevHjFyTOXSJe9p0/hO0xLS2P33kN88cUXbPJZi23lyjKbrams30PuQur1gsolLi6O72fMomKFCgwfNrjAZ+Tm5uLn54eLiwvVq1XNu+c/lllTXaNa1nI6dGiLi4sz8fHxXLx4mdi4uEKfAdJJrQMHDjB8SF+q2FYs0TotZ/Nve7h8+TLm5uaUktkblWd9pDpRR0eHipUq0bhpUzy8PNHXN+DMqVMsXbgIS0srPuvaNZ8cJU8/bty4RcDZ8+zY5qMSnpOTU8B7VW/3aJJTk03P/54yMzI0tvdA2uaTx5PvCk9ISGDBL7/Qvr20befl5UXfPn3YvGlTsSaICrSFGtpyamkz5LZQQ74MCrcpxZbjI7an35eGDeqybs1SJkyaTrVqVdDV1SE9Pe9+H7p+KW9TjrWrl6jE6dypPb36DmXpsjXFmiDKyMjAUq+sWvjH6gcok5ubS8DpM9g7OvIsJERju/Jj6cf73DMrK4uoqCjK2dhQtXr1AuNqQtGm1lhv52tTp+W1qX9VblNbWzM3X5s6P2dOnsTvj6MMGDqESraF71wVCATFR3hy+7QQE0QCwb+Evr4+rVq1UkxyXLx4kbFjx7JmzRpWr16tiHf//n0SEhKYMWNGsToQACYmJip/yxtN8gaS/Nyh8PBwqmhY6afMokWL2L9/PxMnTsTNzQ1jY2MCAgJYt24dmZmZKhNE+f2p6+npqfg8TkhIKPDsJZCesSSRSGhSQONYeYKoVKlSKs/+u+gbGJCt4RyMrMwsxXVNyBvCWRr8WWdlZaqkrW5vz7c/zWXlL78ybZR0MMPC0pLx06ay8teFlNKwI8ylVt7K3Nbt2jKqr3Tw9+dZszE0NFSs+FZ9bpaKbOoyG8riFZzf/GktLC1pJFul7+HlxdYtW5gyYSL7Dh9SrNZatngJrjXdqFW7NrGy1ZI5OTlIJBIMDAw0+r3OLOB5muVVTy8vY3l6AwMDjb7F5Tovv1dBDBo0iLVr13Ht2jWVCSIDAwOysrOQSCT4nzxF9Ro1sLO358Xz54XeV36OQHZ20bIHnD5N0L17bPu9aJcnyxcuIjjoPpt37lR0bDzatmVI336sWLyENoealzj9UObli5d8++VXVLerwZfffkNsTAw5ssGB9JRYzM3N/qHOGBQ7Dzt37SMhIZHxYz8v8H5yvvp2Nro6OqxY9gsApY3LsWnTJkJDQ9m8dh2zF8zPe478/RbgrklfFl6Y3ZHLqC97J228vFTchrT29GT+rNkE37tfYGcWwKtDB9YuX8Gt69cLnSDSM9DnnYbvRz4xpFvMuuf5/SD2LVmJQ4N6dPhcdeBNT5YnlyaNFJNDAFVcnLCwKcfLBw+L9Qw5UtutrifZ+ezvP+FxUDAXTp7ix1XLCz0fUPHs7GxSkpKIzpGurE1PisPc3BQDA32NOpkpCyuWTmuqaxT6In0/d+4GM8V7Jts2r8TVReq+q03r5hiVKc2GTTvp3rU9Naqr1vl1aruSmJiMk4MdjZt5MmTIELTJKvHfYXZ2NomJSTRq0pL+/fuzdOkKliz+VWazNZX1e8hdSL2uKX16ejqTp35Jamoav23eUOAu7+zsbC5cuEhkZCS9e/cmJkbJ5v1jmTXVNZrTVyhfngqy3cwdO7Tjp3m/MG78FA4f2qvmRiw7O5tLf13m++9n06hRI/r17U5OTk6J1mmAU2fOs2b9Vnr37s3du3dLVJ24/bet7Nuzh31HDit0xatdW8aPGs3CBQto0qABurq6pKfGl0j9ePfuHQsXLaNzpw64Kp35AdLJL83vteDvRzlck03PL6eBoWGBZ8lkZmaqtAtBek6j/PwskO7+bdeuHevXrycsLEzhTUFqUxJV7mdubl6wLSzEJijyZSi3hRryVUCZZGdnK86ZTUtLIyYmpnA5Slh7On9eEhMTKVVKOjAvkUho2KAuhoaG1HRzoXKlioyf6M0fh3ZjZWX5wesXTZiamtCta0d+27qLyMgoypUruF8K0l36mr6fvO/vf9sPyM7OJkmmp/fv3iU6Kore/fvx5tUrje3Kj6Uf73PPrVu3kpubSzmlc7oKipsfRZtaY72dz3bIZGrdNl+b2suTn2fNJuiu5jb13cBAFv70M42aNmHUhPFq1//O2WaFIV+oI//3QyKvc4TMUv4tuYvy9iMQfKqICSKB4H+Eu7s7Tk5OPHv2TCW8c+fOUtcT3t5s2LBB4e7tn9BI5vLr0qVLRU4QnTx5kn79+jFmTN4qzQsXLvyt55qZmRGlwZ2aHFNTU7S0tNi9e7fGlUDVquW5K8m/tf3vYmFlqXHbutw9kWVZ9UFuAGMTE/T09TW6MYqTuT9QHiBv6elB05buPA8JITcnFzsnR+7eug1ARdvKavfI/6w6DRpw9uQpmDWbsmXLEhYerhZP4Wu/rPpKNwATUxP09fUVkzjvk1aOh6cnG9as5c8LF/isVy9uXr/B1cuXGT1uHF3ad1CJW87GBjMzM42HEsufV7aQ55Uta6USN396U1NTxaSplVVZbty4iUQiUdGN4jwHpB1AU1NTkpJUBwcsrayIjo7m/t27RISHM3bSRABFGVoVoB8mJgWXdWy+sl67YiVtvDzR09NT+MBOSUkGICoiknfZ2ViVLUt2dja+f/zBwKFDVTo2urq6NGnWlEP79pOVlVWi9EOZyIgIpk6ciJGREUtXrOT506dMHDtOJY7f0d+xsrIgJkb93Bx5WNmy6q4+5JSVuQEpKL2pLI/JKSls2rKdvr17kJqaqjjbIC0tHYlEQlhYOIaGhlhYmPPmTRiXL19j5oyvVO5nY2NDeEQE95UO5AWl92tVQDnLbEfhumGl8q95PtdrOjo6mJiakpycVGBZyLEuV47kpMLjmVhYkKihzJJkruVMi+H6LezZc7bO+gmbqlUYOus7NRcp8nsYmZuppTUyMyNd6RD34mBuaUmcBtsdL8uHJvef78uONetwrl2LchXKEyX7ppISEhXPiY6IpKzSIdmP7wcxa+JklXv4Hdku1WkNbvqKp9MWsrga0sfGYWpirLCDBw75YWFhrhhIl9OqZVPW++zg7r0HaoPpd+89YPR4Vd0+6nuyxH+Hd+8GMXpcnsuxC39eIjIyEisrywLrDKncBetFntya0ufJrUx2djbTv/yWkJCnrFm9HLsC3CJJZb7HV998D8CaNWtYs2YNfscOymQurKwLqScVLi01pY/RKHN+vDzbcOjwUW7fDqRZM9UFOsf8TvDTT9KJ8evXr9Ox66ASr9NXr91i5o+LcG/eiDlz5jB69OgSVSce2r+f+g0bqg0gVberwZ3AQFq3bq0IK4n64et3kpehr5gx4xvCwqTlalhaOrimr69PRHg46enpKru2ootoi8nbcxq/PZmdl6e1srIiJyeHuLg4FW8J8skIeTxTU1MMDAwwNjZWq4/k6ZKSkhQTRHfv3mX0mHxtEt+jWFlZFWFTilP+Rbdj5SjLsWPnLnbs3PXP5fgftqfV8jJadZefcjtvxLBBrF7rw/kLl+jdq/sHrV8Kw0Y2KZSYlFzkBFHZsmV5q8F+fIx+AEDQ3XtMHqeqp3Xq1cPSyqpQW/W/1o/i3jM5OZl169ZhY2NDbEyMIv/psnbAE9lZRZYF2elCyjku3zuS9+nzu6fU0dHB1Exzm/rpkyd87/0l1WpUZ86vv2h0of3w4fstcCouL1++/OD3rF+/PiBkzs+Hllsus0Dw/w0xQSQQ/AvExMSo+eTNyMggPDxc4Q5OmRkzZpCZmcmECRPYtGnTP650GjRoQK1atVi/fj1t27ZV29UTHh5OUlISjo6OalvJc3Jy8PPz+1vPbdq0KadOneLLL7/U6GZOPvmVkJCAh8f/xr9vDQcH7t66TWpKKmWM8nYkPQoOVlzXhLa2NtVq1CDk4SO1a4+CgylfsaLaeRV6eno4Kh3AGyg7gL5eQ/UzevKTmZlJaop0ANXJyYlr166RmpKicq5IcFAQIHVhWJDMNezsePjwgdq1B0FBVKxYschdWfIVYnJZImWTPz7r16vFDZINnCclJSnc4ymuBd3H0NCw0AlKa2trzM3NeaBhZ0FQUDCOjnn5dHR04PDhwzx//oIaNaorxQtSXC+M1NRUEhISMDdXPYfFztGBwFu38Dt6DC0tLdp2kE6CPQiS6oddIWVd3a4GjzXI/iAomApK+hEVGcmZk6c4c/KUWtyRgwdj52DPb7t3k5iYSE5ODrm5OWrx3r17R25uLrm5uSVKP+QkJiQwZeIksrKz2bB+HVZlrdA30GfF2jWYlJIOkmWkxWNpaYGjgz2Bd+6Rm5urMhEWFPxQqjOFTKhaW5fF3NyMBw/VD1EOCn6Io4PUviYnJZOWls7W7XvYun2PWtzO3frRulULli2ZT6xsJW9OjqoOOzk5cfnyZbVVjQ+Di6EbNWrwWENH52Gwqm44OEkPFo+JUp0IkQ+EmZmpnxukjEQiISI8HPsi9L9Cjeo8u3OPjNQ0DMvkDVq+evREcb0wYsLC2fT9bIzMzBj5848qO4TkVJSd0VDQRFRZDWeEFEY1ezuCbgeSlpqqYmufBEv1t5qD5jMh3ofoiEiiIyIY17Ov2rUFX39LaSMjdp45oQiramfH7BXLqGpiBkBGaqRUp+1rEHgnSINOP8LQ0IAqthXz316BtbUV5uamPHiofkBzUPBjHB3yJiTi4uLJzaengMJla06Ouu1wsK/OutXSCQDDMuWYPXs2GRmZJf47dHCwY92apRiWNmfp0qW8fPkSS0tLHB0cCLxzR13uoGBZnVOwa5i8Oke9Xg8KfoBjvm86NzeXH2bN4fqNm/z6yzwa1K9X4L0BqlatSqlSpahatSpff/01GelJSjbvbiEyF6OsNcr8EEcHzWdOKJMhs9spKaoHpr9+/YY1qzdgbW3NjBkzMDExKfE6fT/oId5fz8HF2Z5f5/+Arq5uiasT4+LiNNbj8vbHzz//TIUKFUqsfkRERPDu3TtGfD5WLa58MPj8+fN07NhRSVZ5W8xR4zO0tbWxs7PjwQP1sg4KCqJSpUqKspbf40FwMC3c3RXxHgQHk5ubi4Psura2Ng4ODjx48IDs7GyVvoz8nBTlNp+DgwPr1q1RebalpSWOjg4EBmqwKfffw6ZoqO+DgoPVbIpcjkULf+Wrr7+hc6dOdOnauXA5Slh7On9e1q1bpzjXJX87L022al+uWx+yfimMN7IzEc3NTYuMW5D9+Bj9AOnz7Fm2ZjXZ794x69vvqFS5MjXs7bFzcODencASox/FvWdycjJpaWmK3SH9u/VQifvzzNkA2BfWHy9mOTs6S9vU+c/Rys7OJjEhEbN8fcC3b97w1RdTMDc3Z+GK5QXuClE+GuBDkJ6ezsuXLxVthn8DIbOU/4XcgsIRLuY+LYr2pyEQCN6brl278v3333P8+HFu3ryJn58fI0aMID4+nmHDNLsBmjNnDu3atWPMmDHcy7di/e+wePFitLS06NWrF1u2bOHatWtcvHiRpUuX0qVLF17LDnJs1qwZ+/fv5/Dhw5w/f57x48dr3C5eHCZNmkR2djYDBw7k6NGjXLlyhZ07d+LjI/VhXq1aNQYNGsTXX3/NunXruHz5MhcuXGDbtm1MmDDhH+dZE+4ebcjNyeG47KBgkG5JP+Xri5ObK9Yyd3xRERG8yre6xN2jDY8fPOCJUqP0dWgod27eomURB1i+ffUKv8OHadyiOZWUOpfxceoraiPCwrhz8wb2soZRhw4dyMnJ4cihwyoy+x09hqubG+Vk50xFhEfw8oWqzG08PXgY/ICHSp3w0JcvuXXzJh5KLjgS4hOQSNRrbPmByk7O0omu+g0b8svixWo/c3NznF1cGDB4MKmpqZw+fTovj/HxnDnjT8uWLVVW+b1+/Vqhd3I8PT25ePGiyi6ka9euERoaipdX3sHIrVu3RldXl/379ynCJBIJ+/cfwNramtq1pYetZ2ZmKlapK+Pj44NEIqFZs2Yq4a09PcnJyeHs6dPUqlOHcjY2ZGVlceLYMVyUyjoyIoLQfPrR2sOThw8e8EiprF+9fMntmzdp4+WpCPt58SK1n0dbad5mzJnDF97Sg7jNzc0xMjbmz3PnVVwppKWlcfniRapUrYqhoWGJ0g+QNr69J08hOjqapStXUFnmu9vExIRGjRvTrFkzmjVrRpPGDTAwMMDLsxWxsXEEnP1TcY/4hATO+J+jpXszVZ1585bXb96qyODp0YqLFy8TERGpCLt2/Rahr17j5dlGWpYW5ixd/LPar2GDuhgY6LN08c98PkJ6jkjlypXQ1tbm9JmzKnlu2FB6fpKxkktPqW744uzmhrVsZ4km3Wjl6cEjNd0I5fbNm7TyzNONOvXrY25hgf/Jkyr+108e8yU3J4cGjfMmlxPi49Xexx8HDpIQH0+jInae1nJvTm5uLlePn1SEvcvK5uapM9g6OWJmLV25GR8VRdQr1W80KS4en29noqWlxagFczEy0zzgYl25EuWrV+PB5WukKrnxeXzzNgnR0TjUr1OojPlp6tGa3JwcTh85qgjLzsrinN8J7F1dsJLZ7uiISN68DH2ve8sZ/+1XfPPLzyq/Tn2kuwCGfTGRqT/OVIlvZGJM7UYN8nS6UT0MDPTx8nQnNi6egHOXFHHjExI5E3CRlu5N8ul0GK/fhKnc17ONOxcvXSMiMm8H7rXrgYS+eoOXZ0tFmK1tJWLj4rl5665K+pOnzgHg5CgdeH/3LoekJOnqZBMTY5o0qkeTRvUwMjLi7du3uLk6l/jv0MTEmCaNG1C9enWePXtGzZquUvvh1UYm9/k8ueMTOON/lpYtW+Src97w+vWbfHK35uLFS/nkvkFo6Cu8vFTr9V8XLuH0aX+++/YrPD3aUBT37t0nPT2dwYMHy2xewyJkPkfLls2LIXMbLl78K5/MN9VkjtNgIwCO/OGLlpYWTs55g/cxMbFMmDgVHV0dftu8jg4dOpRonQZ4/uIVk6fNpEL5cqxc+pPCXV5JqxMr29py/dp1EhMSFGE5OTn8dfESpcuUoXv37iVaP9q382Lp4gUqvzVrpBMr8rbWixcvFOmzsrI4+scfuNWsqTgHNTw8XCUOSM8GCg4O5oFskQVIV3XfuHFDxUVcw4YNMTU1Zf+BAyrp9x84gKGhIe5Kk0bt2rcnJyeHY8eOKcIyMzM5ceIE1atXV7jcBmmbpEnjxio/aZvEk9jYWALOnlXElZa/Py1buhdd/p4eGtqx16Xl39aT/JiYmCgWAlaqVFFNjpLSni4OJiYmNGnSGCcnJ5o2barWzlu9Rtr/c3Fx/OD1C0BcfIKaTFFR0fxx9Dj29jUUO7wKQ24/jh5WtR8fox8A0jZng8aNyc7KIiM9nd79+mFgYEBrTw/iYuNKlH4U557m5uasWbOGL7/8UlreXTozb/FC6jaoj56+PpZWllStXr3QNnVrD81t6sCbN2ntpaFNfUK1TX3imC85+drUsTExfDnxC7S1tVm0eqXa5JEypUuX/qA/+URFqVKlPvi9hcz/G7kFgv+viB1EAsG/wKRJkzh37hy//PILcXFxmJub4+joyNatWws8f0dLS4v58+eTlZXFqFGj2L59O06y1eV/hypVqnD48GF8fHzYs2cP4eHh6Ovr4+Liwvfff0+bNtIG9syZM5k9ezY//fQTpUqV4rPPPqNt27b88MMP7/3MqlWrsnfvXpYsWcKcOXPIycmhatWqKu7rfvjhB6pVq8bvv//OmjVrKFOmDNWqVaNDhw6F3Pnv4+zmRktPT7asWUtCXBwVKlfmjJ8fkWHheM+YoYi38Mc53LsdyOnrVxVhXXv34sQfR/nB25vegwahq6vLwd17MLewoNeggSrPGdWvPy09PSlbrhwRYWH4HjyEsYkJU779RiXe2IGDqNugITUc7DEyMebtq9ecPHqMd+9yGDlJOklWu3ZtPLy8WLd6NfHxcVSqXJnjvr6Eh4Xx/ay8Acu5s2cReOs2V27dVIT17NOHPw4fYfqUqQwcMhhdXV327tyFuYUFA4bkHax98sRxDh84SKvWralQqSJpqWlcu3KF69eu0aKlOw0aSQfHbcrbYKPBZ/TyJUswt7Bg4uQveBgUxHfffcfQoUMxNzdj37795ObmMn68qouEsTJ3Y8eP5+1QGznyc/z9/RkzZgwDBgwkLS2N7du3Y29vR/fu3RTxypUrx6BBA9m2bTvv3r3DxcWV8+fPERgYyPz5Pyvci8TGxtK//wA6dOhA1apVAbhy5QqXLl2iWbNmKq5dAFzd3KhZuzb3795FX1+fo4cOccLXj/CwML6ZmfcNzJs1mzu3b3Px5g1F2Gd9enPsyBG+njqN/oMHo6urw++7dmNuYUG/wXll3TLfMwGePpaurG7SvBlmZmaA1AXCgMGD8Vm3jrHDR9Chcydyc3Px/eMoUZFRzPxpLlCy9APgxxk/8CA4mC7du/HyxQteKg0KlSpVWu1Abi/P1tSseYAf5y7g+YuXmJuZsm//EanO5DunZOz4aQAcP5bXUR05YjD+/ucZM24qA/r3Ji09ne079mBvV53u3aQrmksZGtKmtTv5OXf+IkHBj1SuWZib0b1bJw4f8WXs+Kl4tGlJdo4Ou3fvBi0t3r5+zfqVK6lYqTKn/PyICAvj6x/ybMf82T9y9/Ztzt+4rgjr0bs3vkf+4Ltp3vQbPAgdHV32796NhYUF/QYPUsTT19dn3OQvWPDjHKaMGUu7Th2JjIjk4N691KpbB/c2eQMh/bp2o03btlS3q4G+vgH3797h7Okz2Dk40LVnT7W8KmPr7Eitli04sXkbKQkJWFWowM3TAcRFRtFnep4br72/LuX5vSAWnfFVhG36bhZx4RG07tuLF0EPeBGU10E3NjfDoX5dxd/dxo/G55sfWDPtG5p07kBGaip/HjxC2UoVadq1U6Ey5sfB1ZVmHm3YtW4DSfHx2FSqxLnjJ4gKD2fC93l2deXceQQH3uHQlYuKsNSUFI7vPwjAo3v3ATi+/xBljI0oY2SkmASqozRYoJwWwLVuHeyci1cHe3m4U9PNmR9/WsLzF68wNzNh34FjUp0eo3pW09iJUtmP/7FDETZyRH/8A/5kzPivGdCvh1Sndx7A3q4a3bu2U8Tr37cbR31PMWX6LPr37U55G2tu3b7PydPnaNK4HjXdpIsM0tPT6dB1EO28WlGjehVKlTLk6bOXHPU9g7GxMaNHDaVSxQol/jtMTUvnwMGjZGZm8vkI6eIaL08Patb8nR/nzOP58xdSuQ8cIjc3h/FjR+eTe5JUbt8jeXJ/Phx//7OMGTuRAQP6kpaWzvYdu7C3q0H3bl0U8Xbt3su+/QepVasmhoYG+B0/oXJvjzat1VajHj95Cn19fdq3b68S7uXZhpo1XflxznyeP3+ZT+ZR+WSeLJP5kJLMQ2UyT9Igc2dFvM2bt3Hn7j2aNW1CeZtyJCYlEXD2PMHBD+nfrze2Srv4Jn7hzZu3YQwfNojAO3cJfih1f5yVHoOlhXmJ0+nU1DQmTv6OpOQUhg7uw8W/rgGgX0o6AFy/YYMSUycOHT6cH2fOZOSw4fTo+RkGBgacPnWaRw8fMnbCeDUXyyVNP6pVq0q1alVVnlvaSOr2y9HJCWtra7b+9htZWVlUrlwZ32PHCA8PZ9bs2Yr4s2bO5NatW9wODFSE9enbl0OHDzN58mSGDB2Krq4uu3buxMLCgiFDhijiGRoaMn7CBH5ZsICvv/qKpk2bEhgYyHE/PyZOmoSpad4ihV69enHk8GF+WbCA0NBQytvY4OfnR3h4OMuXL6c4eHl5UnN3TX78ca7Mppixb7+sHTtOdRfV2HHS80mO++VNSI38fISsHTuOAQP7S8t/+w7s7ezo3q2bSnpfXz/CI8LJSJcOXt++HYjPpk0AdGjfgZo1a/Ldd9/x9OlTjIzKfNT2NEBYWBh+fscBFLu/fHyk8pYvb0OXLlKbefToUfbu3Uurlk2pVLECySkpGBmV4fKVa1SxrczLl69YuGjlB61fAFasXMfrN29p3LA+ZctaERYWwcFDR0lPz+Dr6aruYMPCI/Dzk+7gke9OWrt2LQDOrq5sWL2G+Lh4KlWu9NH6AcqcPnFSep6xbEFia09PXGvuLVH6UZx7lipVSjEBfPNOIGdOnMTM3JyszCxy3r0jIT6B2fN/Vtxz/qwfuXP7NhduKrWp+0jb1N9OlbapdXV12acoZ81t6smjpW3qqMhIDuyRtqlbKrWpv548hbC3bxkwdAj379zl/p28RQrmFhY0bNJY7Z0IBALB/3e0JJqWQwkEAsH/E0IT48nKzGTrho2cPXGS5ORkqtvZMWzsGBo0zZus+3LceLUJIoDoyCjWL1vOrWvXkEgk1KpXl3HTplKxsqp7hPk/zCT47j0S4uIwMTOjqXsLhowZjXk+P8jbN/pw/a/LhL99S1pqKmYWFtSsW4cBw4dRzc6OKqbSFUzhsTFsXLeeU8ePk5ycTA17O8aMG0+TZnk7BSaMGaM22AFSVwbLlyzl+tWrSCQS6tavz5Tp3lRWkvnhgwfs3LadB0FBxMXFoaOjg22VKrTv1JE+/fpp9MGszGddulK9Rg2WrFiOTk4uCxcuxN/fn4yMDFxdXZk2bZra4cadOkkHKpQ7LADPnj1jyZIlBAbeQU9PD3f3Fnh7e2NpqeqjPDc3l99+28rBgweJiYnB1taWzz8fQadOeQPPycnJ/Prrr9y7d5/o6Ghyc3OpXLkyHTt2ZOjQIYqBmdKlZW4fkpOY+c23XDh7FjNzc1JTUqhhZ8fI8eNorLQr44sxY9U6hvKyXrV0GTeuXiVXIqFu/Xp84e1NpcoFu88A2LJhI7/5+HDM/4xax/DMyZPs37OX169ekZ2VRQ17ewYMGUJrTw+sjaW7WUqSfnzWpSsRGvy3A9iUL8+F8+cBSEvOWwmalJTMshVrOX/+EhmZmbi6ODFt6gRcXVQH5Dt1lbr+Uh44AHj27AVLlq0m8M599PR0cW/RFO+pE7Es4iydWT/Oxz/gApcvqrr5ePfuHQcO/sGRP47z+s0bQIuaNWvSa9BAbl2/wZkTJ6TlbGfH5+PGquzYmTJ2nNoEkbyc1yxbxs2r18iVSKhTrx4Tvadp1I2A06fZvXUbr0JDMTIyorWXJ6MnTFBxrbZo3s8E37tHVFQUWZmZlCtfnpZt2jDk8xGKeOVNpANnR1+FqD0jOyuLU1t3cjvgHOnJKZSvXpX2wwbj2DDPpem66d+qTRB91baL2r3kVK/lxvglv6iEPbl9h1NbdxD27AX6BgY4NW5A59GfY2KheXVmN1upC6TgOPXz67IyM9mzcRMXTp0mNTmFKjVqMGDMSOoqddxnTvhCbYIoKjxco9s4gLI2Nmw4vL/APJ31O87qeQtYuMWnwAkiVwup29a0xLydS0lJySxb6cP5C5dlOu3ItMlj1M5W6dRdOhCqPJgO8OzZS5Ys30Dg3SCpHWzeCO8pY7G0VC23l6GvWbNuK0HBj4iJjadsWUvaerozbsxQSikOzc5m+apN3Lh5l/DwCDIysyhb1pLmzd0ZP348FqZ6eTKX6O8QatasxYQJE6jllrf7JSkpiWXLV3H+/J9SuV2dmTZ1Mq4uqu5JOnXpIZVbaYJIKvdzlixdQeCdu9KybtEM72mTVeqcWbPncsz3eIF58Dt2SHG2CUhdKHm160Tz5k1Zt24DAGkpee4WpTKvySfzJA0y95TJfEglXCrzSgLv3JPJ3FQmc15ZX716nT179/Pw0WPi4xMwMNDH3s6Oz3p0pWvXTirnSdStr7qbVpn69Wqxaf3iEqXTYWERdO6hOjGlTPuOHbG0sioRdSLA1ctX2L71N148e05qaiq2VarQq28fPuvVCwsjY6Bk60d+ShtZ4ujoSN9+/Zg2bRpr167lxPHjJCUlYW9vz/gJE1R2aI8eNUptggggMjKSJYsXc/XqVXJzc6nfoAHTp0/H1lbdjduhQ4fYuWMHb9++pZyNDf369WPgwIFqcsbFxbFi+XL+/PNP0tPTcXB0ZNy4cTRr1owy8sPPU5MLzBvIy38F58+fJyMjE1dXF6ZNm4qrS752bGfpghflCSKQt2OXEXhH1o5t0QJv76lq7dhRo8dwS3Y+aX58Nq7HwcGBVavXloj2NMDNmzfVzhiSU79+fTZt8pE99zmbNm3izp1A4uLi0dHRoXKlCugbGPD69RsyM7P+lfrlxEl/Dhz6gxcvQklOSsbI2Ih6dWsxauRQnJ1U3R3evBmocq6dMrXq1MGlphunj58gRdbW+5j9gNSUFLq170DTZs2Yt2ihIjw5KYkta9eVGP0o7j3lfa7QmCi2rN/A6eMnSIiPRyKRsHDlctU29ZhxahNE8nJevVSpTV2/HpMKalOfOs3ubdt49TIUI2MjWnl6Mmaiapu6VYOC3b/XqVePFRvXY2NctIvCv0NaWhoPHz7E2dn5k9mN8inKDJ+u3P+f+LlryS33GcfSPrYIJQ4xQSQQCP5fE5qo2aVGSUU+QRSXUnhntiShGOxIU3ftVlJRniD6lJBPEH2S+qE0QVTSKW0sdXURnpRYRMySRWETRCWVwiaISiqaJog+BUqbSs8o+BS/xbSUT6cuL20krceVJwBKOvIdIp+qTn+SdeInqB+paZ/WYEpxJ4hKEqXLfLpt6k+pboG8+uVT6gvI+wGfon5EJH9abWoxQZTHpygzfLpy/39CTBB9WogziAQCgUAgEAgEAoFAIBAIBAKBQCAQCP5jiDOIBAKBQCAQCAQCgUAgEAgEAoFAIBD8Y3KFv7JPCrGDSCAQCAQCgUAgEAgEAoFAIBAIBAKB4D+GmCASCAQCgUAgEAgEAoFAIBAIBAKBQCD4jyFczAkEAoFAIBAIBAKBQCAQCAQCgUAg+McIF3OfFmIHkUAgEAgEAoFAIBAIBAKBQCAQCAQCwX8MMUEkEAgEAoFAIBAIBAKBQCAQCAQCgUDwH0NLIpGITV8CgUAgEAgEAoFAIBAIBAKBQCAQCP4RszuV/tgiFMic42kfW4QSh9hBJBAIBAKBQCAQCAQCgUAgEAgEAoFA8B9D92MLIBAIBP8mUclJH1uE98La2ASAhJSUjyxJ8TEzMgIgLTn6I0tSfEoblwUgMfXTKWcA0zLSsn6eEPeRJSk+1c0sAIhLSf7IkhQfCyNjAG7FRHxkSd6P+lY2AKSlpX5kSYpP6dJlgE/TfrxOjP/IkrwflU3NAUhLDP3IkhSf0qZVgE+zTkxO/XS+Q+My0u/wU60Tr0aHfWRJik+TshUASIu48JElKT6lbVoBn26bOjXt01klXKa0dLV1euy9jyxJ8SllWQuAlLf+H1mS98OoohcAaUlvP7Ikxae0SUUAQj+h9kcVWdvjU7UfaSmxH1mS4lPayPJfuW9aWhoPHz7E2dmZ0qVL7o6Q/HyqcgsEHwsxQSQQCAQCgUAgEAgEAoFAIBAIBAKB4B+Tm/uxJRC8D8LFnEAgEAgEAoFAIBAIBAKBQCAQCAQCwX8MMUEkEAgEAoFAIBAIBAKBQCAQCAQCgUDwH0O4mBMIBAKBQCAQCAQCgUAgEAgEAoFA8I/JkUg+tgiC90DsIBIIBAKBQCAQCAQCgUAgEAgEAoFAIPiPIXYQCQSC//dkZWWxef0GTh0/TnJyMjXs7Bg9fjwNmzQuMm10VBSrli7jxtWr5Eok1Ktfny+8p1GhUiWVeO4NGmpMP3bSRAYPH674+8LZs5w9c4aHDx4QFxOLdblyNHNvwbBRozA2NlaReeP69Zzw8yM5ORk7OzvGTphA4yZNipQ5KiqK5UuWcE0mc/0GDZjm7U1FJZkjIyI4dvQof126xOtXr9DW1qaGnR0jRo6kUePCy2X+Tz/xx5EjNG/RgqUrVmiMk5yczPKVazl77iIZGRm4uTrjPW0Szk6ORcoP8PzFS5YsXUngnfvo6eni3rwZ3t6TsDA3z8tndAwrVq4lOPgh0TExaGvrUMW2Mn379qRr5w5oaWmp3PPkKX+2bd/N8xcvKVOmDB4eHoydMB4zpXvKycrKYsM6pfK3t2Pce5T/siVLuHblKhJ5+U9XL/+jfyiVv442NWrY8fmoosu/ILKystix0YezJ06SkpxENTs7ho4dS73GjQpN9yY0FL9Dh3kcHMzTx0/Izspi6+FDlKtQXi3uhTP+XLt0icdBwYS9eUPNenVZuG5tseXzWb+ek37HSVLo9HgaFbNMVyxZynWFTtdnSj6dzsjIYMnChTwICiIyIpLc3FwqVqpEl27d6NWnD7p6qk2e61evsnmjD48fPUJfX58GjRryxdSplK9QoUh5srOyOLBpCxdPniY1ORlbuxr0HT2Smo002wE5YaGvCDhylKcPHvDySQjZWVmsOLCXsuVVy/rB7UDmfTG1wPv0HTOKHsOGFClncnIyy5cv5+zZc9Lv0M0Nb+9pODs7F5kW4Pnz5yxZsoTAwDvo6enh7t4Cb+/pWFiofjO5ubls376d/fsPEBMTQ5UqtowY8TkdO3ZQiePr60tAwFkeP35MYmIiFStWpEuXLowcOVJd7n/ZfuTn+InTzJg5l1KlSnH54hm167m5uRw49AcHD/1BaOhrSpUqhW21athUrMCtq9dITk6mul0NRvwfe2cdVlX2NeBXWlFpxQAdRdoWxcAAbB0du2dGHTtGnVJnrAkduzuxkxHBBMSYsQsBRREFDLq7zvfHDbjcewGnZH7feZ/nPo/us8856yz23mvtWnvSRFqWow7Hx8ayec067t26hSAU0rRlSybP+pLaderI81zw9mbFkp/UPmPukkW49SjS8eWLlzi6fz8RL19RpUoV2rq48MX0qRgYGqq8Py0tnbUbduAf8IdUz7bMnjkBO9tGZcoPEP4yklVrtvLgUZCkfLRvzewvJ2JsVPS+rds92LbzgNpn7NmxhmZNHeT/P3LsNMdOePH6TTSGhtXp3bsvM2fOrJA28fatW+zdvZunT54gCAIWlpaM/vRTBg8YAEjavK1btnBWbkcaMXnKFJzLKfPqVau4eeOG3I7MnjOHuiV8jxPHj3Pnzh2CgoKIiY6mT9++LFq8WOl58XFxHD58mKCgIJ6EhJCZmcnW7dtp1aqVQr6KZPtu37rNhXPnePjwIbGxMZiYmNLKqRWTJk/G1MysTHlUkZeby6mde/jjwiUy0tKwaNiAgRPG4ejUqtT77l65yi2/y7x8EkpKYiLGNWrQrJ0zH382Bv1qVf+ULGWRlpbJ2q0n8b/2gOycXBxt6zN76mDsrOuVel9hYSHeF27id/U+oc+jSEnLoE4tU7q7OjFmaDd0dbUV8h/7LYA7958S9OQl0bFJ9O3RliVzP1f7/H/Dpy5O4MOHTB3/BQBnfC9hWKI9871wkUMeHkS8fEnlKlVo2749+lX1CfDzJz0tDRsbGyZNnlzuerdq5UpuSOtdq1atmPPVV0r1DuA3T0889u/n7Zs31KxZk+HDhzNs+HCFPL179eLdu3cq32VhYcFpLy8AvLy8WLRwoVq5fl44g97dXRTSUtMyWLtpP5ev3iYrOxdHeyvmTB+DnU2DMr/zcchzvHwCCAp5zvOwSPILCnj4x3GVeZu1G6wyfcakEYwd80mZ7ypOWnom67b9xuXrj8jOycXBth6zJg3Aztqy1PsKCwvxvniLy9ceERoWRUpaJnXMTejWpSWjh7qjq1NUprNzclm+/hhBT14RHZdEYUEhdWub8XHPtgzu1xFtLU318qWls3b9NvwDrpOdnSOxiV9Ows7WulzfF/4yglWrN/Pg0WOpTWzD7FlTFGyijKjXb9i8dQ+3bt8nMzOTGjXM6ObemWlTFP2hI8c8OXb8NK/fvFOyiR7btuN77jzpaWl8ZNWQz97D/9hawv+YNOtLahXzPwAy0tM5tHsPv1+5QnxsHIZGRjR3cmL0F+OoYW6ukPf+7dsc3rOXl2EvKCgooK6lJf2GDMa9V88y5alI/fTSSEtLY+26Tfhfvir1meyZPWs6dnbv4ZuuWseDh4ES37RDO2bPnlGibxvHunWbCA55SlxcPBoaGtSrZ8GQwQPp26enQt/Wzz+Aixf9CA55QkJ8AjXNa+Lq6saUKVOoXr16uWQSERERKU4lQRD3fImIiPx5NmzYwMaNG+X/19HRoW7dugwYMIBx48ahoSHZqGhjI3GeFi1axPASHajff/+dsWPHAuDn5yfviLm6utK5c2cWLFjwp+WLTUtl0bz5BPj5MXjEcCwsLDjn7c2T4BDWb9tKk2bN1N6bmZnJuFGjyUhPZ+jIkWhpaXHs0CFAYPfBgwqDbi6tnHBq04buvXspPMPaxoaPGjaU/7+PmzsmZma4dO5ETXNzwsPCOH3yFLXr1GHXgf1YmNUAYNqMGfj7+jJsxAgsLC3xOXOGkOBgNm/bRrPmzUuVeczIkaSnpzNy1Ci0tLQ4fPAgAnDg0CG5zMePHmXDunV06tyZJs2aUZCfz1kfH0KfPuX7hQvp+/HHKp//JCSEcZ99hpaWFq2cnFi9bh2GVSWDI5lpcYCkIzd2/FSePQ/j09HDMTQ04NgJT2JiYjm4fxf1LC3Uyg8QExPLsJFjqVZVn2HDBpGVmYXHgcOYm9fkwL4daGtLOoLPnoexfMVamjVtjLl5TfLzC7h56w5Xrl5n7OejmT51ovyZx054snTZKlq3bolbl04kJmfg4eFBnbp12eOxD11dXQUZvp87Dz8/X4YPl+jf+8wZQkKC2VIO/Y8eMZKM9HRGyPR/6CCCAAcOH5IPbBw7cpQN6yX6b9q0GQUF+Zz19uHp06f8sHAhffup1r+BvkTX4cmJSteWfb+A6/7+9B82lNoWFvj6+PAs5AnLNm/CsVlTtTJf8vZh7c+/YPlRfTQ0NQl/9lztBNE3k6cQ9jQUazs7Xjx/xkdWVmVOEDUwNAZg2ozp+Pv6MXTECCwsLfA5482T4GA2bdtG0+bN1N6fmZnJZyNHkZ6ezohRI9HU0uLowUMIgMehonqYkpLCnBkzadaiObVq1aaSRiUeBwZy4ew53Lt1Y8kvP8ufef3qNb6dMwcbW1t69OpFRkY6xw4fQVtHh32HDtLQQjJYcS8+WqVMGxYu5vblK/QYMhhzizpcPXue8CdPmb9hLbZNm6j9lis+59i+bDl169dDQ1OTiOdhKieIUhITeXznrtL9185f5PHtO/y4cysNVUzytDQ1l+osQ1IPx47j2bNnfPrpGAwNDTl27DgxMTEcPHiQevVKH5CJiYlh2LDhVKtWlWHDhpOVlYmHx37Mzc05cGC/vB4CrF+/gT179jBgwCc4ODgQEBDAtWvXWbp0KT16dJfKlEn79h1o3LgxHTu6YGxsTGBgIGfOeNOqVSu2blpFpUqV/rX2oziZmZn0HziC9PQMAJUTRAsW/cy5cxfp3bsHTq3bkpmZye69e4iNjmHgiOHUsbDgorcPoSEhrNyyical2JaszEwmjf6UjIx0Bo8YgaaWFicPHwFBYOuB/RgYGgDw9s0bQgIDle4/efgIL56HceSMF8amJgB4nTjJ+uUraO7Uig5dOhMfG4fnkaPUrluXjXt2oaOri4WBZBAiMyVCoucJs3n2PJxPRw2W6vkMMbFxHNy3iXqWdZTeq6jnOIaNniLR89B+ZGVm43HwBOY1zTiwd0Oxdjqc52HhSvdv3LyHzKxsfM8dkeddt2Ene/cfw93VhdZOzQl/GcGJUz44OztTWV+/QtnEM15e/LxkCa3btMGlUyc0NTSIiIjAzMyMaVOmADB9xgz8/PwYMXy43I4Eh4SwrRwyjxoxQkHmQ4cOgSBw8PBhhQHyvr17k5mZiYODA7du36Znz54qJ4ju3r3LpAkTsLS0xNDQkMDAQIUJomr6+sVkrhi2b8zIUaSmpuLm7o6FpQVvX7/h+LFj6OrpceDwIUxNTeU28WbcW7WyFWfzwh+5G3CFbkMGUbNuHa6fu8DLJ0/5bv0arJs2Vnvf1N79MDQ1paVLe4xr1uT1i3Aunz6DWe1aLNm9HZ0SPkRpOJtJFiFkRl9Rm6ewsJCx01fw7MVrPh3WDUODqhz7LYCY2CQO7phPvbo11d6bmZlN+54zaGzfgI7tGmNsWJ3A4BecuXCDFk0asX3tHIVBxl5D55KZmY2DbX1u33tCz65tlCaIqph3Av49n7q4HsaPGs3rqCiysrKUJog8T5xg9bJfadnaiU5duhAbG8uhfR4UFhYyePhwGtvZ4enpyePHj9m2fTvNyyjDI4YPJz09nVGjR0vq3cGDCILA4SNHFN574sQJfvn5Z9zc3Gjbrh0P7t/Hx8eHGTNm8NnnRbq7fPkymZmZCu959+4dmzdtYvCQIcydOxeA169f8+jRIwB0dXQAyEuP4sBRb56FRXDht62YmhQNIhcWFvL55AU8C3vFpyP6YWhYjWOnLhATk8ChPb9Sz0LZfyvOlp3H2OVxCmuremRkZhER+a7UCSJnpyb07dlJId3G+iOsGkjscWUTid+T/sZX7TsLCwsZP3MNz168ZsxQdwwNqnL89FVi4pI5sPVbLOvWUHtvZlY2Lr3n0Nj+I1ycHTEyrMbjkHC8L96ieRMrtq2aKS/TKakZzJi7mRZNrKhlboJGpUoEBodz1vcO3bq05Jfvi/4+Veu4S56f+kZS576YybPnL/h09FAMDQw4duK0xCZ6bKWepfpJTJDaxFETpDZxAFlZWXgcOIZ5zRoc2LdZwfcIDQ1j/KRZ1DAzpU/vbhgYVCc6OpaYmFgWL/xWnm/dhu3s9TiCu1tHWju1kNjEk2dwdnZGq0plrvn588nwYdSxsOCS1P9YsWUTjmX4H1Ok/scgqf9x6vARBKn/UV3qfxQWFjJz7HgiXr6k78AB1LW05O3r15w5eZIq+vrsPHqEKlK7cePqVRZ9/S12jR3p0q0blSpV4oqvH48fPGDilzOZPVliE2PTUlXKVJH66cWpUU0yyZKZniD1TSfz7FkYn44ZIfGpj5+S+NQH9pTPNx3xmdQ3HSwpH/sPSXxqj50l+rZrpH1bc/Lz87l56zZXrlxn7OdjmD5tkvyZXVx7YmZmSufOHTE3r0lY2AtOnPwNCwsLPD090dPTK1Wm9yEzM5MnT55gZ2dHlSpV/rbn/tP8V+X+X+K7bpU/tAhqWXYx60OLUOEQdxCJiIj8ZfT09Ni3bx8gWcV/69YtVq1ahSAITJgwQZ6vSpUqnD17VmmCyNvbmypVqih1ov4OQoKC8bt4kSkzZzB8tGTFfffevfl06DC2rF/Plt271d7refwEryMj2b5vL3YOkhXOzu3b8enQYRw5eJCJU6cq5LewtKR7r16qHiXnx19/pXmrlgppNrZ2/LxoERfPn2fc6DEEBgZy6cIFps+cyagxYwDo1bs3I4YMYeP69ezcs0ft808eP05UZCR7PDywl8rctl07RgwdysEDB5gybRoALVu1wsvHR2H3zIBBgxg9fDjbt25VOUEkCAKrVqygV58+3L19W60Mvn6XeRT4mOXLfqSrexcAunZ1pf+A4WzdtoulPy8qVUe79niQnZXFoQM7qSVdoebgYMfkqbPwOnOWgQP6AWDdyIqd2zcq3Dts6EBmzvqGw0dOMGXSeDQ1NcnLy2Pjpm20aNGMrZvWUqlSJapUM6N58+ZMmjSJ3zw9GTpsmPwZwUFBXLxwgRlfFtN/n94MHzyEDevWs2uvev2fOCbR/979Rfpv174dw4cM5dD+A0yZLtW/UyvOqND/qGHD2bZ1q9oJInWEBgdz5dIlxk2fxqBRIwFw79WTSSNGsnvjRlbv3KH2XmeXDhz3vUgVfX1OHDhI+LPnavN+vWghJmZmaGhoMGn4yHLLJynTF5k2cyYjx0jqYc/evRk5ZCgb169nxx719fCUtEzv8thXrEy3Z9TQoRw6cJDJ0yT10MDAgJ379ircO2DQIKpWrcqJo8eYOXsWJqamAGzesIHadeqwbfcueaesQ8eOfDZyFPv37GVRKZPSYSFPuOHrz4ipk+kzQlJuXHp059vRn3N481YWb1M/YdbSpT07O/tQWb8K3oeOEPE8TGU+A2NjOnTvppR+cvdezC3qqpwcKomvry+PHj1i+fLldO0qGQTp2rUb/fv3Z+vWrSxd+kup9+/atZvs7GwOHTpILekEloODI5MnT8bLy4uBAwcCkhXX+/fvZ+jQIXz33XcAfPLJJ4wbN561a9fStas7mpqaaGtrs2fPHpoVm6wcMGAAlpb12LBhA7du38W5jdO/1n4UZ8eufehXqYJTqxZcDrimdP3iJT/OeJ9j1Yqfce3SiSrVzAgMDCT6l1+YMGM6Q6R1rluvnowfPpIdGzaxfpf6Oud14iRvoqLYuHc3tvb2ALRu15bxw0dy4tAhxk2ZDEDtOnUUdhQB5GRnSyaCWrWUTw7l5eWxe8tWmjRvzvKNG+QDZQ6NG/P9nK/w+e00nwwdovAcX79rPAoMYfnS7+nq1lGiZ/eO9B80lq3bPVj609zS9bz3MNlZ2Rzy2EQt8xpSPdswedp3eHlfZOAnvQGwbtQA60aKK9qjY2KJiY3nk3495PUvLj6BA4dO0runOz8t/kaet5FNE3788UeACmMT3759y4plyxg8dChzvv5a5XsDAwO5eOECM7/8ktFSmXv36cPQwYNZv24du/fuVSvz8WPHiIyMZN/+/ThIZW7fvj1Dhwzh4P79TJ0+XZ53+44dmNeqRaVKlXBp317tM+3s7PC7fBkDAwN8fX0J/OYbpTwymSuK7fty9myaNW8mX2gE4NyuHZO++ILjR48xeeoUtfKo4kXIE275+TN0yiR6jRgKQPse3Zk/5nOObtnGD1s3qr132o+LsWvRTCGtvo01O35exh8Xfenct/d7yVIWvgH3eRT0guWLJ9K1s8Rn7NqlFf1H/sDW3WdYumC82nu1tbXYs+lbmjkWDXoO6OtCLXNTtu7x4ta9Jzi3spdf27nuK2rVNKZSpUq06zFd1SPl/Js+NYDXKU9iY2Lo078fxw8fUbiWl5fH9k2badqiOWs2baJSpUqEBAVzYM9eQNJ+Dh06lP79+9Ord2/WrV3LXmlfRRXHpPVu/4EDCvVuyODB7N+/n+nSepednc3mTZvo4OLCipUrJfodMIBCQWDHjh0MGDhQvnq/S5cuSu/ZuUNiG3r1LNpZUbduXfniOH3pIGbS2zv8snInTi0cFSaHAC5dvsmjx6Gs+Gk2XV3bAtDNtS39hs1ky86jLFv8pdrvBBgyoBufj+6Hnq4uS1ftJCJS9S4nGfUsa9G7R8dS85SF79UHPAoO59eF43Dv1AKArp1b8MmYxWzd66MwcVMSbS0tdq+fQ1PHIlsyoE97apmbsG2vD7fvh9KmpS0ABtX12bdJsV0e9LELVfUrc/S3K8yeMgBTYwNl+fyu8igwmOXLFtLVTTIZ1rVrZ/oPHMPW7XtZ+tP3pX7frj0HJTZx/1ZqmUsmcB3sbZk87Wu8zlxg4IA+gGTi5fuFS/moviXbt6xGT0/15HJcfAIHDh6nd6+u/LS4yB43snaU28QvZkxnsNT/6NqrJxOGj2Tnhk2sLcX/OCP1Pzbs3Y2N1P9wateWCVL/Y6zU/3gSFERoSAjTvv6KjwcPkt9ft149Vv34E/dv36FDl84AnD5+AmNTU5Zv3oSOdIKz9yf9GTdkGJe8feQTRKqoaP10dfj6XubRo8cs//Unurq7AlLf9JNhbN26k6W/KC/MKM6u3fukvuluatWS+ab2TJ4yE68zPgwc0B+Q9W03Kdw7bOggZn75NYePHGfK5C/Q1JTsglux/GdatWqhkLdZ81Z8++23nDlzhsGDVe/+ExEREVGHeAaRiIjIX0ZDQ4NmzZrRrFkznJ2dmTlzJm5ubly8eFEhn5ubG3fv3iUmJkaelpuby6VLl3B3d/9HZAvw80NTU5OPPykKg6Crq0vvfh8TFPiYmGjVOwQArvj5YWdvL3c6AerVr08LJycuX1K9Si4nO5ucnBy1zyw5OQTQsUtnACJevgTg/PnzaGpq0l8apkYmc99+/XgcGFiqzP5+ftg7OMgHaADqf/QRrZyc8LtUtCq+QcOGSqHVdHR0aNe+PbExMWRkZCg9+5yPDy9evGDylNIHZXz9AjAxMcbNtWi1obGREd3cXQm4cp3c3NxS7/fzv4KLSzv54C6Acxsn6llacNHXv9R7AWrVqkV2djZ5efkAhL0IJy0tne5dXRVWzXbp0oUqVapw6YJiOfXz9VOp/4/7/zX9+xbTf0N1+u+gXv+lcd3/MhqamvTs37/oebq6dO/blyePg4grVudKUs3AQL4KsCzMatZUGKwrL0VlWrEe9u3Xj6By6NTOwb6ETusrlWl11KolWa2dlpYOSHYavQwPp1OXzgorOhtZW1P/o/pcKtFuleT25QA0NDVx7ddXnqajq0vnPr14HhRMQkys2nurVq9OZf0/t4ItLOQJMa/f0L5b13Ll9/X1w8TEBDc3V3masbER3bp1JSAgoOx66OeHi4uLfHIIwNm5DfXq1ePixSK9BwQEkJ+fz+DBRRMQlSpVYvDgwcTExBAo3QGjra2tMDkko2tXyfe8fBkhkftfbj8iIqM4eOgYs2dNl3e6S3Lg4FEcHexw7dKJwsJCMjMzOX/+PBqamvQuUed6fNyXkMePiS2lzl31v4yNvb18cgjAsn59mrdqxRVfv1K/78a162RmZOLWvbs87dWLF6SnpdGpq5tCG+fs0oHKVaoQoKKe+Ppfw8TYCLcuHeRpxkaGdHPvSMDVP8rW8+XruHRoI58cAnBu3YJ6lnW56Hu11HvPXwhAEAR69nCTpwU+fkJ+QQHdu3VWyNtLOphTqVKlCmMTPU+coLCwkImTJCt5MzMzKRmQQdbmfVJC5n79+0smF0uR2U8qs0MJmZ2cnLhU4m9Zq3ZtpXCqqtDX18fAQHlQVJXMFcX2tWjZQsnetGjZguoGBryS+kvvw92AK2hoatClX5+id+vq0LFPL8LKaLtLTg4BtOwkCfn17lXEe8tSFr5X7mFiXB23jkU7XowNq9GtS0sCfn9Ibm6e2nu1tbUUJodkuLo0A+BlhOLfsba5SbnKEPy7PnVqSgo7t2xh3KSJVK1aTel6uLTdc+vaVS6/TD69ypXxk9pyXV1d+vfrV3a98/XFoUS9++ijj3Bq3Vqh3t29c4fk5GSGlBh8HTJkCFlZWVy7przIoDjnzp2jTp06NC1lZwTAlev3yMjMoleJ0HIAvpdvYmJsgFvnohBcxkYGdHNtS8C1u6WWDwATY0P03mPXG0B2Tg45OaXbhdLwu/IAE6Nq8nIIYGRYja6dW3Dlj8Ayy3TxySEZXTpIfIqSZVoVtcwlu9nT0lWvGPf1vyK1iUX6ltjEzgRcKY9NvIaLi7N8cgjAuU1LqU0MkKfduHmXsBcvmTB+DHp6umRlZ1NQUKD0vMDAYKlNVJxkLG4Te5X0+cvhf1yT+h82KvyPq8X8j0xpW2xobKxwv2xhim6xia3MjAyqVqsmnxwC0NTSorqhATpqJsBkVLR+ujp8/S5LfdPO8jRjIyO6dXUl4Mq1cvimAbi4tJdPDoHUN61nycVL5ejb1lbs2wJKk0OAfDzlxYsXZT5TREREpCTiBJGIiMg/gr6+Pvn5+QppdnZ21K9fn7Nnz8rTrly5giAIdO7c+R+R43loKHUtLdGvqhgjXuZMhj17pvK+wsJCXoSFYWOvvFLf3sGeN69fy51nGee8venq0hH39h0YNXgIl86fL5eMCQkJAPKt8E+ePMHC0pKqJWR2cHQE4FkpMoc9f67yfBF7Bwdev35d5sRDQkICenp6StvSMzIy2Lh+PZ99/rl8F4Y6noY+x9bGWmlgx8HBnuzsbCIio9TeGxsbR2JiEvZ2tkrXHB3sCQ1V3t2SnZ1DUnIyb9++w8v7HF5nztKksaN8VZ6s01kyjJwsLTT0KYWFhfK0Z6GhWKrQv72DVP+hZehfRZlxcPxr+i+LF8+eUcfCAv2qihM91g728usfElmZLlkP7R0l9bC0Mv3ieRh2dvZK1+wcHHijQqd5eXkkJyUTEx1NgP9lDu3fj3mtWtS1kKzOzZOXB2Ud6+rpER8XR1xcnNpvefXsObUs6ipNqjWU/t1fPVe/A+uv8Lt0UqZ9t/JNpj99+hRbW1sV9dBRUg8j1A9qxsbGkpiYiL2Ksuzo6EBoaGix94RSuXJlGjT4SCmf7HppxMfHA2AoDWvyb7cfK1etx6lVc1w6tFX5zPT0DIKCn+Bgb8eGTdtw6dyd5s2bc+DAAYyNjZXqnGzSR12dKywsJDwsDGsVMto62PNWhW0pjt+FC+jq6spX7kIZZVpXl7DQZwptHMDTZ2HY2lop69nehuzsHCIi36iVITY2nsTEZOztlM9lcHSwITRU9c44GWfP+2Ne04yWzYtCesnaaT1dHYW8lStLQlNoaWlVGJt4+/Zt6tWvz++//06fnj3p4uJCN1dXtm7eLNfzkydPVNoR2eDzs1DV9UIms729cpvn4OhYLpn/LOpkrki2LzMzk6zMTKVzaMpDxLMwzC0sqFyi7W4grYuRanZ0qiMlQRLqtaph6RNvf4anz6OwbWSpXD/tPiI7O5eIKPUDwOpISJSEdzI0+PNnJv2bPvXOrVsxNjHh42ITlsXJkw7IFg/vJ5NPT0+P56Gh8vooaytCS6l3z9XUO0cHB15HRcnL8FPpM4pPhgLY29ujoaFB6NOnKt8BErv88uVLehTbPaSOcxeuoaerg1sn5XNYnj57ia1NA6Xy4WhvJWm/o8oXcrG8eJ0NoK3raNp0GcmAEV9y9mLpk2CqCA17jW0jC+UybVtfUqZfq5+gVUdpZTovL5+klHSiY5Pwv/aQ/cf8qFXTGIs6qs8vexoahq1tIxW+h63U93itVo4i30P5LBpHB1tCnxW1Lbdu3wNAR0ebEWMm0c6lF21devHtvB9JSSkKwZabJ7OJin0XmU3U1NL60/5HIxX+h00J/8Pazg69ypXZt20bD+7cJT42lsD799m5YSM29va0cCo606dpixZEhIezd+s23kRF8fb1aw7s2s2zJ08ZMnqUGq1J+C/00wGehj7D1tZGvW8aUQ7f1F6Vb2pHqArbmp2dQ1KStG975ixeXj40aeKodseZDJlPbVTKmZsiIv8mhYUV9yeijBhiTkRE5G9BNhkkCzF38eJFJk6cqJSvd+/eeHt787k0Rre3tzddu3ZVOXj/d5AQH4+JdLVTcWSTHPFx8SrvS01NJTc3V+VkSNG9cVhKBxocmzTBtas7tWrXJj4uHs/jx1ny/Q+kp6fzyaBBSs8ozsF9HmhqatLZTbKaOi4uDtNS3qtu8Do1JUWtzKbFZNZXs1skKiqKgMuXcXV3V1pJv2vHDnT19Bg+suywYvHxCbRorrxTwFT6d4iLi6eRlep4z3HxCQp5S96fkiL5uxRfpXboyDE2bNwm/3/r1i1ZvGCe/P+WlnWpVKkSDx89pt/HRWFgwsPDSUpKAiR/b9mAU3x8vGodmpVP/6r+duXSf2QUAf6q9V8WifEJ8lV9xTE2kbw3UU05/7eIi4srs1yqIjVFfT1Up9MAf38WzJsv/7+dvT3zFixAS0vi8hibGFOtWjUCpfH+ZaQkJ/MqXLIqPSYmBjM1h6AnJyRiaKKsa1lasrQM/50UFhRw0+8yDe3tMC/lMO/ixMfH06KF8upC02LtSKNGjVTeGyctL+rKcoq0rOvo6BAfH4eJifIKdNMy2isZO3fupGrVqnRo7yyV+99rP65d/4ObN29z5PBetfK9fv0GQRC4cNEPTS1NZs6YgolpLebPn098XBy3b9ygdduiySVZWU1QU+fSUlPJU1OmZXU4IT5e5a6+1JQU7t64SbtOHRWu17G0oFKlSgQ/ekSPvkW7I6IiIkiWtnFpqWlgVKSX+PhEWjRTPnOlSM8JNLL6SOk6QFx8ojSvsdI1UxNjUlLTlNppGS9evOJ5WDifjR6iUGbq15OU64ePgnFq1Uyefveu5CwuVSusP5RNjIqMRFNTk58WL2bUmDE0srYmwN+fPbt2UVBQwPy5c9XacVNpu/JX7EhcKTL/FdS20xXI9h0+dIi8vDzcy7mTsjjJCQkYmiiX2aK2+/3spM/Bw2hoauDUuVPZmd+T+MQUWjRVbp9NTSSTUXEJKTRqWD5bIGPv4QtU1dejQxvHPy3Xv+VThz1/jtcpT5avW6u2TNS1tKRSpUo8fhRIb2kIyIT4eKrq68t35KekpGBkZIRZGW1FSmlluFid1dfXJz4+Hk1NTYxL7KzQ1tbGwMCgVJt3TrpArmcZE0TJycn8fushXTo6oa+vfH5DfEISLZspD4zLQtHFxSXRqGG9Ut9RXpo2tqGba1vq1K5BXHwSR0+eZ96i9aSnZzJkQPeyHyCXOYUWTayUZTaWhOOLS0ihUYPSz74ricdRX/T19WjfRnliz//aQ+b9VBQW097GkgVfj0JLTXmS+B7KZ0jK7JzEJirvYoIybGIJ3yMySrL44tu5S2jXtjVjPxvBs2cv2LP3EDExsezZuZ5KlSpRv57kTJuHj4JwalW0k1BmEwtV2ETjcvofxuXwPwwMDZn/80+s+WUp306dJs/XytmZH5b9gqZW0TDiiHFjiX77lsN79nJot0Tnunp6LFi2lHadSg9N+F/op4O0fKjYSVrkM8XRqJE63zReIa/i/aaq+7aHj7Jh41b5/1u3bsXihfOV7i/Jjh070NTUpHv38tdNERERERniBJGIiMhfRnZAcnF69eqlcP6QjD59+rBhwwYiIyMxMTEhICCATZs2kZ2d/Y/IlpOTg4628iCV7BDYnBzV782RyqOt4l4dHV35s2Vs2b1LIU/vfh8zftRotm/aTK8+fdBVsyr20vnz+Jw+zYgxY7CwlBwan52djamKgbUimVVvjZelqxqUk62wVHdvdlYW8779Fl1dXYXzDQAiIyI4evgwP/7yi8pnq5JDR0f5IHhd3dLlV/wG5ft1it1fXI4e3btib2dLUlIy167/QUJiosI7jAwN6eruirf3OT76qB6unTuSmhHBjz/+iJaWFvn5+Qr5c3KyVX5nefVf3jJTnOysLOZK9T9tRulnAKh7t8r3lkPn/waSMq3ib1qmTrOl+UovD8Vp2aoV6zZvIj0tjbu37/D8+XOys4tCimhoaNB/wAD279vH5g0b6dvvY8kOuXXryZOu2CytPcrNyUFLW1kebem35P4Dug66e5+UxET6jSn/uU8l64mM8tVDmd5LL8s6OjrSsqeqvsvyqdflrl27+OOPP1i4cCHVqlUr9tx/vv3Iy8tj5er1DBzYn4YNVE+EAGRmScpOckoKHnu30djRgSrVzFi7di3R0dEc3L1HYYJIuww5i9oJVfWh9Hbiqv9l8vLycOuh2PE3MDSkk7sbF33OYvlRfdp37kxCbBwbV66St3Ely2VOTq5qPUvTyqVnVd8g/37VE0RnL0hCqfTs4aqQbmfbiMaOtuzdf4waNUxxatmU8FeRLFuxBUBpB5RE1g9jE7OysigsLGTq9OmM+ewzAFzd3EhNTeXo4cPMnD6d7OxseZug8N4yZM4utXz8s+15dnY2ZhXY9t2/d5+d27fj3rUrTq1bl5pXFbk5uWipkFHedpcRIqg4Ny76ctX7LL1GDMPc4v0maspDTk4uOtrK3fSi+vl+ob527T/LrXtPmDtrBNWq/fmDuv8tn3rdipW0adeW1s7OamUxNDSki7s75729qf9RfTp27kxaWiox0dFKvl1Z9V1ehstRZ3Oys1XWT5DYPXXvKCws5MKFC9ja2tKggeqJBhkXLlwgLy+fXt2Uw8tJZMlVbXel5SP7L4SCK8m+bT8p/L9/ny4M//xbNmw7zMe9O5c7VF1Obh7aKsq0jrxMlx4WryS7D57n1r2nfDdzKNWqKpfpVs2s2bxiOmnpmdy+H8rzF2/IzlavF0mdU6XT9/A9VJZvRZuYlSnxKeztbfn5R8liNnfXjujp6bJh005u3b6Pc5uW2Nla09jRjr0eR6hhZopTq+aEv4xg2QrJWWmqbKLM/qrzQ0u13dJ6WPxeAyNDrGyscRg8iHoNGvDi2TOO7T/AyiU/8cOyonMsdbS1qWNpiYurK+27dKawsICznqf5deEilm1YT70OqsuxTKaK3E9XlPOfLB8l+rY9umJvb0dSUhLXrin3bVVx7txFTpw4wfjx46lfv36peUVERERUIU4QiYiI/GX09PQ4cOAAIOlgBwcHs379er7//nuWLl2qkLd+/fo4ODjg7e1NnTp10NfXp23btly+fPkfkU1XV5fcPOUOQY50IEBVSB5A7ijmqbg3NzdH/mx1aGtrM2DIEFYuXUro06c0URFr/NGDByz78Sdat3XmC+mhoCDRZ56KgYoimVW/V5auapBD5vCruregoIDv583jZXg4a9evV9o5sXrlSpo0bYqrm5tCemFhIQnx8eRJB1Cz0hMwMjKU6FxFLHHZgEZpeiv6BuX7c9XcX7uWObWlMZ179ujKjz//yqQpX+J58rB8K/73878mJyeHNWs3sWat5PDPjz/+mFq1a3PZ358qVYo6l7q6eip1WF79v2+Zkaw4l+p/g7L+y4Ourq7q95ZD5/8Genp6qv+mZepUT5qv/OXB2MSE1tIV4a7u7uzdvZuZU6ZyzPOUfFXhF5MnkZyczEEPD/ZLD4tv4+xM33798Dx5stTV+Tq6uuTnKcujKtzN38XvFy+hoalJWzdXpWv5eXmkp0rCksQJkpWxenq60nqoohyXqx7K9F52WZaUPVX1XZZPdRvr4+PDxo2b6NOnD127diU+/t9tPw4cPEpycgqTJ45T+7zi+evUqUVjx6KFEJUrV6a6oQGhwSEU5OfLV9PmlSFnUTuhqj6Ublv8z1+gWvXqtG7XTunal3O/Iycnh23rNrBt3QYA3Hv2oGbtWvxx5SrZ2Vnyle16mgXo6uqo1nMpITlLfkOuqm+Qf7/yQIggCJy7cBmrhvWxbqQ8QLpy2QK+nf8zi35cBYCmpgafffY5Bw4cUApZK5H1w9hEXV1dsrKy6FZihW637t258ccfPHnyRK0dL6vN0yu1fPyz7bmkna6Ytu/Vy5d889VXNGxoxfwFP5T9MSrQ0dUhX4WM8ra7HAtgAEIfBbJr2Qoat3Zi0ITxf0oW+bvz8klJVQyDZGRYTVI/81SVeVn9LJ+sABf877Bp12n69+7AkP6d/5K8/4ZP7XfxIkGBgew7eqRMeb6eP4/cnBw2rV3HprXrAIkP4NSmDVcuX5b7dqXV9+Lp5amzunp6KusnSOyeunfcu3eP2NhYRpZjJ/6ZM2cwqF6V1q0aE5+QpHDNyLA6uro6qu2umlCdfyfa2toMG9STn5Zv58nTcJo3VdzJlJeXT0paiTJtUA1dHW2F81NkFIWBVj3ppoqLl++xebc3/Xq1Y3A/1TtUTIyrYyLdneTeqQW7D55nytcbOLZ7vnyiKktHahO1pDZRpU7fw/dQWb4VbaLs7J4e3RX9uZ493NiwaSePAoNxbiM5r3blr4v4dt6PLPpxBaBoE/NU2ESZ/VXnh5Zqu3MVJ1PfvXnD15On8s2iBbi4SmRt16kjNWvVYuWSH7n9xx9yX2TjilU8CQpi8/598hBsndzd+WLocDavXk2PUiaIKlo/PS8vj9SUFAAqZUueo6cjSOX8J8tHyb5tLWpLzwDt2aMbP/60jEmTZ+J56ojKMHP3Hzxk8Y+/0KFDB2bNmkVmZqZaef4MWbK+fpbqM7z+CrJ2+u+WGf45uYuPG4iUTqFQdh6RioM4QSQiIvKX0dDQoHHjolA1LVu2pKCggGXLlvH5559jba14TkGfPn04efIktWvXpmfPnu8dTut9MDE1VRnuIUG23dtM9Xk61atXR0dHR55P9b2lD+TXqCk5qFTmaBYn7Nkzvps9hwYNG/Djr7/Kw18BmJmZ8fbdO7XvVTeIUt3AQK3M8aXI/MtPP3H92jUW//QTrUqsyr17+zY3/viDX1es4O3bopjm+QUFJCQk0KvEAJmP13FMTU2IVxFmS5ZmpkbnAGbS7ffq7jcwqF7mII67WxdOeZ7h/oOHtGsrid1erWpV1q5exrvoaN6+jaaBlT116tRh0ODBGBkZyXcvgGS7f1yscix0WZiDsvQf/776/1Gi/yU///SnVkWDJDREfKxyOU9MkLzXuBSd/xuoK9Ol6QWguoH6eljWvTJc3dzYtmkzV69c4ZOBAwFJx3Degh+YNHUKkZGRGBsbY1mvHgvmzUdDQwNL6W4+VRiaGJOkQp5k6VlihipCSPwVcnNyuHv1Go6tWmJgrBy+5NnjIH6a/qVCmo+PN6ampqWWxdIGY2V1VN39BtKyDmBqasadO3cRBEEhZFhp77l58yYLFy4CJGFGvb29JXL/S+1HWno6O3fvY8igT8jIyJCfLZGZmYUgCLx9+w49PT2MjY3k7ysZTsjMzIyY2Fjy8/PJys6Wn9siK6smauSsVr062mrKdKJUblUhU2Kio3n88CG9+/dXsBcyqlatyo8rVxATHU3M23fUrGVOzVq1GDd0OACfDx4qz+vzmwempsbES89QKaknyfepL8dm0jA68fEq7k9IxKB6NZXt9MNHwbx7F8P0qWNVPrdGDVP27FhDROQbEhISsbSog2XD5nh4eCiEs5HxIWyi7J6oyEiMS4SaNJKWkZSUFMzMzHinqs2T+iN/xY78mUUE5UG9zB/W9sVERzN96lSqVq3K2vXr/nR4PUMTkzLa7rLtZOTzMNZ+O5+6DT5i2k+L0dT6a/7ro6AXfPHlKoU0nyO/YGpsQHyCsu8oSzMzKd+5RzfvhPDDL3twcW7M/Nnl34Gqjn/Dp968bj1d3N3Q1tbmndTvTE9PAyA2Oob8vDx53qpVq7J09SpioqN59/Yt2zdvJjUllYSEeAyNjKheXRq+rIy6Y1BaGS5RZ01NTSkoKCAxMVHBLuTl5cnrvirOnT2LhoYGPXr0UHldxtu3b7l79y4D+7kT/OQFX0xbpHDd5+QmTE2MiEtIVpZVOplkZvbPnj9Ss4ak7UtJTVe69ig4nImz1ymknTm0BFMTNWVaeo5Qucv03ScsWOZBhzYOzJs1rNwyu3VszqZdZzh88jIHTyguSvQ5fagU30Ni5/60TSzRd5H5KSbGin8jY+mZMWlpafK0GjXM2LNzPRGRr6U2sS6WDRrj4eGhMlReYjn9j8Ry+B8XvX3Iy82lTYcOCvnadpRM9gQ/CqR1u3bk5eVx3suLIaNHKZzPo6WlhVO7tngdP6E25KzsfRWpnx70KJAZkyYp5PM5c7IcvmkpPrUs5J3K++Pfo2/rxf37D2jXTnFnZeiz53w561saNmzA+vXr0dLS4lGJMNp/F69evfrbn9mypWRC9MmTJ3/7s2X83XLLZBYR+V9DnCASERH5R5CFTwgLC1OaIOrVqxfLly8nPDycgwcP/qNyWNlY8+DePTLS0xUOwAwJCpZcLyGbDA0NDRpYNSQ0RNlZCQkKpnadOirPiCjO2zeSONOGJQ6KfPP6NXOmz8DIyIjl69YprUKxtbXl1q1bpKenKxwWHRwUBKCkz+IyN7SyUulgBQcFyXdsFWf92rV4e3kxa84cuqvotEZHRwPw7ddfK12TTaIMGzaM7t27k52ZjImJMTbWVjx4GEhhYaFCZyEoOBg9PT3qWVqolB8knSEjI0NCnigf8hsUHIKNteozU4qTLV3xlZ6u3HGtZW5OLXNzqlQzIzU1ladPntClxK4Ma2tr7t29q17/NmXoX0WZCQ4Kok5dFfpfs5YzXl7M/kq1/stLg0aNeHTvPhnpGQqH1oYGS8p5QzVl5t9CVqZL1sPyl+kQpfWu/rMAAQAASURBVGshasp0SWQ7WTJUlAdjExP5IG9BQQEP7t3D3tGx1GfWa9SIkAcPyczIUGgDwoIlMtZXc67Pn+Xetd/JysykfTd3ldctrayYu1YywGhtIBmkMDExwcbGhgcPHijXw6DHknpYT/35BDVq1MDIyIgQFWU5KCgYm2J1wMbGGk9PT8LDX9KwYYNi+YLk14vz+PFjZs+eg62tLRMmTJAP4P2b7UdaahqZmVns9TjEXo9DSnl7fzyYzp1cWLNqKTXMTDE1MSGuxASsra0tN27cQFtHR6ENf1pGndPQ0OCjhg15pkLGp8HB1FJjWy5fuIggCErh5UpS09ycmuaSHZXpaWm8iYqiacuWjPj8U2roSybCTUyMsWnUkAcPg1To+Sl6errUs1R/FkSNGqYYGRkQ8kT5YOWg4FBsrFXH4T973p9KlSrRs7vyTrji1LOsI39/WFgYeXl5VKpUqULYRABbOzuiIiOJi42lTrEzwWSDXMbGxmrteJDcjigfZi6T2crKipAQ5TYvKCiIOnXr/iPnD0E5fI8PYPuSk5OZPmUqebl5bNq9tcwBv9KwbGTFkwcPyMrIoHIxecKlcls2Uj4fpTgxb96w8qtvqW5kxOwVy9Cronw2zPtibVWXLau+VEgzMTbAxqouDx6HKdfPkJfo6elQz6Jmmc9+HBLO7B+2YG9Tj18XT0DrL05mwb/jU8fGxHDp/AUunb+glHfcqFFYWTdizyHFdlvW7jk0bsyxg4fQ0NCQn+sJxe3Rn6t3dYvVO9kzQoKD6eBStDMiJDiYwsJClXU7NzcXPz8/WrZqhVmNGiplkOHt7Y0gCPTq5oJVAwu2rlPcMWdqbIhNo/o8ePREqXw8Dn4uab8tapf6jr/Km7cxgGQ3U0msG9Zl8wrFcJEmxtWxbliXh6rK9JNXkjJdt3S9ADx+8pKvFmzH3tqSZQvHqT1PSBWy3VX6+pXl8lU2lZzTKPE9GvLgwWMVPtMTqe+hPpRkke8RqnQtKPgpNsXOprGzs4bffIgtcbaO7OxHIyNDpWfUs6wrf39xm1jS5y+v//G8HP5HUmIigiAohbKT7eaVnYGUmpJCQUGBypB3+fn5FBYWqrwmo6L1062sG7FmkySMn2EVyf2S8tGIBw8fqSgfUt+0Xjl80xBVvumT8vVtc2R9W8XdeVFRr5k2bTbGxkZsWL9K3k7Z2SmfUfZXyMrK4tWrV9SvX5/Klf+67VPF3y0z/Dtyi4j8L6FRdhYRERGR9+f58+cAGBkpr2IzNzfn008/pU+fPioPUf876ezmRkFBAV6envK03Nxczp05g72jo3wgLSY6mogSq0s6u7rxJCSEp8U6jJGvXnH/7l26uBd1PJOSFMM/AGRmZHD88GEMDA2xKebwJMTHM3vqNDQ0NFi1cYNK/fTo0YOCggJ+O3VKQeYzXl44FJM5+t07XkkP4pXh6uZGSHAwT4rJHPHqFffu3sXNXXGAeb+HBwf37+ezsWMZNmKEsvKAVk5OLF+5UulnZGSEnb09y1euZNy4cbRr1w7nNk7o6uri7taFhIRE/PyvFOkoOZlLvpfp6NJeYZVU1Os3RL1+o/BON9fOXLv2B9HRMfK0W7fvEhEZhbtbF3laogq9A/x22ptKlSpha6t6IEDGqlWrKCgoYESJcB+u7m4q9e/t5YVjWfp3l+g/pIT+795Rof99HhwoQ//lpYOrK4UFBZz77TcFmS+d8cHGwQEz6Sq52Ohoov6B1V9lUVSmFeuhj9eZEmU6mlcvFeXr4ubKk+AQlWXatZhOk5OSEQTlfexeUp3Y2ikfYlycQ/v3Ex8fz4hRpa+ybtOlE4UFBfifPiNPy8vN5crZc1jZ22NSUzLIER8dw5uIiFKfVR7+uOSLrp4eTh1Vh+ioWr0ajZ1a0dipFe3ataNdu3aSeujuRkJCAn5+/vK8SUlJXLrkS8eOHRXrYVQUUVFRCs91c3Pj2rVr8kligFu3bhEREYG7e9EB8Z07d0ZLS4vjx4/J0wRB4PjxE9SoUYOmTZvK08PDw5kxYya1a9dm8+ZNdOzoIpf532w/jIyNWL3yF6WfU6sW6OrqsHrlL4z9fJT8/m7dXImOieXmzTvytHbt2iEIAua1a8kHC3Jzc7ng7Y2to4N8ZWpMdDSRJepcR9cuhIaEKAxsREVE8ODuPTqqCCMI4H/hIjXMzXFs1lTldVXs3LSZwsJCvpg+lZatWxcrHzq4u7mQkJiE3+Xr8vxJySlc8rtGRxfnEnp+S9TrtwrPduviwrXrt4iOKdpteev2AyIiX+PuphzyJy8/H1+/qzRr6kAt87IHAkESxnTFihXo6uoiCEKFsIkAXbtKyr/X6dMKsnp7eVHdwABHR0d5m+epQmZHR0fMS7Uj7kp25NWrV9y9cwd3d9UTxX8H6nyPD2X7srKymDVjBnFxcaxZv77UnZ3lwalzRwoLCrl82luelpeby7Wz52lobydvuxOiY3gbEalwb3JCIitmfUOlShp8tXo51VUM4v4ZqlfTx7mVvcJPV1cb984tSUhMxe/qA3nepOQ0LgXco2O7Jgrnh0W9iSXqjeKu5/BX75jx3QZqm5uwftm0vy3k2L/hU/+8coXSz1Va5+YvXsz02bNLla+wsJCCggKGjBgul8/r9GkcGzeW17t3797xskQZdnd3Jzg4mBDpIDtI6t2dEvXOyckJAwMDjp84oXD/8RMn0NPTw8VF2VZfv36dtLQ0evbsqVZ2Gd7e3tSuXZvmTW2pXr0qzk5NFH66ujp07eJMQmIKfgG35PclJady6fJNOrVvqVg+XkcT9Tpa1avKJDFJecdPRkYWB4/6YGRYDXtb5VCh1atVoU1LW4Wfro427p2ak5CUhv+1h0Uyp6Tje+U+Hds2LlGm44h6o7go42VENDPnbqG2uQlrf5mstkwnpaSr9AV/8/kDgOaNreRyKdhE105Sm3it6FnJKVzyu0JHl7bl8D1cuHbtJtHRxW3ifYlNdO8kT+vcsT06Otp4nTmvMHHiefosAM6t1e9MKGkTz5bw+Uv6H7Eq/A8Xqf/xrIT/8bCE/1HX0gJBELjq66twf8DFSwA0lC4YMDQyomq1avwecEUh7GFWZiY3r13Hon499Eo536ei9dOrVa9OqzZtaNWmTQmfWuabBhR7rtQ37VjCN416TVTUa4X3ubl24dq135V904hI3N2L9F5m39auqG8bH5/AlKlfUkmjEps3rpHvQgNJCLS/8yebXKlcufLf/ux/SuZ/Um6R8lMoVNyfiDLiDiIREZG/TGFhIQ8fPgQkIRaCg4PZsmULVlZWtGrVSuU9c+fO/Vdkc3B0pIu7O9s2biIpMYm6FnU55+3Du7dv+faH7+X5flqwkIf373PtbtEA4CeDB3Hmt9/45stZDBs1Ci0tTY4ePISRsTFDRxUNHnoeO861KwG0d3Ghhrk5CfHxnPU6Q0x0NN8vWaxwkOxXM2bw9s0bRowZQ+DDhwRK9QZgbGxC765dadq0KW7u7mzeuJGkpCTqWlhw1tubd2/f8v2CBfL8ixcu5P69e9y6d0+eNnDwYE57ejJr5kxGjh6NlpYWhw8cwNjYmBGjR8vzBfj7s3HdOiwsLan/0UecO3tWQW+t27TBxMQE81q1MJfGQC7OmlWrMDY2plOXLhgWW/EF4O7WmcaNHVi05BfCX77CyNCAY8c9KSwsVDrvY+LkmQCcPVPU0R73+Wh8fS8zYdIMhg8bTGZWFh77D9HIqiH9Pu4lz7drtwcPHz2mXds21DKvSUpKKn7+VwgOecKwoYOwLHZw9O69+3nx4iWODvZoamly7fotrl+/zqQpU7B3KDpXBMCxcWPcurqzaeNGEhOTsLCwwMfbm7fv3jK/mP4XLZDo//b9Iv0PGjyY06c8mT2jSP+HDkr0P7KY/i/7+7NBqv+PPvqIcz4l9O8s0X95sXV0wMXNlb2bt5CSlEStunXxO3uWmHfv+PL7efJ8Kxcv4fH9B5y7dUOelpGejtex4wCEBAYC4HX8OFWrVUO/WlU+HjxYnvfxgwcEPXgIQEpSEtlZWRzevUeit+bNaNy8uUr5mjZtiqu7O1s2biQpKVGhTM8rdp7EkoULeHDvPjfu3ZWnDRg8mNOevzFn5peMGD0KLS0tjhw4iJGxMcNHF9XD8+fO4nniJJ06d6Z23TpkZmRy68YNbt+6RYeOLrRq7VSU9+xZLvv506xFc6pUrsKd27fxu3SJj/v3p0uJs7ZKYuVgTxvXzhzdup3UpCRq1q3DtXMXiH8XzYS538rzbfnpF548eMih34smOjLT07lwQjL4+uzxYwAunvSkStWqVKlale6DBii8Kz01lYc3b9G6c0f03rND4u7uTuPGh1i0aBHh4eEYGRly7NhxST2crBg+Y+JEyf/PnvWRp40bNxZfX18mTJjA8OEjyMzMxMPDg0aNrOjX72N5vpo1azJy5Aj27fMgPz8fe3sHAgIu8+DBA3755Wd5CNGMjAymTp1GamoqY8aM4do1ySCM7DDhGqbVadrE8V9pPyrr6dGls/IkxuWAawQFP1G6Nvaz0Vy85M9X385n1IihGJuac/jwYTQ0NHgT9Zrt6zdQ28KCSz4+RL99x5z58+X3/rpoMYH3H+B7+6Y87eNBAzl72ov5s2czeORItLS0OHHoMEbGxgweqTxg/vLFC8LDwhj26RiFMH7FObzPg1cvXmDr4ICmpia/X7nKvVu3+HzSRGztlSdH3V1daOxox6IfVxH+MhIjw+ocO3FGoucJYxT1PFVSrs+e3l9Mz8Pw9bvKhMnfMHxof4meD5ygkdVH9OvbTel9N27cJTkllV491O8eWr5qM7m5uVg3akh+QT7nL1wmKDiUZcuWcfHSpQphEwE6du6MU+vW7Nuzh+TkZBo1asSVgAAePXzId/Pno6OjQ9OmTXHv2pWNGzeSmJiIhYUF3t7evH33jh+KybxgwQLu37vH3fv35WmDBw/mt1On+HLGDEZJZT548CDGxsaMKiYzwNUrV3gmXZCTn5/P8+fP2blzJwCdOnakUbHV17L08BcvJH9PHx+57zZr5kyJ71GBbN8P8+cTHBRM3379ePXypcKkVOUqlencpQvvQ0MHe5y6dOLEth2kJSdRo04drp+XtN1jvyvaJb39p6U8ffiIfdeLwlCtmvMNcW/f0mvEMJ4FPuZZ4GP5NQNjIxydVPu6fxb3Ti1pbO/HomV7CX/1DiODqhw7HSCpn59/rJB34uw1AJw9KjnzMyMzm6lfryU1LZMxw7pz7cZjhfx1a5vR1LFoR8OV3x/x7IVkMDM/v4DnL16zw0NiCzq1b4p1wyJf6t/wqTt27qykj7BQyW5F5/btMDQ0lKcf2LuX8BcvsHdwlPh2AVJ7W6kSl339iI6IxNPTk3fv3rFg4UL5fQt++IF79+5x/0HRBNzgIUM45enJjBkzGD1mjKTeSduK0cXKsJ6eHpOnTGHZ0qV88/XXtG3blgcPHnDWx4ep06ZhYKAcKu3c2bPo6OjgVoZ/ERYWRmhoKBMmTFDb1gO4d3GmiUMjFv6ymfBXrzE0qM6xUxcoLChk8vghCnknzFgikeHUZnna23dx+Jy/CkDI03AAduw5CUAtc1P69JRMaBw9eYHL127TqX0rzGuaEp+QxG/el4mOieenBdMV+jdl4daxOY3tP2Lx8gOER0RjaFCVE6evUlgoMPHT3gp5J3+1HgDvwz8C0jL97UbS0jMZM9Sd6zeDFPLXrW1KEwfJZNW5S7c5ceY6nds3oW5tUzIys7lx5wm37j2lY9vGtG6hevGYu1tHGh+xZ9GS5YSHR0h8jxOnpTbxU4W8E6d8BcBZr8PytHGfjcTX9woTJs9m+LABZGZm43HgKI2sGtCvb9EuSVNTY8Z9Poot2/Ywdca3dOnUgWfPX3DqNx96dHfFwcFWnnf5yo0Sm2jdkPz8As5f8CMo+CnLli3D5+JFdm/aTHJiotz/iHn7jtnF/I/lUv/jYjH/o++ggZw77cX3s2czSOp/nJT6HwOL+R/devfhxIFDrFv6K2Ghz6jXoAFhT0M55+VFvQYNaC+tp5qamgwaOYK9W7cxc+w43Hv1orCwgPNeZ4iPjeXbJYtU6ltGReunq8PdrYvEN138C+HhUt/0xCkKCwuYPFHxLLqJk2cAcNa7aLHFuLFj8PX1Z8LEaQwfPoTMzCw89h+U+qZF5X/Xrn08fBRIu7bOkr5taip+/gEEByv3badOn83rN2/57NORPHj4iAcPH6GjK+mTm5qa0r59+zK/S0RERKQ44gSRiIjIXyY7O5uhQyXnG2hpaWFubs7HH3/MtGnT3qvz8E8xf/EiatYy58LZs6SnpdHQyopf166hWRm7l6ro67N+21Y2rF6Dx65dFAoCzVu2YPrs2Qo7fxo3bUpQYCBnfjtNakoKepUrY+fgwHcLfqClk5PCM8OeSQZyDnl4KL2vWYsW9Jaukly4ZAnmW7ZwzseHtLQ0rBo1YvXatTQvQ2Z9fX02b9/O2lWr2LNzJ4Ig0KJlS76cM0dBZtkOr6jISBb9oHzg8+Zt295rgqI4mpqabFy3gjXrNnPkyAmyc3JwsLdl8aL51K9f9gpgc/Oa7Ny+gVVrNrJ+41a0tbVw6dCO2V9OU1ih5dK+Ha9fv+G0lw9JScno6urQyKohixfOo28fxVWajawacvnyVa5cvU5BQSG2trasXbuWdmp2ZSxasoRtm7dw7qwPaalF+m/Rsmz9b9mxnTWrVrF7106EQon+Z5XU/7Mi/S9Uof8t299f/18tXICH+Xb8zp0nPS2Nj6wasnj1SrWTNjLSU9Pw2LZdIe3UIUmnt0Ytc4UJokd373Fw5y6FvLJ7R44fV+q7FixZzPYttTjvc5a0tDQaNrJiZbnL9DbWrlrN3p27EASB5i1bMnOOYj1s2qwZjx8FcunCBRITE9HU1MSyXj1mzJ7F4KFDFZ5pYWlJamoqe3buIicnh3r16vHNvLn0HzCg5OtVMvn7eRyvuZvrFy6SkZaORcMGfLViGXZl7O7ISEvj+A5F/fkcPgqAqbm50gTRLf8ACvLzadf1/XcNaGpqsnHjBtasWcuRI0fIzs7GwcGBxYsXU79+/TLvNzc3Z+fOHaxatYr169ejra2Ni0sHZs+erRQrfcaMGVSrVp2TJ0/i5XUGS0tLfv75J4XV0ikpKfLdSOvXr1d6X98+PWnaxPFfaz/eBxMTY/bs3MyadZs4eOgY+QUFNGvWjJnz5vLH1av4njtPWloaDays+Gn1Kpq0KL3OVdHXZ9WWzWxZs5aDu/cgCAJNWzRn8qwvlUKSAvhJQy25dleeeJHxUcOG/B4QwI1r1ygsKOQjKyt++OVnOrmrHpDU1NRk49qfWLN+B0eO/ibVsw2LF3xN/VJCpcgwr1mDnVtXsmrtNtZv2iUpH+1bM3vmRJV6PnvBHy0tLbqq2F0kw9bGioOHT3H2vD8aGho42Nuwd+9enJ2daeviUmFsYqVKlVi+ahVbN2/G9+JFfM6coV69eiz+8Ud69CpaxLB4yRJqbd7M2bNnSUtNxapRI9auXUuLMmLX6+vrs23HDlavWsWuXbsQCgtp2bIls0vIDODv74/3maLdjKFPnxL6VBLGpmaNGgoTRFs3b1a4t/gOqFkzJZOtFcn2PZdOCpw5fZozxWQFqFWr1ntPEAFM+H4ep3bu5vcLl8hMS6Nuw4bMWv4LtmW03ZFh0km1Q0eUrtk2a/q3TxBpamqwcfl01mw5yZFTfmTn5OFgW5/F331GfUvzUu9NSUknOlayCn39tlNK1/v2aKswQeR39T5nzhctGnn6PIqnzyU7SmuaGSlMEME/71O/Dw2srLh6OYDfr16jsKCAho0a8cOPS3j+7BkXzp7lZFoaNjY2rF23rswzI/T19dmxYwerVq5k186dFBYW0rJVK+bMmSM/X0zGkCFD0NLS4sD+/Vy5coWa5ubM+eorRqjYEZeens7169fp0KGDwnmXqpBNTPfp0wfIUZtPU1OTjavmsWbTfg4fP0d2Ti4Odg1Z8v1U6tdTHx5Uxpt3sWzaoViWZf9v2dxePkHUrIkNjx6H4nnGj+SUNCpX1sPRzorF8ybTulVjpeeWhqamBuuXTmHtNk+OnAogJzcPB5t6LPp2NPUtSw+ZmJKaQYy0TG/YcVrpep/ubeQTRM0aN+RRcDgX/O+SmJSGpqYG9SxqMnvyQIYO6KR0b5F8mmxcu5Q167dx5OgpiU7tbVi88Nty+h412LltDavWbmH9xp0S36O9M7O/nKRkE78YN4rq1aty5KgnK1ZvwtTEmHGfj2TCF4qLMyQ28SRnz/tKbaKt3CY6tHNm7zZz/Ir5Hz+W0/9YsWUzW9es5ZDU/2jSojmTSvgf1Q0N2LhvD/u27eDmtev4nPKkmoEB3fv2YeyUyQr9+xFjP8e8dm08jx7lwM5d5OXm8lEjK35Y9gsurqWHlIWK1U9Xh6amJhvXr2LN2k0cOXJc4jM52LF40ffUr68+ZLMMc/Oa7NyxiVWr17N+wxaJz9ShLbNnzVDs23aQ9W29i/VtrVi8cD59+/ZSeOYzqT3du085XH/r1q3FCSIREZH3ppKgag+uiIiIyP8IsWmpH1qE96JGNUk872QV56VUVGQ7iDLTlA8ZrahUqSY5xyAl47+jZwADfYmuw5OVD8KtqDQwlAysJKanlZGz4mBcVTKIcy/+z4Vl+VC0NJUMHGZmZpSRs+JQRRrj/b/YfkSlqA4FUlGxMJAMmGSm/PXQh/8WVQwkAy//RZuYlvHfqYfVpOcW/Fdt4s24t2XkrDg4m0nOh8mMvlJGzopDFXPJwPp/1afOyMz8wJKUH33pbuGshMAPLEn5qWzSBID0N75l5KxYVK0jWXyTmfqmjJwVhyrVJROAEf8h/6Oe1Pf4r7YfmekJH1iS8lOl6p9b3FkWmZmZPHnyBDs7u/9UiLX/qtz/S8zsoj7E5Idm3eXsDy1ChUM8g0hEREREREREREREREREREREREREREREROT/GeIEkYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyP8zxDOIRERERERERERERERERERERERERERERET+MoWFH1oCkfdB3EEkIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLy/wxxgkhEREREREREREREREREREREREREREREROT/GWKIORERERERERERERERERERERERERERERGRv0yh8KElEHkfxB1EIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi/88QJ4hERERERERERERERERERERERERERERERET+n1FJEARx05eIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyF9isovehxZBLVuuZX9oESoc4g4iERERERERERERERERERERERERERERERGR/2dofWgBRERERP5J3qWmfGgR3ota1Q0AiEpJ+sCSlB8LAyMAMjIzP7Ak5Ue/ShUAMjMzPrAk70eVKvoAZKa++cCSlJ8q1esAkJUY8oElKT+Vje2B/5aeoUjX/yW5ZTKnZKR/YEnKj4F+VQAy0xM+sCTvR5WqJgCkZfx32r1q+tI27z/UVsvaaVHP/zwyXf8X2w/RZ/rnkftMKREfWJLyU8WgHgCxaakfWJLyU6NadQCS0/879RDAsKrUlmekfWBJyk8V/WrAf9PP+y/pGYp0/V+05f+luiirh/8EmZmZPHnyBDs7O6pI7ZiIiIh6xAkiEREREREREREREREREREREREREREREZG/TGHhh5ZA5H0QQ8yJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIj8P0OcIBIREREREREREREREREREREREREREREREfl/hhhiTkRERERERERERERERERERERERERERETkL1MgCB9aBJH3QNxBJCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi8v8McQeRiMj/EBs2bGD37t08ePDgLz/r1KlTzJ07Fx0dHf744w+qVaumcH3OnDl4e3vTunVr9u/f/17PtrGx4ZtvvmHcuHF/Wc4/S25uLnu2bePi2XOkpaXR0MqKcZMn0apNmzLvjYuNZdOaNdy5eQtBEGjesiVTZ82idt068jznznjz65Ilap8xf8kSuvbsUap8+7Ztx/fcedLS0mhg1ZDPJ02kZTnki4+NZfOaddy7dQtBKKRpy5ZMnvUltevUUciXnp7Ood17+P3KFeJi4zA0MqKFkxOjvxhHTXNzeb5923ewf+cupfdoaGhgZGxMeloaNjY2TJo8GWdn5zLli42NZdXKldy4cQNBEGjVqhVzvvqKunXrKuX9zdMTj/37efvmDTVr1mT48OEMGz681OdPnjSJW7duMWToUL777jt5enR0NKdPn+b6tWtERkaSk5NDYWEhGhoaNGnShNmzZ2FnZ1em/ADh4eGsWrWKBw8eoq2tjYtLB2bPnoOxsZFCvsLCQjw8PDh+/ATx8fHUq2fJ55+PpWeJv/2pU6fw8TnLq1evSEtLw8zMjFatWjJx4kRq166tkPfQoUP8fv0yQUFPiY6JxdKiLqlpaWRn5+DoYMvsLydhZ2tdvu94GcGq1Zt58Oix5Dvat2H2rCkYGxkq5Y16/YbNW/dw6/Z9MjMzqVHDjG7unZk2pagen/L0xuecL68iokhLS8fMzARn53ZMnToVkyqly5KalsHaTfu4fOUWWdk5ONo3Ys6Mz7CzaVjmdzwOfobX2csEBT/jeVgE+QUFPLzhqZQvOzuHZat28DjkGTExCRQUFmJRx5x+fVwZMrAn2lrq3aK0tHTWrt+Gf8D1CqFrgCPHPDl2/DSv37zD0LA6vXv3ZebMmRVW5uZOrmrf1crJCTt7e875+JCWloZVIysmTZlCm3K2KWtWreLWjZsIgkDLVq2YNWc2dUq0KSeOH+funTsEBwUREx1D7759WLh4sdLzJn0xgfv37ql8l6aWJiHBIUrpaWlprF23Cf/LV8nOzsbRwZ7Zs6ZjZ2dTpvwA4S9fsWrVOh48DERbWwuXDu2YPXsGxkZFbUpsXBzr1m0iOOQpcXHxaGhoUK+eBUMGD6Rvn55UqlRJnrdXnwG8exet8l1169bF1c2Ns3JdN2LylCnlbr9Xr1rFTWn73bJVK2bPmaPUfp84fpw7d+4QFBRETHQ0ffr2ZZEKXZfkpx9/5DdPTzp06MCPP//M8mXLuHTpEllZWTg6OlbYdtrU1JQtW7bg7S3RqY2NDRMmTcLZ2ZmHDx4wXurv+Pr5YWik+P7y6hTgt99+44CHB2/fvqVmzZoMHT6cYcOGKeW7desWu3ftIiwsjIL8fCzr1WPo0KH07tNHIV96Whq7du0i4PJl3rx5gyAIaGho4OBgz3fffVchdV3SJgK8e/eOr2bN5kVYGIWFhWhra9OyVSvWb9pYpuzlaT9ioqPxOu3F79evExUZiYamBg0bWjF2/Dhal/DL4uPiOHL4MMFBQTwJeUJmZibrN23kzu078vbtQ/pM/v7+nDhxgrDnz0lJScHIyIjGjRszcdIkrKyslJ6ZkZHB6lWrOHXqFJmZmQAYGhqyZs1qmjVrVqb88PeXj+Lk5eUxdOgwXr58yaxZXzJmzBj5tZiYGFasWEHgowfExSegoaFB3Tq10NevwovwCGlbbcvsmROws21Uvm95GcmqNVt58ChIahdbM/vLiUp2MS4+ga3bPbh56z4JiUmYmZrQqWNbxn8+AkPD6vJ8Cxav4IzPJaX3WFha4tK5MxfOnpX3U76YPBkn5/L1UzasXsOdmzcpFARatGzJ9NmzqK2izMgIfPiQqeO/AOCM7yUMDRW/5+6tW3js3kN4WBgFBQVYWFoyYOhQevTuJc+Tm5vL9q1bi+y4lRUT38OOr121iltSmVu2asWs2cr18IxXsXqooUFDKys+H6dcD2XcvnWLvbt38/TJEwRBwMLSktGffkrXbt2U8qalpbF27Xr8L1+WlA1HB2bPmoWdnW2Z8gOEh79k1arVPHgoLecd2jN7zmwFOw6wc+cuHgcFERQUTGJiIhMnfMGkSRPLfP6kyVO4des2I0eO5Ksvi3yriubrgaJ/amBggLGxMbGxMRL5/iG9StqP/Rw/cVLSflha8vnYz+jZQ7n9OHLkKMeOHef1mzcYGhrSrVtXpk6ZTOXKlRXybdmyhTt373Lv7l2ys7PR1NTE1s7ug/lM9+/dY//+/TwLDSUpKYlq1aphbW3NuC++KLM9/qfrZ3Z2NiuXL5f62NEUFhZSp25d+n78MYMGD0ZLW7vM94iIiHxYxAkiERGRUtHS0uLSpUsMGDBAnpaVlYW/vz9VqpQx4luBWbZ4CVf8/Bg0fDh1LSw47+3NtzO/ZM3WLTQpxcHKzMxk1uTJZKRnMOrzz9DS0uL4ocPMnDiRnQcPYCDtUDVt3px5Khy7E4cPE/b8OS2cWpUq34olP3LVz58Bw4dRx8KCi94+zPtyNiu3bKJxKfJlZWYyZ/JUMjLSGfHZp2hqaXHy8BHmTJzM1gP7MTA0ACRO9LfTZhDx8iUfDxxAXUtL3rx+zZmTJ7l76ya7jx6hir6+wrNnfvsNlatIHOfTx08SGhKCa4/uNLa2wdPTkxnTp7Nt+3aaN29eqv4mfPEF6enpjB03Di0tLQ4dPMgX48dz+MgRhQ7piRMn+OXnn3Fzc2PUqFE8uH+f5cuXk52dzWeff67y+X5+fgQGBqq8FhAQwL69e+nUqRMpKSnExMRgaGhIfHw8ERERfPHFBA4ePEi9epZq5QfJgMO4ceOpVq0q06ZNIysrEw+P/Tx/HsaBA/vRLuYAb9y4iT179jBgwCc4ODgQEBDAvHnzqFSpEj16dJfne/o0lDp16tCpUyeqV6/Gmzdv8fT05OrVaxw9epQaNczkeXfu3El6ehr2djZEx8Ty5u07vhg3CkMDA46dOM0Xk2Zz0GMr9SzVDwRIviOOcRO+pFpVfaZNGU9WVhYeB47xPOwlB/ZtVviO0NAwxk+aRQ0zU0aPHIyBQXWio2OJiYlVeObT0DDq1K5Fp47tpN/xjt+8znP58mWO7ltJDTNjlbIUFhYyfc5PPAt7xacj+2NoUI1jp84zfsoPHNq7knoWygOCxbl+4z6eXr5YW9WjTp2aRES+VZkvJyeXFy+j6NC2JbVr1UCjUiUePQ5l5bo9PA5+zrIls9XL9+Vcnj1/waejh1YIXa/bsJ29Hkdwd+vI8GEDCH8ZwYEDBwgLC2PDmiUVUuafFs9Ves+zF2/w8PAgJSWFQwcPMHz4CCwsLfE+c4YvZ8xgy7ZtNCujTZk8YSIZ6el8NnYsWlpaHD50kIlfTODA4UMKbcr+vfvIyMzEwcGB+Ph4tc/8fNxY+vXvr5CWlZXFsl9+UTkgUFhYyPSZX/HsWRifjhmBoaEhx46f4ouJUzl4YA/1LC3UvgsgJiaWceOnSHQ9daJE1/sP8TwsnAMeO+W6Tk5OISY2Dne3zpibm5Ofn8/NW7dZuOgnIiIimT5tkvyZX8+ZSWZWlsJ74hNSWbt2LZUqVeLgwYOMGD5cruuZM2awrRy6njRhAunp6Xwu1fWhQ4eY+MUXHDx8WEHX+/buJbMcui5OSEgIZ86cQVdXF0EQmDljBmHPnzNu3Dj09atw7NjxCttON2vWjOvXrzNixHCsrBrh6enJzBkz2LJ1KytXrKBy5cpklfh7vK9OT544wdJffsHVzY2Ro0bx4MEDVsps4mefyfNduXKFr2bPpnGTJkyYMIFKlSrhe+kSCxcsIDk5mZGjRgGScjtlyhTCX7ygevXqaGlpYW9vT0hICMHBIYwf/wWHDh2qcLouaRPfvXvHkIEDycnOoUnTptStW5d7d+9y6+ZNHj548Le0H1cCruCxby+dOnemd58+FBTkc9bbh2mTp/DDwoX07fex/JkRERF47N2HhaUlDa2seBwYiMfefTx4cJ/hw0dg3ajRB/WZwp4/p3q1aowYIWmr4hMS8Dp9mjGjR7N3716sbYomtdPS0hg/bhzh4eFUqlSJTp06AXDnzh2mTp32wcpHcY4cOUp0tOrJ8KSkJGJiYnB3dcHc3Iy8vHy27thPamoazZs50r1rZ46dOMMXk7/m4L5N1LOso/I5Rd8Sx7iJc6R28XOyMrPxOHhCYhf3bpB/S2ZmFp+O+5KsrGyGDOpLzRpmPHseztHjXty994hDHpvQ0CgK5KKjo82C+bMk/65sCsDBw4c4evAgg0cMx8LCgnPe3nw9cybrt20ts58yY9JkMtLTGfX552hpaXHs0CGmT5zI7oMH5f2U4hQWFrJ2ufp26vqVK8z76mscGjfm8wkTqFQJ/H19+XnhQlKSk5k+SWJ7lixahL+vL8NGSOy4z5kzzJoxg83lsC1TJk4kvXg9PHiQSRMmcODQIbnMV69cwWOvpB726tOHgvx8zvr4MH3KFL5fuJC+H3+s8NwzXl78vGQJrdu0YfK0aWhqaBAREUGMivJSWFjI9BkzefbsOZ+OGS214yf4YsJEDh7cTz3LcpTz8V9QrWpVpk2bSlZmJh77D/A87AUH9u9TKOebNm/B1NQEWxsb/rhxo9TnyvDz8ycw8LFquSuYr1fcPx029BN27j7Es2fPqFu3LpMmTvzH9Lpx02b27NnLgE8+wcHBnoCAK8yb972k/ehe1H6sW7eevfs8cHd3Y/iIYYSHv+To0aOEvwhn82bFRQVr165FR0eHvLw8ANq2a0dqSsoH85kipROjAwYOxMTUlLTUVM6dPcuE8eNZu24d3VVMfMr4p+tnTk4O4S9e0K59e2rVqoWGhgaBgYGsXb2a4KAgfvzlF7XvEBERqSAIIiIi/zOsX79eaNas2d/yrJMnTwrW1tbCnDlzhLFjxypc8/HxEVq3bi188cUXwqhRo9772dbW1sLOnTv/FjnL4m1KstLP74/fBWtra2H1xo3ytJexMUJnV1fhk4EDVd4j+63asF6wtrYW/P/4Q55249FDwdbOTlj8yy+l3vsyJlpo1ry5MGL0aLV5BEEQHj16JFhbWwsrN24QIpMThcjkRCEs5p3Q2dVV6D9woDxN1W/F+nWCtbW1cPGP6/K06w/vC7Z2dsLCX36Wp527GiBYW1sLG3ZsV7h/+34PwdraWjjkeUqe9uPyXwVra2vh8atwITI5Ubj4+zUF+QRBELKzswVXNzdh0KBBQnpGhtrfxk2bBGtra+HW7dvytMdBQYKdnZ2wdNkyeVp8QoLQunVrYey4cQr3z/zyS6Fp06bC23fvlJ6dkJgodO7cWVizZo1gbW0tfP/DDwrXHwUGClGvXwunPD0Fa2tr4dy5c0JSUqLQvXs3oX379kLLli2FGTNmCBkZ6aX+5s+fLzRp0kQIC3suT/Pz8xOsra0FD4998rSXL8MFe3t74YcfvpenpaenCUOHDhVcXFyE1NSUUt9z585tyd9owwZ5miAIwuvXr4X05CjB88QBwdraWhg+bLCQkfJayEh5LUS9ChJatmwhzJg+SZ6m7jd/7ldCk8aNhbDQe/I0v4unJd+xZ6s8LS0pUujVs7swcEA/ISHmRZnPLfl7/PixYG1tLWxcs0TITAhW+fM8ul2wtrYWTh/fIU97HfaH0LJlc2HG1HFq75P9op7/LiS+uS9kJgQLP8ydKVhbW5d5T/HfgnlfCtbW1kLks+tCZkKwvP2QfYNM17+dOlghdP3qxSPB3s5OmPXlVIX0/fv3C9bW1sLZM8cqnMzqfvPmzROsra0lZWTzJiE5PU1ITk8TYhLiBVdXV2HgoEHyNFW/9Rs3CtbW1sIft27K0x4+DhTs7OyEX5YuVcj75NkzISktVUhOTxOaNm0qzJozu9RnF/8dPnpUsLa2Fo4cP1ZUPtLihYy0eMHzpOTab57H5GlRkc8lbcr0qfI0db/5876V6PpZkDzNz/ecRNf7dpZ5//hxnwtNmzYVUpNjSs23Sdr+WltbC5s2bxZS09OF1PR0IS4hQXB1dRUGDRokT1P12yDV9Y1bt+RpgY8fS9rvpUsV8oY+eyakpKUJqenpQtOmTYXZc+aU+uyUtDRh0KBBwldffy106tRJ6Nu3r7ydFgRByMhIF6KioipsO21tbS1s2bJZ3k5nZ2cLrq6uQpcuXQSn1q2FhQsXStqYqKg/pdPY+HjBqXVrYezYsQr3z5w5U2jatKnw+u1bedroMWOE9u3bC/GJifK0xORkwdXVVejdu7c87drvEl/oq6++kus6IyNdOHTooGBtbS00bdq0Quq6pE0cMmSIYG1tLaxYteofaz/uPXoovIqKVLg3NjFB6Natm9DBxUUh/U1MtBDx5rWQnJ4mnPzNU6l9qyg+U/FfRGSkYG9vL8ydO1chXfa3LV4+KlJdjIqKFFq0aCH3+2R1sHj5EARByEh+JWQkvxI8j+8TrK2thX4f9xKaNm0ipCa8EKJePpTYxWkT5fnU/ebPnS1pq5/elqf5XTwltYub5GknjuwWrK2thfPeRxXuX7l8iWBtbS3cu+UrT5sza6rQtGkT+f+L9wPWbtooxKSmCDGpKUJkXKzQxdVVGDBooDxN1W/1hg2CtbW1EHDjD3na7cBHgp2dnbBk6S8q79m2e7fg5OQkzF+4QLC2thZCIyMUro8cPVpo1769EBUfJ097k5ggdHF1FXr27q0g84ZNm4SktDQhKS1NiI4vqoeyNFU/WT38/eZNedqDQEk9/HnpUnnavYcPhZeRkQr3xiQU1cPi6cGhoULjxo2F7xcsUPteeflITxU8T0n6vb/9dkrISE8VMtJThaioCGk5ny5PU/ebP3+e0KRJYyHs+TN5mp/fJakd36uQ9/mzp0JGeqrwOipSsLa2FlatXFHqsxMT4qT9m9WCtbW1sHjx4v+MfyqTb+7cuRL/1Mf7H9Hry/AwSfvx/Xx5WnpaSlH7kZIkZKSnCq9ehgv29nbCrFlfKrxn184dcvlkaYIgCJcuSd61ctUqiZ1ZubJC+EzFf7FxcULbtm2FTz/9VF6mS5b16zdu/OP1U91v/g8/CNbW1kLYy5el1sN/goyMDOHu3btCRkbGP/oeEfV87qxTYX8iyohnEImI/A+zfft2unbtSuPGjXF2duazzz4jKirqvZ7Rp08fbty4QUJCgjztzJkzdO/eHa0S4ZhiY2OZO3cubm5uNGnShG7durF69Wpyc3PLfE9AQACDBw+mSZMmODs7s3DhQnkoi7+bK35+aGhq0veT/vI0XV1den/8McGPHxMbHVPKvf7Y2ttj62AvT6tXvz4tnVpx2de31Pf+ce0amRkZuKtZBSnj/PnzaGhq0rvYCnYdXV16fNyXkMePiY1RL99V/8vY2Ntja18kn2X9+jRv1Yorvn7ytIyMDACMjBV3dBibmkjep6er9GxBEMhIz+Cqn7+SfLq6uvTv14/AwEC1KzkB/Hx9cXBwwMHBQZ720Ucf4dS6NZcuFYXYuHvnDsnJyQwZPFjh/iFDhpCVlcW1a9eUnr1v714KCwsZXSy8SHEaNmyIkZERfr6+mJqa0q1bN3R0dGjfvgNxcXF06dKFgICAMsurn58fLi4u1KpVS57m7NyGevXqcfFi0TcEBASQn5/P4MFD5GmVKlVi8ODBxMTEqN3pJEMWRictLU0hvU6dOpIV4f5XAKhlXlN+zdjIkG7unQm48kfZ33H5Gi4uzgr3O7dpST3Lulz0DZCn3bh5l7AXL5kwfgx6erpkZWdTUFBQ6rNLyguQlp6hNo/v5T8wMTbErXPR7gxjIwO6ubYn4NptcnPzSn2HibEheirKbHmpXauGRMY01TL6+l/BxNgIty4uxeT7cLoODAwmv6CA7t26KKT36iUJ9XLh4uUKJ7MqcnNzuXjxIubm5mhqatK/2E5VXV1dPu7fj8eBgSpX+8rw9/PD3sEB+2JtSv2PPqKVkxO+lxTD9tSqXUshDNv7cOH8eSpXrkynzp2Vrvn6XcbExBg316JrxkZGdOvqSsCVa2Xr2j8AF5f21KpVFNrTuY0T9epZcvGSf5my1apdi+zsbPLy8kvN5+3tTdWqVdHU1OSTErru179/2e23VNcOJXTt5OSk0H5LZKr9Xrr28fHhxYsXTJk6FYCEhARMTEzoVmw1rLGxEd26da2Q7XSlSpUUdlrr6urSvUcP3rx5w4gRI6haIkxvcTnLo9O7d++SkpzMoCFDFO4fLLWJ14vZxIz0dKpVr46Ojo48TUtLC0NDQ3R1dRXyAbx89UpuEwFMTSU7GFq0aFEhdV3cJr548YKHDx9SqVIlho8cQU5ODvl5eX97+9GwYUOl0IA6Ojq069Ce2JgYuU8FoK+vj4GBgUJeDQ0NpfbtQ/tMxTE2NkZPT09Bt2lpaXh5eVHT3BxTU1M6d+4sLwsVpS6uX7+e+vXr07tYmLPS8PW/homxEY0d7cnOziEvL19qFzsScLU8dvE6Lh3aUMu8RtG3tG4htYtX5WnpGZL+S8kQeqYmEp9bV1eHkhQUFJAu9ZPOnz+PpqYmH3/yify6rq4uvft9TFDg41LL9BU/P+zs7bErVmbq1a9PCycnLl9S7qekpqSwc8sWxk2aSNWqqtupjIwMqlWrptSmGBRrU2Qylyznffv9tXroV6ycN1BXD9sr10PPEycoLCxkonR3U2ZmJkIph6X7+vlhYmKCm2tRKFyJHXcnIOBKOcq5v7ScF7fjbaR2XFHvqsJklsbefR4UFhYyZvQoZbkrmK9X0j/19b+Cqakps2dLduhfuHjxH9FrQMAVSfsxpKgNlLQfA6Xtx2OpfIHk5xfQvbviTpvu0h1GFy5eVEi/f/8+mpqa9O7dW55WEXym4uhVroyhkZFSf7E4/n5+/3j9VIes7S9NPhERkYqBOEEkIvI/ym+//ca6desYNGgQO3fu5KeffsLOzk7BeS4PTZo0oXbt2pw/fx6A1NRUrl27puAoyUhKSsLQ0JC5c+eyc+dOxo8fj6enJwsXLiz1HefPn2fy5MlYW1uzceNGvv76ay5dusT8+fPfS9by8jz0GRaWluhXraqQLpv0CXv2TOV9hYWFvAgLw0ZFTH5bewfevn5NZin69T1/AV1dXTp26aI2D8CTJ0+oa2mBflXFEG+ySZ8XpcgXHhaGtYqYzrYO9gry2djZoVe5Mnu3bePBnbvEx8by6P59dmzYiI29PS2dnJSeMfqTgfRzdePEocPo6emRm5OtcN3B0RGA0NBQtfI9f/4c+2KTVzIcHRx4HRUlL59Ppc8o7owC2Nvbo6GhQejTpwrp7969Y+/evcycORM9PT2V75fx9OlT+XNAMhCpp6dHkyZNyM7OJiIiQu29sbGxJCYmYm+vXAYcHR0Uvv3p01AqV65MgwYfKeWTXS9JcnIyiYmJBAeHsHDhIgDatGmt+jtCw9DQ0FDqUDg42Eq+I/J1Kd8RR2JiEvYqzkdxdLAl9FmY/P+3bkvOYtHR0WbEmEm0c+lFW5defDvvR1JSUlU+Pzk5hcTEJIJDQpk7VxJWrHWrJmrlefrsJbY2DRRCrgA42jciOztHbci4P0teXh5JyalEx8TjH3ATj0OnqWVuhkXdWirzPw0Nw9a2kZJ8H0rXudJQF3q6ipNistjpT54+q3Ayq+L677dITU1FX18fS0tLqpZok+0dJG3Ks1D1bV7Y8+fYqaiPDo4OvH79+r1tniqSkpK4desmnTp3VopPD/A09Bm2tjYqdG0vbVPUL8yQ69peud12dLAjVMW3Z2fnkJSUzNu37/A6cxYvLx+aNHEsdZL06dNQXrx4gYGBgUpdywYwnpXSfoepab8dHB3/kq4zMjLYsH49n48dK5+cSE9Px8bWVoVOHStkO12zZk0lnT6X2uqGDVWfo/Y+OpXZvJJ57WQ2sdg3tWzVivAXL9iyeTNRkZG8jopi544dPHnyhDGffirPZ29vT+XKlXkSEkLt2rWJi4vj7t17rFu3DgcHB7p06VwhdV3cJt6QhmcyMzPjmzlf4dK2HS7t2jNz2nRqmkva83+y/ZD5D2X5HTVUlI8P6TOBZLAuKTGR58+fs2TxYtLT0xXOcXnw4AE5OTmkpkra8RYtWuDs3JbPPvuc0NDQD14Xg4KCOHPGm6++mlPmwGp2dg5JySkEh4RibGzIGZ+LNGlsJ28zHextpL7Gm1K+JZ7ExGTs7ZTPdXF0sCE0tMgutmjeGA0NDVas3kzg4yfExMRx7ffb7NpziC6d2vFRfcWwWtnZOXTo0h8X109o3bo1Pj4+1KlbV6mfIpv0KbOfokLf9g72vFHRT9m5dSvGJiZ8XGzguCTNW7bgZXg4O7ds4XVUFG9ev2bvzp2EPnnCiDGjAUnfxUKVbZGW82elyBz2/LnK887sHf58Pbx9+zb16tfn999/p0/PnnRxcaGbqytbN2+msLBQ6RlPn4aqtuOODtJyHqn2/fJyruIbHB0c1Nbx8vDuXbS0fzNdZTtT0Xy9kv7p09Aw7O3t0ZeGLX/y5IlEvr9Zr09Dpe3HRyXaD6kf+TT0qVS+XKl8irqU6VYmn4wnT55gaWkpl1/Gh/SZQOIjJScl8erlSzZt2MCLsDCcWqvuL8rk/LfqZ15eHslJScRERxPg78/B/fupVasWdS1KD7csIiLy4RHPIBIR+R8lMDAQGxsbJk4sOvTS3d39Tz2rd+/e+Pj4MHLkSC5cuICxsTFOTk7s27dPIZ+NjQ3ffvut/P8tWrSgcuXKfPfddyxYsEDlwJogCCxfvpxevXrx888/y9PNzMyYMGECU6ZMoVGj8h0cW14S4uMxMTFRSjeRDkzFx8epvC81NZW83Fx5PpX3xsVjWcKJBMkKvds3btChUyels31KEhcXh4mJ+nckxKmOTZxWinyynUEJ8fFU0dfHwNCQ73/+iTW/LOXrqdPk+Vo5O7Nw2S9oFtsdVq16dfoNHoR948Zo62izdukyUlNS+XLCJDbv2wsGktV8ZtL3xsWp1l9KSgq5ubnyAcDimJqZye/V19cnPj4eTU1NjEvscNLW1sbAwEDpHWtWr8bGxobuKg4iLUl8fDytpU50ZGQk/v7+uLu7U6NGDbkM6spcnFT3Kr/B1FT+jTo6OsTHx2FiYqI0cGFaip66d+8hX01naGjIN998o/YQ1Pj4BJWDIqamxtLnJ9DIqoHq74hPVMireL8JKSmp8u+IjJIMmHw7dwnt2rZm7GcjePbsBXv2HiImJpY9O9crydG99xD5rh9DQ0O+//572rZuplIWgPiEJFo2U+5EmZoayeVtZFVP7f3vi1/ATb5bsFr+f3s7KxbPm4aWlqZq+eITaNFceYLrQ+m6fj1JJ+vhoyCcWhXFDb979y4AsXHxCIJQoWRWxdnzfujo6CAIgsp2y9Ss9DYltbQ2Rd4mxyl17N+XSxcuUpBfQI9ePVVej49PoEWLZipkkLS7kjZF9SRBXHy8Ql7F+00VdC3j0OGjbNi4Vf7/1q1bsXhh6Qsqzp6TrIrV0tIqsw1WRXl0Hfcndb1z+3b0dHUZMXKkPK0876oo7bSpqSmWJc6Zevr0KdevXwdQ2IFdnPfR6fvYxPFffMHbN2/YvWsXu3buBCSDX7+uWEHnYjvgDI2MWLpsGV/OnElgYCAdO3YEoF27tqxYsYJ79+7LZagoui5pE1+9egVAQmICDa2s+HnZUmKio9m5fQfhL16ofS789fYjKjKKAP/LuLq7o6mp2nbIMDCorpT2IX0mgE/HjJHrr0qVKowfP57+xXaGR0ZKBm6TEhMxMjLi119/JSEhge3btzNhwkS++eZruQz/dvkQBIFff11Ot27daNq0KW/flr6I5NBRTzZs2i3/f2un5ixeMKfYO2RtdQKNrD5Suh/KsIsmxqSkpsm/pWGDenw/dyZr1u/g03Ez5fn69u7KgvmKZx2amhrz6egh2NlYUSgUcvveUzw9PdGvWpX8/HyFaA3F+xqqSE2V2IvS+ylx8n5K2PPneJ3yZPm6taWW4U/Hj+fd27d47N7Dvl0SPerp6fHjr7/i0llyLlVcXJzKv7NJGeVcVg9V+gDlqYdRUQRcVq6HUZGRaGpq8tPixYwaM4ZG1tYE+PuzZ9cuCgoKmDp9usJz4uPjadFC+RwWRZtjpVKGIjtedjl/X1avWYONjY3CGTqKclds/zQ+PoHWrZ2L/NPYOOnz/169xsfFY2JiXEr7IXlW/Xr1pfI9xKnYecAPHjxQkE8ug5py/SF9JoC5334rXyChra3NgIEDGf/FF2rzx8fH/2v187K/Pz/Mmyf/v529Pd8vWKAUeUbk/wcq5uNFKjBiLRUR+R/F3t6eQ4cOsXTpUrp27UrTpk0VDnJ8H3r37s22bdt49+4dPj4+9OrVS2mlEkg6bPv27ePYsWO8fv2anJwc+bWoqCisrZVX3b18+ZI3b94wb9488vOLwuO0bt0aDQ0NgoKC/vYJotycHLRVOOk6OpLVTjnZOUrXAHKl6do6ynrUkYaLKP7Nxbni509eXh7u5ZjAyM7OxshM2RHTLuMdsnRVf2f5txW719DIkIY21vQbPIh6DRrw4tkzju0/wIolP7FgWdFBkgOGDVV41o4NmzCtUZPw58/xOnkS2xmSzq+OrvI7VMqnUveK35aTna22vOrq6iq8486dO/j5+eGxf7/K/Krk0NHRISsri2+++RZdXV1mzJjBq1cvS5Vfci1bQV7Fbyj6fh0dHXJyclR+g65cT9lK1zZu3EBOTi4vX77k7NmzKg8LLpIlV+XAu65O6eWk+DUd7dL+FpJOV1amRAZ7e1t+/lHi8Lu7dkRPT5cNm3Zy6/Z9nNu0VPyOdcsk3/EqkvMXr5T6HbJ3qapXutK07Jyyw1S+D04tG7N13SLS0jO4fTeQ0OevyMpW/nsUl09H1d/yA+naztaaxo527PU4Qg0zU5xaNSf8ZQTLVmxEW1ubnJwcBIEKJXNJ0tMzuP77TTp16sTTp09V1qmyZC1q80qvj3+VC+fPY2RkpLC6vqQc/6yucxT006NHV+zt7UhKSuLatT9ISEws9R2FhYVcuOiLvb09aWlp5WqDS5Jdqn0p+zvVERERweHDh/l56VKFbywsLFRdJsqwg5Jr/247/fbtW6Uy+PPPP9OiRQvu3r37t+g0JycHLTU2UaeETdTW1sayXj3c3N3p4upKYUEBnqdOseD779m0eTONmxQNJsrCNTVp0oSJEyfy+HEge/fuY+HCRQwePEhBBlV8aJsoC0Wso6PLmvXr5L5pjZo1+X7uvFLl/yvtR3ZWFnO/lfgP02ZMV5mnOFpaqvzGD+MzyVi4aBEZGRm8ef0aLy8vcnJyKCgokOswq1iYZ3d3d/r27UtmZga2tjZ8+uln/PHHH6XKL7n2z5QPLy8vwsLCWLFiudp3F6dHty7Y21kzZfpc+U7hnOwiv0Lma5SvrS6tD1A0CVCjhimO9jZ0aN+aWuY1uP8wiCNHf8PQ0IDZMyfI750xdZzCswYM/gx/f39SUlII8PPHvVgorCKbotpfyZH6MeUt0+tWrKRNu7a0VrMQSYa2tjYWlpZ0dnOjY5cuFBYW4OXpyY8LFrBm00ZqtGtPdnY2pn/BjqssI2XUkeysLOZJ62HJCZ+srCwKCwuZOn06Yz77DABXNzdSU1M5evgwn40di2Gx3RQl7WyR/GX7ErJ+Y1nf8L4TRHfu3MXPz5/9HnvVv7uC+6c5OTnEx8ezcOFCtLS05O/8u/UqaT9K8Rmkz7Kzs6WxoyN793pQw6wGTk6tCH/5kl9+WaYgn4zs7OwK5TPJmDZjBiNHjyYmOhofb2/y8vJKDe+co+Y7/on62bJVKzZs3kxaWhp3b9/m+fPnpfaxREREKg7iBJGIyP8oAwYMICMjg2PHjrF3716qVatG//79+eqrr8oMhVESa2trGjVqxN69e7l16xZfffWVynz79u3j119/Zfz48bRp04bq1avz+PFjlixZotbxSEpKAmCq9NyBkrx79+69ZC0POrq65KmIeZybK3Va1YTpkZ3Lk6fiPJRc6QC2rq7qe33Pn6e6QXXatG9Xpnx6enoq35FXxjtk6Xl5KuSTfZs0z9s3b/hq8lS+WbSAjtJ42+07dcS8Vi2WL/mR23/8Qet2qmXV1dXFwMAAYxMT7t++XfSOHMV3qJVPpe4Vv01XT0/ld4DEEZXly8/PZ8Xy5fTu3VshxjNI4rnHxyuusjQyMpIPlsyaNYvw8HA2btxAjRpm8lAF6uSXXNNTkFfxGxS/X1dXV+U3yDtHusr10Eka2q9Dh/Z07tyJwYOHoKurI4+NXbmyZMBGT6sAXV0dlWfz5OSWXk6KX5OFWlD8Dtn9ks6ArD706O6qkK9nDzc2bNrJo8BgpQkA2a6WDu3b0LP3APr06YO2kMrA/l1JSU1XyGtkWB1dXR2VZT4nVxaq4v1XXZaGibEhJq0NAejq2o6de08waeYiTh5cj7a2FnoFkpV0WWmJGBkZSHSt6m/5AXW98tdFfDvvRxb9uAIADY1KDB06jIcPHxIZGUFhYWGFk7k4fv5XycnJpW/fvrx69UplnSpL1qI2r+z6+Gd58/o1jwMDGTx0KIIgEB8fT650oCQrIwkjI8kZDP+srhXvr12rFrWlMd179ujGjz8tY9LkmXieOqIyzNy9ew+IjY3j88/HcurUqXK1wSXRK9W+lP2d6ljx66/Y2dvTtGlTeXstCAIaGhqqy0QZdlBy7d9tp/v168/r10VhBM+ePcuDBw9YsWoVd+/eRVdXV2Xs/ffRqa6uLvlqbGJuMZsIsPzXXwl6/JgDhw7JB/u7du3K4EGDWLp0Kes3bAAk/tWkCRPQ0dGhUaNGuLu7065dW2rVqs3ChQuxsrJSkEEVH8ImVqlSmWHDhgFFYYGMjAwVFi65ubuz4PvvKSwo/Nvbj4KCAubPncfL8HDWbliPmXQleWnk56vyG/99n6k4TZs2lf+7e48eDPjkE7KyspggjTyQLx1s1NTUVAjJ1aRJE+rUqcPz589LlV9y7e8vH+np6WzYsJExY0Zjbm6ulB8kdSolJUXuM+loa+PUsil6ero0b9YYTU0NJk37Fs/ju9HT05X7GuVrq0vrA0js4sNHwcyc/QP7dq3HwV6yOK5L5/ZU1a/Ctp0H6Ne3Ow0bqN8VLdsdcff2bYUJoiKborofpyutD+Up034XLxIUGMi+o0fUyiFj7fIVBAc9ZteBA/J65tq1K6OHDGXdylV0OdVe2nf583ZcZRkppY4UFBTw/TxpPVyvXA91dXXJysqiW4mdN25ubtz44w/u3L6NjnRiTE9XW2LHVcpfti8h84Pe9xtKIz8/n+UrVtC7dy8cHBzkZRokk1/x8RXLP73/IBCrhpLdd/O+/ZKflq6W+6dXr15l7Nix3Lp1k1evIqTy/b16lbQfpfgMxXyjlSuX8+13c1m0eAkgaeNGjRzBvfv35fLJUFeuP5TPJMPGpigsYK/evRk5YgSLFi5ky+bNKvPr/ov108TERB6pxc3dnb27dzNjyhROeHqq3Ikk4584e1q2qKSshYrvS5UqVf7W54mIVBTECSIRkf9RNDQ0+PTTT/n000+JiYnBx8eHVatWYWRkpHYypjR69+7NunXrsLS0xFEar7Yk58+fx9XVlTlzisI2vJCG+FCHoaEhAAsWLKBJE+Ut8rKwX38nJqamxKvYSp0g38quurNfvXp1tHV05PlU3qti509MdDSBDx/S55P+5dpebWZmxut3yuEyZO8wUfEOkISCUydfYrwkxI3MMbvo7UNubi7OHToo5GvbUXLIadCjQLUTRMamJsTHxWFWsyZpqUVxp2WhANQNlhgYGEjDiCjLJ/t7yO41NTWloKCAxMREhZApsg6SLJ+3tzevXr1i/vz5SiFG3rx+TbeuXRXSvH18MDU15ffffyc2Npaff/5ZHm4uvgz5JddMFfIqfEN8vPwbJd9gxp07dxEEQWGnT3neA2BhYYGNjQ0nT55i5cpVCtd8Th/C1NSEN2+UJ1DjpSEjzMyUQ1bJv0MaTkKWV/H+BAwMig44N5OGXjEpcdiysXTleVmHjlpaWmJvb8/Zi1do2NCSL6b+oPgtp7ZhamJEXEKSClmSFOT9p+jq2paN2w5y8OgZDhw5oyifVNfx8cphoj6krmvUMGPPzvV4n73EDwuXUlgocPjwYQAaWTUgOyenwslcnLPn/ahaVZ8uXbpw5MgRlYsBZGF01NWV6qW1KfI2uezB29KQnb/Xo2dPAh89YvKEiQrXfc6cLKV8JJQqPxSFmVJ9f7yCrtXh7taFU55e3L//gHbtlFeCnz13EQ0NDXr37s21a9fU6FqxDS5JeXRdnoHy4ty5fZubN28C0KNb0SCoiYkJ2travHn9mvT0dIWY+RWxndbX1yc6Okaetnz5crp37y63j5qamqRL60F0TAx5+fmYmZm9l07LaxPz8vI4ffo0Y8aMUZgw0dLWxqpRIy77+yvoulKlStSpU0chvExnacio4OCgMnXwIWzi2bPn5BNEMh+x5M5vTU1N9PWrkpaa+re3H7/8+BPXr11jyc8/lXrmQ3FUncf2IXwmdVSvXp2GDRty4sQJTpw4oXCtSpUqSuGHjI2N5KGY/u3y4eGxn7y8PLp16y73+2JiJPUvNTWVt2/fEhkZyeTJUxTe5/ObB6amxsQnJDJy2Cec+u0c9x88pl3bVsXa6j9pFxMSMaheTf4tJ075YGxsJJ8cktGpY1u27tjPo8CQUieIatasycuXL0lLTVFIL62vAZK/o06Z/RSJHjevW08Xdze0tbV5J9VjerqknYqNjiE/Lw9TMzPy8vLwPn2aESXbFC0tnNu15dSx4+Tm5mJmZsZbFbYloYxyLquHqmQutR7+JKmHi3/6iVYq6qGpmRlRkZEYlwgpniSdZPm22GJHH28vTE1N/7R9K7LjZZfz8uLt7cOrVxHMnz+Pt2/fEhj4mLnzJKFkT506xalTpzh5bE+F8U9fvoyga89BCte2bVnFDwuX0qCBFd988w3t27enXj1L6fP/Xr2amply525p7UdRnalRowZ7du8iIjKShPgELC0tMDU1pWu3HnL55DKYmVUYn0kd2tradOrYkb1795Kdna1yIbCpqSmxsbFK6f9U/SyOq5sbWzZt4sqVKwwYOFBtvpLnP/2dyMKp/l20bKm88E1ENYXCh5ZA5H0QJ4hERP4fULNmTcaOHYu3tzfh4eF/6hl9+vQhMDAQNzc3tXmyVYS4OHPmjJrcEho0aIC5uTlRUVGMLHb+wD+JlbU1D+7dIyM9XeEA2CfBwfLrqtDQ0KBBw4aEqnBgngQHU7tOHZXnC/lduIAgCHQtR3g5AFtbW27eukVGegb6VYue91QqX8NS5PuoYUOePVE+jPhpcDC1ismXlJiIIAhKB7XKwvyVtk29obU1D+/dp1q1algVW8EUFCQZTCq+qqmkfFZWVoSEhChdCwoKom7duvIYxrJnhAQH08HFRZ4vJDiYwsJCrKXXo6Ojyc/P5/PPP1d6pmzgceKkSTSTrpQ1MTGhkoYGMTExzJ07l549i/4mQUGP0dPTo1499Z32GjVqYGRkREiIchkICgrGxqbob2NjY42npyfh4S9p2LBBsXxB8utlIQv5smXLFqBotbSJiTE21g2JinqDICh6XkFBTyTfYVm3lO8ww8jIkJAnyoerBgU/xabYeSl2dtbwmw+xJWLey+J5GxkZlvkd2dnZ5GRlYmNVn63rFilcMzU2xKZRfR48ekJhYaHCAMTjkGfo6elSz7J2me/4K8hC2OnrV2HrukXoVpeUgeyMeLmuHzx4rCRfRdB1xw7ObNkoWaWZkJwjOe/J2Ym3795VWJnj4hO4e+8hfft0R0dHB1tbW27duqU0GRAsrSvWauqKhoYGDa2seKKiPgYHBVGnbp2/fP7QxXPnqVu3Lo2bNCY1NZWNWzajryc5Ty87K1VaPhrx4OEjFboOlrYp6g/mles6RLndDgp+go112SFWZaFM0tOVDzzOzc3Fzz+AVi2bU7NmTbW6DpLr+s+133WKtd/lJTo6WmW67Myee/fucfz4cYX2vSK209ra2qSnp8t1+u7dO7y9vfH29gbgpx9/lOcdNWIE1tbWHDpy5L10KreJISF0KLawIyQkRGITpX5BSnIyBfn5Kg9hr1atGgBr1q1DR0eHQwcP8vv161g1akTQ48fye2R+QExMbIXTdU5OjsJKZtnO4cTERIUynZeXJ5+U+zvbj/Vr1nLGy4vZX80p15mHMmJjYtTWuX/TZyoNXV1dtLW1Wb9+PSCZzFy8aBH6+vryciYjTnrO3YcoH9HR0aSmpjJokOJgNMCuXbvZtWs3O3fuYMuWLXKfKTsjRtJWN2rIg4dBZGZJwh3J2syg4KdSX6NOKd9iipGRASFPlA9zDwoOxca6yC4mJiZRWKBcB8vjYwM0bNiQP/74A319xQPlQ4LK0U+xakioCn2HBCn2U2JjYrh0/gKXzl9Qyjtu1CisrBux59AhUlJSKCgooLBQWeZ8aVtTWFhYth0vReaGVlYqB4eDg4KoU0dFPVy7Fm8vL2bNUV8Pbe3siIqMJC42ljp1i/wd2W6HWXPm0ES64NHExAQbG2sePHiobMcfy+y44sRBceTlXMU3BAUHY6Pm20ujqH8zTm2esLDwCuOf1q9vKfdFZTRt7ECTxvY8fBTCs2fPiI+P5+O+fSXP/5v1amNtjafnb4S/fEnDBiraD2vlNrCepSX1LCXvfxEeriCfDFm5zshQ9K8+hM9UGtk5OQiCQEZGhsoJokbW1ty7e/dfqZ+qZAPISE8vNZ+dnV2p1/8MWVlZvHr1ivr166s8C1tEREQR5UNERERE/idYsGABK1euxNfXl9u3b7N161aePn2q9sD7sqhbty6bN29mYCkrP9q1a4evry8HDhzg+vXrfPPNN0RERKjND5LVq9999x379+9nwYIF+Pv7c+PGDU6ePMmMGTN4+fLln5K3NDq5SWLyn/H8TZ6Wm5vLuTPe2Dk6UsO8JiDZ+RNRYsVJJzdXnoaE8LSYwxf5KoL7d+/SSc3kmd+FC9Q0N6dxs2blkq9Hjx4UFhTg85uifBe8vbF1dKBGzSL5IkvI19G1C6EhIQqdw6iICB7cvUdHt6KwAHUtLRAEgSu+vgr3X754CQCrYp325CTFnR0dXbtQWFBASnIyTm2d5fJ5nT6NY+PG8pAf7969U/r7ubu7ExwcTIh0sgskq3ru3LmDu7u7PM3JyQkDAwOOl1jJevzECfT09HCRDoB0796dVatXK/0AOnTowKrVqxkwYABtnJ1p4+zMkSNHiJSWyeKhSZKSkrh0yZeOHTsqrPKLiooiKiqK4ri5uXHt2jWFwc1bt24RERGBu3vRjqXOnTujpaXF8ePH5GmCIHD8+Alq1KghD++Sn59Paqry6uKgoCDCwsJo3Lgxzs5tcHZuQ7t27WjXrh26ujq4u0pWeb8rtnI9KTmFS35X6OjSVvE7Xr8h6vUbxe9wdeHatZtERxetKLt1+z4Rka9xd+9U9B0d26Ojo43XmfMKA0Sep88C4Ny6pfQ7CkhNVd4tEhgYyLNnz7C3taJ69ao4t26q8NPV1aGrazsSEpPxC7hZ7FtSueT/B506OKFT7HyiqNfviHr950JPJiWnKk2oAXh6SepBy2b2OLduKtezc5uWcl0nJCbhd/lasWd9OF0Xp3r1aji3aUlrp+b4+vpSuXJlhg3tX6FlvnDRn8LCQnr1kLSZPXr0oKCggN9OnZLnyc3NxdvLC0dHR2pK62r0u3e8KtGmuLq7ERIcrNAJj3j1irt37uJWrE35M4Q+fcrLly/pLp1Irl69Oq3btClWPpzQ1dXF3b0LCQmJ+PkHyO9NSkrmku9lOnZsX6JNeU1U1GuF97i5duHatd8VdqHcun2XiIhI3N2L2u3EJOVddgC/nfamUqVK2NopD1Rcv36DtLQ0evaUhNmR6dqzhK7PSHVtXqqu3ZV0/erVK+6WaL/Li5OTEytXrVL6GRkZUaeOZKC2+KKTitpOy8L+nJLqdNOmTaxduxZTU1MsLS1ZuWoVXaW7dqZNn87sYrusy6vTVlKbePL4cYX3nzh+HD09PfmkgJGxMdWqVePy5csKoW0yMzO5dfMm9evXx8XFhTZt2sjDt5mYmBAfH8/FixeBol1zkZGRFU7XYWFh2Nvby9Nk4YwFQeDEsSLd/HbKE0EQsLCw+Nvaj/37PDiwfz+fjR3LsBEjlOQrjcLCQqX27UP4TCCZTCvJ27dvefDgAY6OjnJ/qV+/flhbW5OUlKRQPm7cuEF0dDQpKSkfpHwMHz6M1atXKfy+/16ys+Ljj/uyevUqrK2tcXZug62traStbt1CYsvdXEhITGLXnsOSNtPWSmoXr9HRxbmEXXxL1GvFneluXVy4dv0W0THF7eIDiV106yhPs7SsS0JiEnfvPVK4//yFywDY2kgG3nNycsnIUA6rlJycLP9+GZJ+yhnsi9lEVf2Uzq5uPFHqp7zi/t27dHEv6qf8vHKF0s9Vuut+/uLFTJ89G5CEZq5arRpXLwcotSl/XLtGvfr10dPTU2vHz3h54VCWHXeT1MMnJerhvbsq6qGHBwfLUQ+7Sr/F6/RpeVphYSF+ly5R3cCAAYMGFfOpdXF3cyMhIQE/f395fokd96VjR5ey7bibq4pyfltix7uqX1ypju7du7N61UqlH0CnTp1YvWIJzZs3qTC+XueOEp+5+E/mP8fHx/Ptt9+ip6fHoEED/xG9du7cSdJ+FLMDgiBw/MRJafuhHKVERmFhIevWrpfLVxxZufbx8ZGnfSifCVS332lpafj7+1PT3Fwe2q0krm5u/3j9TE5KUtnH8pKOZ5Q1AVSlSpW//SebFKpcufLf+lwRkf9VxB1EIiL/ozRv3pxjx45x/PhxsrKysLCwYO7cuQwePPgfe+fUqVNJSkqSrz7s3r0733//PZMmTSr1vp49e1K9enW2bt0q33FUp04dXFxcMC0lVu2fxd7Rkc7ubuzYtInkpETq1LXggo8P0W/f8o20kwnwy8JFPLp/n4A7Refs9B80CO/fTjN31myGjhqJpqYWxw8dwtjYmKGjlHdAhYe94MXzMEZ8+qnClvfSaNq0KR3d3Ni1aTPJiYnUtrDgko8P0W/fMWd+kXy/LlpM4P0H+N4uGlT/eNBAzp72Yv7s2QweORItLS1OHDqMkbHx/7F331FRXe0ex78DgmIBBbFgrFhAFAuigtg7ijXYFTtib1jBFmPHBmLFXoJdROw9dsVeYu8CRhBQmpT7B2HCOANi3hvOGbM/a73rypyTm5+T4cw5+9n72Th3//tBqlmr1uzYvJXFs+fy+I+HlCxThscP/iAoIIBSZcrg0KCB8tzubdrRoGkTSpubo5dTnzs3bimPhYWG4u/vz549e3j37h1Tpk5VHpvi6cm1a9cIvn5d+Zpzp07s3rOH4cOH07NXL3LkyMGWzZsxNjamZ8+eyvNy5cqF2+DBzJk9m3Hu7tjZ2XH9+nWCDhxgyNChGBkZAVC6dGlKly6t8X00K1aMhg0bKn8+ceIESxYvpnjx4igUCtzd3XFwcCBPntxcunSZpKQk3NxUP6uurqk/BwX9/WDQr19fjh07xsCBA+natRsxMTFs3LiRcuXK0rZtG+V5hQsXpnv3bmzYsJHExEQqVrTi1KmTXL9+nVmzfkVXVxdInd3UokVLmjVrhrm5OQYGuXj8+DH79gWQN29eBgwYoJLpxIkT3L55meTkZBQKBdev32Kg2xgMcuXk6fOXJCcn4zbQRfXvMTi1lUZQwLa//x69u3Ps2GkGuo2ma5cOxMTEsXGzP+XKlqGt098zMgsWNKZfnx4sX7mOIcPH07C+Aw8fPWH33gO0aN4IKyuLv/8erTvTrGlDzMuU+uvv8ZSAwCPky5ePAX0zvvY0aWiHdaXyTP3Vm6fPXpE/vyHbdx8kOSkZt/5dVM4dOCz1M3Zwzyrla2/fhXHg0GkA7j1IbWu5el3qQ2LRIqa0btkAgAOHTrNzz2Ea1q9JMbMixMTEcv7SdS5evkl9B1tq1tD8ANmkcT0q/1aRaTPm8fTpCwrkN2L7zn2SvdcA8xb4kJCQQPny5iQmJnHo8HHu3H3AnDlzKFqkMIVMC8ouc5qgQ8cxNTWhhk1VIPWa17hpE5b5+BAeHkHx4sU5EBjI23dvmTxlivKfmzZlKsHXrnE5+JrytZ+dndm3ew+jh4+ge8+e5MiRg61bUq8p3dNdUwDOnj7Dw0eps78TExN5/OgRfmvWAFCvXn3KfbVa59DBg0Bqe7nMNGnckMqVrZg2fRZPnz7/673eTXJyEm6u/VXfa7fhqe9B4N8P6f369uLYsRMMdB1K166diImJZeOmLZQra07bNq2U5/n5beDGzVvY29WmaJHCREZFcfzEKe7evU+Xzj9Torj6TOGgQ4fR19encaMGyve6SdOm+Pj4EB4eTvHixQkMDOTtu3d4pnuvp0yZQvC1a1wNDla+5uzszN7duxk5fDg9/nqvt2zZgrGxMT2+eq/PnD7Nw7/2KElMTOTRo0es+eu9rl+vHuXKl6dI0aIU+WsvpfS8FiygVKlSGBsb4+XlxcePH8mbNw/bt+9I/fzK7DqdL18+rKys8PZOfU/NzcuyZ88eIj5+ZNbs2VS3sVHucefj7f2P3tNcuXIxyM2NuXPmMH7cOOV34sGgIAYPGaL8TtTV1aVHz54s9/Wlt4sLrVq1Ijk5mX179xIaGsovM2cq/3+2dnJi06ZN7Nu7l4IFC+Lu7k7Zv2YK6+npoaurI7v3+uvvRH19fSZPnsz48ePx9fHh8uVL6Cp0uHTpEgAT093T/S/Xj5MnTuC9ZAnFS5SgdOnSHDwQpPK+1KxdS2VgLu268uxJ6qr9omZm+Cz15vSp03Ts0EGyeyaATs7O1KxZk/IVKmBoaMjLly/Zt3cviYmJDB8+XOXvNWbsWNwGDSJnzpy4u7tjbV2ZW7du//X50JXk82Fpaak20JjWas7c3Fzlvm/58uUEBwdTu6Y1RYsUIiIiEgODXNx/8IhKVhZcvHSN7Tv3//W92Ev17zJkfOrfZd+mv/8ufbpw7PgZBrqNo2vndsTExrJx807KlS1NW6e/Wzd26dSGgMDDjBgzhS6d2lK0SCGuBd/m0JGT1K5VncqVUvN/+BBOl56DadGsAaVKpa40vXz1HqdPn8bYxISjhw5RwNiYn4r/xMHAA7x7+5bxnh7Kf8/MKVO5ERzM2atXlK+1d/6Z/Xv3Mm7kKLr06EGOHLr4b9lKAWNjOvfooTyvXrr7/DSP/0j9fqxdx17ZAlxXV5euPXqwevlyXHv3oUUrR5KTkwncF0BYaBiev6Tu41KlShUaN2mCr48PERER/FS8OEGBgbx7+xaPdN8t06em/h5euvb372FHZ2f27dnDqBF//x5u++tz3i3d5/zUiRP4/PV7WKp0aQ4GffV7WOvv38N6DRpgW7MmG9at4+PHj5QrV47Tp05x88YNJkyerNbyrUmTxlTeWplp02bw9OkzCuTPz/Ydf33nDFJtLes6yC31s3Hg7y4Z/fr2+etzPoiu3bqkfo9v3ES5smVp26aNyj8fGHiAdyHviItNXVkRHHyd1X9dM1o5tsLMrCilS5eidOlSav+NIHXSZsMGqStJ5X5/mpDwhdy5c3Pv3j0aNWzI2bNn/5X3tXDhwnTv1pUNGzelXj+srDh18lTq9ePXmcrrB8C8+QtIiI+nfIUKJCYmcujgIe7cvcuM6dMoWlR1X7Nnz55Rxtyc1atSnzmOHD5MQEAA78PCGJyuZX923DMBDB86lEKFC1OpUiWMjY0JCQlhf0AA79+/Z9acOWSkUuXK//rv58GDB9mzcyf1GzTA7KefiPn8mYsXLnD50iXq1qunsRWk8OMTLea0iyJFU5lXEAThB/Huq/7daeLj41m7YiVHDx4kOjoa87Jl6TvIlZp2dspzRrgOUisQQWpRZNmiRVy9eInklBSqVq/OkNGj+Km4ehuhVT7L2LphA2u3baXMXxs+Z6aoYepD/JOwENatXMXxg4eIjo6mTNmy9HYdqFyxAzB6kJtagQjgfWgYyxct5uqlS6SkpFClejXcRo2k2Ff5/gwLY/3K1dy4do0P799jaGRELYc69BvshtFfD4YAXr/O4t6t27wPCyUhPoHCRYtgV68eSYmJnD52nE/R0VSoUAHXQYOwT7dv0YD+/dUGOyC1V7zXggVcvHiR5ORkbGrUYMyYMZQood5mYPfu3WzetIk3b95QuEgROnfuTLdu3b5ZbKterRqdOndmwoQJytdWrFjBqpUrM/xnJk+epNayxNExdXA2/WAHpO6t5eXlxfXrN9DT06NuXQdGjx6tNnMrOTmZdevWs2vXLv78809KlChB3759cHR0VJ7z5csXFi9ezJUrV3n37h1xcXGYmppSq1YtBgzoj5nZ3+3VcufOw4QJE9izZ4/Gv0OpksWZOWMSVhVVVxI4tuma+vdI91CY+vd4htfi5Vy/cQc9vRzUrVOb0SMHYWKiuudPSkoK/jv28pv/Ht68DaGgiTGtWzVj4IBe6P21r9aXL19YvHQlV67d4N3bUOLi4zE1NaFOnbq4ublhklt9Rnh6UVGfWOSzgZNnLhEXn4CVZVlGD+uNlaXq703L9gMB1QLRleA7ansbpbGpZoWfb+qg6N37j1m/eQ937j3iQ/hHdHV1KVXCDMfm9enq3IocOVIfIA2MU2eox0T9PdMyKiqaRUtXcurU76n5KlZg1IhBkrzXAAH7D7Fl2y5evX6Djo4OVhUtGDJ0BLVr11bmlltmgOfPX9LeuTc9ujkzZpQbuQ1TV4qEhX9gpe9yDh4MIjoqmrLlyuHqNgi7dNeUQQMGqg3wQuo1ZZGXF5cuXiQlOYXqNjaMGjOG4iVUr3nTp07lwP5ANJkybSqt0w02JCcn08axFcbGxmzcukXlXKO/2v7EfPq7739UVBSLFi/j1KkzxMXHY2VlyaiRQ7GqqDqQ6di6Q+p7na5AlPpeP8Vr4VKu37iVek1xsGP0qOEq7/XFi5fZ9tsO7j/4g4iIj+TMqU+5smVp384JJydHtevip0+fadKsFXXq2OM1fxa586Zen/4MD2eFry9BBw8SHRVF2XLlcHNzU3mvBw4YoDbYkfZeL/Ty4uLFi6QkJ2NjY8PoMWMo/tX1e9rUqQRm0GJ26rRpOH01YJaeU6tWmJubM2PmTHx9fDh27BhxcXFYWVkxatQorKwqqpwvh+u0iYkJvr6+BAUdJCoqigoVKjDQ1VX5nq5csUI5wPRP31OAPbt3s3nzZt6+eUPhwoXp1LkzXTV8Jx46eJBt27bx8sULEr58oVzZsvR0cVFrExwWFsaK5cu5euWKcp8FHR0dKlWqhLu7uyzf66+/EwG2+v/GkkWLlSueCxgbM2HSJBo2+rtY8L9cP1atWMmaVavIyPJVK7GpUUP5c83qGe9PoK+vL+k904oVK/j97Flev35NTEwMBQoUoHr16vTt149y5dRbWl66eJFly5Zx7949UlJSUr9vrKwYN26cJJ8PTd6+fUurVq0ZNWokvXr9Xei5fv0GmzZt4s6dW0RERJIzpz6lS5VAX1+Pp09fpF6rK1Zg1PCBavsFObZNHfhMXyBK/bs8x2vxSq7fvJP6d6lTk9EjXDExUd2b5fmLVyxbvp47dx/w54cITE1NaNq4LoMG9sLgrxZQ0dGfmLtgGbfu3Of9+w8kJydTsmQpnJycaN62DevWrOFI0EE+/fWc0s9tELXSPacMG+iqViCC1OcU74WLuHLxIskpKVSzqc6w0aM1Pqekt3blKtatXs3+Y0eVBaI0Rw8dYse233j18iVfEhIwL1eOrj170qBxIwrlMwQg9MMHVi5fzqGgIKKj//oeHzSI2uk+524DB6oNQEPq53xx2u9hSurv4cgxYyieLvPqlZn/HvquVP09jImJYYWvL8eOHCEqKoqSJUvS08WFFn99nvL/1Wor5nPq6vfU7/ElnDp1iri4eKysKjJq1EisKn71OW+V2oYsfSED0j7ni7h+46/PuYMDo0ePVPuc9x8wkGvXVL8HlH/HVSuoke7v8LVq1WvQvXt3xo78u/Wc3O71vr4/rVjRCgMDA27duvmvvq/JycmsW7+BXbt2/3X9KE7fPn1wdFSd5BMQsJ8tW7fx6tUr5fWsf7++2Nqqvu+58+SjZ8+eXL6sOg6QZsWqVcr/Vtl1z7Td358jhw/z/Plzoj99wjBfPipVrkyvXr2oVr06+f5q9/ZRQzu3+Pj4f/X38/69e2zasIG7d+4QHh6Orq4uJUqWpKWjI86dO2e4D3P+vHk1vv7/ISYmhvv372NpaSlW/kikh21OqSNkaPOV+G+f9B8jCkSCIPzQMioQyVVagehVpOZWQnJU3Cj1ofhzjHqbDLnK89dNYkyM+p4dcpY2GJa+cCF3aQWA2HD1PtxypalApA3S3mttyp2WOfJz5r3J5URTgUgbpBWIoj9rz3UvbbBDm67Vaddp8T7/+9Lea228foh7pn+f8p4pMvN213KS2yh1T6ew6Mwn1chJWoFI06C0nH1dINIGufOk7iWnjfd52vQ+w9/vtTZ+l2vT76IoEP3YRIFIu4gWc4LwH5S2oWhGdHV1s9wOTRAEQRAEQRAEQRAEQRAEASBJrEfRKqJAJAj/QZMmTcqwRRXAxo0bqVWrVjYmEgRBEARBEARBEARBEARBELKTKBAJwn/Q0KFD6d69e4bHS5cunY1pBEEQBEEQBEEQBEEQBEEQhOwmCkSC8B/0008/8dNPP0kdQxAEQRAEQRAEQRAEQRCEH0gmu1r8Z5w7d47du3dz8+ZNXr16Rffu3ZkyZUqW/tno6Ghmz57NsWPH+PLlC3Xr1sXDw4NChQqpnBccHMzcuXO5f/8+JiYmdO3alQEDBnz3tiE633W2IAiCIAiCIAiCIAiCIAiCIAiCoNHZs2d58OABtra2GBoaftc/O3LkSM6dO8e0adNYsGABz549Y8CAASQmJirPefHiBf369cPU1JSVK1fi4uLC0qVLWbt27XdnFSuIBEEQBEEQBEEQBEEQBEEQBEEQ/h+MGzeOCRMmAHDp0qUs/3PXr1/n999/x8/PDwcHByB1KxBHR0eOHDmCo6MjAH5+fhQoUICFCxeir6+PnZ0d4eHhrFixgp49e6Kvr5/lf6dYQSQIgiAIgiAIgiAIgiAIgiAIwv8sOUW+/8suOjr/rOxy5swZDA0NqVOnjvK1MmXKYGlpyZkzZ1TOa9y4sUohyNHRkaioKK5fv/59Wf9RUkEQBEEQBEEQBEEQBEEQBEEQBOH/xdOnTyldurTaPkJlypTh6dOnAMTExPDu3TvKlCmjdo5CoVCel1WixZwgCD+0ooZGUkf4R4obFZA6wnfLkzu31BG+W+7ceaSO8I/kNiwmdYTvZmBcUeoI300b32fQztxGefJKHeG75c5rInWEfyRfHu277mnjtVq8z9lHG68f4p4p++Q2Kil1hO9WKN/37VMgB/nzat/vIUDuPPmkjvDdtPE+TxvfZ9DO73Jt/V38/5Y7d25sbGykjiHIVOPGjTM9fvz48WxKollUVBT58qlfN42MjLhz5w4A0dHRAGp7G+nr62NgYEBkZOR3/TtFgUgQBEEQBEEQBEEQBEEQBEEQhP/ZjusJUkfI0LcKRBmJjo4mLCzsm+cVL178u/b/kQNRIBIEQRAEQRAEQRAEQRAEQRAE4Yf2T1cIHTp0CA8Pj2+eFxQUhLm5+T/6d0DqqqCQkBC11yMjIzEySu2SlLbCKG0lUZqEhARiY2OV52WVKBAJgiAIgiAIgiAIgiAIgiAIgiBo4OzsjLOz87/+7ylTpgwXLlwgJSVFZR+iZ8+eUb58eSC1jWLRokXV9hp69uwZKSkpansTfYvO/x5bEARBEARBEARBEARBEARBEARB+Kfq1atHZGQkFy5cUL727Nkz7t27R7169VTOO378OF++fFG+FhQUhKGhIdWqVfuuf6coEAmCIAiCIAiCIAiCIAiCIAiCIPw/ePPmDYcOHeLQoUPExsby8uVL5c/pVaxYkUmTJil/rlatGg4ODkyaNImDBw9y4sQJhg8fToUKFWjWrJnyvH79+hEeHs6YMWO4cOECGzZswM/Pj0GDBn33HkiKlJSUlP/trysIgiAIgiAIgiAIgiAIgiAIgiDs3r2biRMnajz2xx9/KP9coUIF2rdvz5w5c5SvRUdHM3v2bI4ePUpiYiIODg54eHhQuHBhlf8/wcHBzJkzh/v372NsbEz37t0ZMGCASmu6rBAFIkEQBEEQBEEQBEEQBEEQBEEQhP8Y0WJOEARBEARBEARBEARBEARBEAThP0YUiARBEARBEARBEARBEARBEARBEP5jRIFIEARBEARBEARBEARBEARBEAThP0YUiARBEARBEARBEARBEARBEARBEP5jRIFIEARBEARBEARBEARBEARBEAThP0YUiARBEARBEARBEARBEARBEARBEP5jRIFIEARBEARBEARBEARBEARBEAThP0YUiARBEARBEASlqKgoqSMIwr8iMjKSq1evsn//fiIjIwGIj48nOTlZ4mSC8N8UGxvLixcvSElJkTqKIAjC/7v4+HjWrVvHw4cPpY4iCIKQqRxSBxAEQRD+HW/fvs3wmI6ODnnz5iVv3rzZmOi/ISUlhbCwMExMTMiRQ3zNCtrHwcGBZs2a0bFjR+zs7KSOIwj/s5SUFBYtWsSmTZuIjY1FoVCwc+dOjIyMGDp0KFWqVGHo0KFSxxSEH5qfnx+xsbHK37WrV6/i5ubGp0+f+Omnn/Dz86NEiRISp1QXERHBrVu3eP/+PfHx8eTPn5/SpUtjaWmJQqGQOp4gI5GRkTx69Ih3795Rr149jIyMiI+PR09PDx0dMTf7vyhnzpwsXrwYKysrqaMIgiBkSoxcCYIgfKd3797x7t07LCwsyJ07t9RxMtSoUaNvPrgWK1YMFxcXevbsmU2pMpZZXh0dHfLly4eFhQXdu3eX5U322bNn8fb25t69eyQnJ7Njxw6srKzw9PTE1taWNm3aSB1Ro9DQUEJDQ4mPj1c7ZmtrK0EiQWoTJkxg9+7d9OnTh2LFitGhQwc6dOhA0aJFpY72w3n9+jU//fRThscvXLgginT/DxYvXszmzZsZP348dnZ2NG/eXHmsUaNG7NixQ3YFovj4eEaMGEG/fv207lp84cIF3r59S8eOHdWO7d69GzMzM2rXri1BMkFKO3bsoF+/fsqfZ8+eTdmyZRk4cCDLly9n4cKFLF68WLqA6URHR7Nnzx727t3L/fv31VY4KRQKcufOTdOmTXF2dsbGxkaipJnr1KkTzs7OODo6kidPHqnjfFNcXBy+vr4cPnyYkJAQEhIS1M65f/++BMkyp42TEK5cuYK/vz/Pnz/X+Aywf/9+CVJl3ZkzZ7h9+zYhISG4ublhZmbGlStXKFGiBIULF5Y6ngpLS0seP35MzZo1pY7yn/DkyRPlZ6Njx46Ympry4sULTExMxORYQciEKBAJgiBkkb+/Pz4+Pvz5558A7Ny5EysrK4YMGULNmjVxcXGROKGq+fPns3DhQkqVKkXjxo0xNjYmPDyco0eP8uLFCwYMGMCNGzeYPXs2gORFosaNG3Ps2DE+ffqEnZ2dMu+FCxfImzcvFSpU4OrVqwQEBLBq1Srs7e0lzZteYGAg7u7utGzZEmdnZzw9PZXHihcvzu7du2VXIHr16hXu7u7cvHkTQOPghxwfwtOKb2mDB18/1CoUCo4dOyZROs0mTpyY4bG04qelpSXNmjXDwMAgG5Np1q1bN7p168bDhw/ZtWsXW7ZsYdmyZdjZ2fHzzz/TpEkT9PT0pI6pUXh4OGvXrlU+GPr4+FCuXDk2bNhAlSpVqFq1qtQRVfTp04etW7diamqqduzUqVOMGDFC+TsqN0+fPuXIkSMZ/h7OmjVLomTq9uzZw+jRo+nSpQtJSUkqx0qUKMGrV68kSpaxnDlzcuXKFXr37i11lO+2ePFiGjdurPFYeHg427dv57fffsvmVJk7c+YMUVFRtG7dGkidDDRp0iSePHmCvb09U6ZMkeWkoNDQUNavX09wcDAfP34kf/782NjY4OLiIrtB0pCQEEqWLAmk5r579y6bN2+mRo0aJCUlMW3aNGkD/mXFihWsXbsWQ0NDWrRowZAhQ7CwsKBAgQLo6+sTFRXFmzdvuHPnDmfOnKF3797Y2Njg4eFB2bJlpY6vwszMjF9++YVZs2bRokULOnbsSI0aNaSOlaHp06cTGBhI69atMTc3l+29xte0bRLC2bNncXV1xc7Ojjt37lCvXj3i4uIIDg6mSJEisp6UEB4ezuDBg7l58yZFixbl3bt3dOnSBTMzM3bt2oWBgQFTp06VOqaKSZMm4e7ujrGxMfXr15fFvb4mM2fO/K7zPTw8/qUk/0xsbCweHh4cPHgQhUJBcnIydevWxdTUFC8vL3766SfGjRsndUxBkC1RIBIEQciC9evXs2DBAvr06YOdnR19+/ZVHqtZsyaHDh2SXYHo6tWr1K1blxkzZqi83qNHDzw9Pbl79y7z588nb968bN26VfICUbFixTAzM2P16tUqgzCfP39m4MCBlClThhkzZjBw4ECWLl0qqwKRr68vLi4uTJgwgaSkJJUCUdrgtNx4eHgQGhrKrFmzMDc3R19fX+pIWTJ//nzWrVuHra0ttWrV0orBg/v37xMWFkZ4eDhGRkaYmJjw4cMHIiMjMTY2xsDAgI0bN7J48WI2bNggmxY75cuXZ+LEibi7u3Py5En8/PwYPXo0hoaGtGnThu7du1OqVCmpYyrdvXuX3r17ky9fPmxtbbl8+bJy9nHaIKpcZqenKV26NC4uLmzZsoUCBQooXz9y5AijR4+mV69eEqbL2N69e5k0aRI5c+bEzMxM7fdQbm2XPn78iLm5ucZjSUlJJCYmZnOirKlTpw7nzp3TutU2jx49YsSIERqPWVlZsWLFimxO9G1Lly6lZcuWyp9nzJjBkydPaNWqFQEBASxdupQJEyZImFDdw4cP6dGjB1++fKFOnTpYWFjw4cMHfvvtN3bt2sXmzZspV66c1DGVcubMyadPn4DUVWa5c+emWrVqAOTLl4/o6Ggp4yldvnwZb29vatWqpfG4sbExxsbGVK5cma5duxIZGcnmzZu5dOmS7ApEixcvJjIykoCAAPbs2UOPHj0oWbIkHTt2pF27dhQqVEjqiCpOnjzJ+PHj6dGjh9RRvou2TULw9vbGxcWFsWPHYmVlxYgRI7CysuLNmzf069dP1t85v/76KxEREQQGBlKyZEkqVaqkPGZnZ8fy5cslTKeZi4sLX758YdSoUQDkypVL5T5JoVBw7do1qeIpnThxIsvnKhQK2RWI5s6dy8WLF1m1ahU1atRQmRRWv3591q9fLwpEgpAJUSASBEHIgs2bNzN48GAGDx6sduNfunRpnj17JlGyjAUFBWU4GNqiRQtGjhzJrFmzaNCgATt37szecBps2LBB4wzdPHny0K9fP6ZNm8aAAQPo2rUr48ePlyilZq9evaJ+/foajxkYGMhm0CO9W7duMXfuXJo1ayZ1lO+yf/9+hg0bxpAhQ6SOkmXjxo1j2rRpeHt7q7ShuXr1KpMmTWLy5MmULFkSV1dX5s+fj7e3t4RpVSUnJ3P27Fn27dvHnTt3KFiwIA0bNuTEiRNs27aNKVOm0KlTJ6ljAqntiqpWrYqvry8KhYJ9+/Ypj1WpUoWDBw9KmE4zb29v+vfvT79+/di4cSN58+YlICCAiRMn4urqyvDhw6WOqNHy5ctp3rw5s2bNku1M2PRKlSrFuXPnNLbru3z5sqwG0dPr2LEjU6ZM4fPnz9SvXx8TExO14pscW64qFIoMv/ciIyPV7qPk4MWLF1hYWADw6dMnzp49y4IFC2jRogXlypXDx8dHdgWiuXPnUrx4cdauXYuRkZHy9cjISPr27cvcuXNZs2aNhAlVWVtbs2rVKnR0dPDz86NevXro6uoC8PLlS9mseFq7du13nW9kZCTrexIjIyN69uxJz549efDgATt37mTt2rUsXboUBwcHfv75Zxo1aiSLPXJ0dXVlNfEkq7RtEsKTJ08YNWoUOjo6KBQKYmNjgdTJesOGDcPb25u2bdtKnFKz06dP88svv2Bubq72XVK0aFFCQ0MlSpaxvn37ym7ijCbfUyCSo8OHDzNu3DgcHBzUPhvFihXjzZs3EiUTBO0gCkSCIAhZEBoaqpzl+DU9PT1iYmKyOdG36ejo8ODBA+rUqaN27P79+8oHQV1dXXLlypXd8dREREQoZ5Z+LTo6mqioKACVQRC5MDU15enTpxoHH//44w/MzMwkSJW5woULy2Iw4HslJCRQvXp1qWN8l7lz5zJ06FC1PQpq1KjB4MGDmT9/PoGBgQwcOJC5c+dKlFLV8+fP2bVrF3v37iU8PJy6deuyZMkSGjRogK6uLikpKSxYsIAlS5bIpkB0+/ZtvL290dPTU3swNDY25sOHDxIly1jOnDlZsWIFffr0oX///rRq1YrZs2czcuRIBg4cKHW8DIWFhTFt2jStKA4B9O7dG09PT3LkyEGLFi2A1HZXN27cYNOmTcpWq3Lj6uoKwNatW9m6davKAFNKSopsW4FWqVKFLVu20KxZM7XMW7dupUqVKhKm0ywxMVH5nXjlyhUA6tatC6S2ik1rLywnwcHBzJ8/X+2+yMjICDc3N9zd3SVKptn48eNxdXVl0KBBmJmZKWfTAxw8eDDD+2wpnTlzhrp162rF4G5WFClShOLFi1OwYEE+fvzI8+fPGTZsGMWKFWPBggWSt2Ht2rUr+/btw8HBQdIc30vbJiHkzJmT5ORkFAoFpqamvHz5Utl6ME+ePISEhEicMGNJSUkZtvuMioqSZWeBYcOGSR3hPyEmJkZjy2ZAWQQVBCFjokAkCIKQBWZmZty+fVvjjf/NmzdlOdvNycmJJUuW8OXLFxo2bKjc0+f48eMsX76czp07A6ltmTKa9ZadatWqhZeXF8WKFVMpAFy9epWFCxcq2x08e/aMYsWKSRVTo9atW+Pt7U2ZMmWUG5AqFAoePnzImjVr6Nq1q8QJ1Y0aNYrVq1dTo0YN8ufPL3WcLHNycuLEiRMafxfl6tmzZxgaGmo8ZmRkxMuXL4HUNiRxcXHZGU2jrl27cuPGDYoWLUqXLl34+eef1WZ2KxQKmjdvjp+fn0Qp1RkYGGRYZH779q1sP+d58uRhzZo19OrVi1mzZjFx4kTZtpZLU6NGDR4+fKg1v4cdOnQgMjISb29vVq5cCcCQIUMwMDBg5MiRODo6SpxQs40bN0od4R8ZNmwYvXr1ok2bNrRv3x5TU1PCwsLYu3cvz58/Z9OmTVJHVFOmTBkCAgKoUqUK/v7+VKtWjTx58gDw/v17WV4/dHV1lW00v5aQkKBcnSMXZcuW5fjx40RERKi01ITU4lFGA3tSGjhwIEWKFKF9+/Z06NCB4sWLSx3pHzl79iy7du3ixIkT5MmThzZt2rBkyRLMzc15+fIl06dPZ9KkSQQFBWV7tnXr1in/bGBgwLVr1+jSpQt2dnZq904KhUKW+7Jp2yQECwsLnj17Rp06dbCzs2PFihUUKFCAHDlysHjxYsqXLy91xAxZW1uza9cujZ0bDhw4IPtJZO/evePdu3dYWFjIbl+7t2/fftf5cpsAWaFCBY4cOaKxwHzq1CmVdoSCIKhTpHy9K7UgCIKgxs/PDx8fHyZNmkSzZs2oVasW/v7+RERE4O7uzsiRI+nevbvUMVV8+fKFBQsW8Ntvv6kMIOjr69O1a1fGjh1Ljhw5uHLlCrlz55a8TU1oaChubm7cv38fQ0NDChQoQEREBFFRUVhaWrJ8+XIKFy7M9u3b0dfXp127dpLmTS8hIYERI0Zw8uRJ8ufPz8ePHzExMSE8PJwGDRrg7e1NjhzSz8kYNGiQys/3798nOjoaS0tL8uXLp3JMoVDIpo/3kSNHlH+Oj49n0aJFVK1aFXt7e42FF7m1zWvXrh358uVj1apVKisuYmJiGDhwIDExMezevZsDBw7g5eUleYuH4cOH4+zsjIODQ6azpr98+UJYWJhsCrZjx47ljz/+YOPGjRgaGmJlZcXu3bspU6YM3bt3p2LFivzyyy9Sx1T7PUwTERHB8+fPVWbRy+n3ML379+/j7u5Ojx49qFOnjtr1A5DlgPrnz5+5fv06ERERGBkZUa1aNY3Zhf/dtWvXmD9/Prdu3SI5ORkdHR2qVq3KmDFj1FZTysHx48cZMWIESUlJ6OrqsmLFCuUg08SJE4mIiJDd3knDhw/nwYMHrFy5ktKlSytff/78Oa6urlSoUIGlS5dKmDBjKSkphIWFYWJiIov7o4w8efKEnTt3sn//fsLDw6lRowbOzs40b95cK/ZuXLx4Mfv27SMkJISaNWvSqVMnmjZtqpY9ODiY7t27S7IiMa21Y1bIddUkpBa6vL29iY2NJW2IzcDAgOHDh9OnTx+J06k6ffo0r1+/pnv37oSGhjJo0CDl+1qkSBF8fHxkO5h+/fp1evXqhbW1Nc2bN2f27NkMGjSIJ0+ecPr0abZu3Sr5M60m/v7++Pj48P79exQKBTt37sTKyoohQ4ZQs2ZNWexlbGlpmaXz5LqC+dSpUwwePJhWrVrRokULhg4dypQpU3j58iWbNm1i9erVWjOxSRCkIApEgiAIWTRz5ky2bNmCQqFQDnYAdOvWTXabNKYXGRnJw4cPef/+PaamppQrV06WA3dpTp8+ze3bt5V5K1eunOH+PnJz8eJFzp8/rxx8tLe3x97eXupYSj179vyu8+Uyy1vbBw+uXr3KgAED0NPTo1atWsri58WLF0lMTGTNmjXY2NiwcOFCvnz5IukeW/Hx8cyfP582bdpgbW0tWY5/IjQ0lK5du/Lp0ydq1arFsWPHqFu3Lo8fP0ahULB9+3ZMTEykjqm1v4fppf+dzKiIKKffw+fPn8typW9WPXnyhNu3bxMSEkLHjh0xNTXlxYsXmJiYkDdvXqnjZSouLo7IyEgMDQ1l35Lw1atX3Lt3jwoVKqh8Xvz9/alQoYLk7be+9vbtW3r06EFISAjlypWjYMGCfPjwgYcPH1K0aFE2b95M0aJFpY6p4uzZs3h7e3Pv3j2Sk5PZsWMHVlZWeHp6YmtrS5s2baSOqFFSUhKnTp1i165dnDlzBgMDA1q3bk3Hjh1lO5AO4ODgQPv27XF2dqZEiRIZnvfx40dOnjxJ+/btszHdj+fz588EBwfz8eNHrZqEkJKSwosXL4iLi6NMmTKyL35ev34dLy8vrl+/TlJSEgqFgqpVqzJu3DhZtqpcv349CxYsoE+fPtjZ2dG3b1927dqFlZUVGzZs4NChQ2zbtk3qmFhYWJAnTx6aNGlC/fr1v/k5aNKkSTYly7pDhw4xb948ldVQRYoUYcKECcrVfYIgaCYKRIIgCN/h1atXKgUAOzs7rR50Ev5/nDlzhnr16mV4fPny5bi5uWVjoh/L924qKpcVLem9f/+edevWcefOHZXiZ+/evWXXVqdatWqsXLlS2S5Rm0RFRbF+/Xq163SfPn1kXRjXNrt37/7mnhxyGmi0sLDAysoKJycnWrZsqdYyUa5iY2Px8PAgKCgIHR0dkpOTlbOOhw8fzk8//cS4ceOkjilI6PPnz+zatYtr164RFRWFkZERNjY2dOjQQdkiTy4CAwNxd3enZcuW2NnZ4enpqRwkXbVqFefPn2f9+vVSx/ym0NBQxo4dy5UrV1AoFJQrVw4XFxc6duwodTQ1iYmJsl6h9bUrV65QsWJFjZ/dmJgY7t69i62trQTJBDnSlgkITZo0oUOHDgwePJikpCSsrKyU174zZ84wbtw4Ll68KHVMzp8/T2BgIEePHgVSczs5OWFnZ6d1+7A9e/ZM+Rwgh1b6gqANRIFIEAThBxYZGcmZM2cICQkhPj5e5ZhCoWDIkCESJctYaGgooaGhankB2T4UVq1alTVr1ig3eE1v0aJF+Pn5cefOHQmSZczHxwdnZ2eNA6VhYWFs376doUOHSpAsc2/fvsXU1FTjJrSJiYmEhYXJrie2tunbty+1a9dm4MCBUkcRhP8XJ0+e5MCBA5w4cYK4uDhsbGxwcnKiWbNmsi4cTps2jaNHjzJ37lxq1KhB1apVlYNKu3btYv369ezfv1/qmEDqKuu+fftiZmbGzJkzv3m+HFdeh4eHs3btWuVqLR8fH8qVK8eGDRuoUqWK7FYQaRtHR0fq1avHhAkT1AZJT548iYeHB+fOnZM6ZobS2s0FBAQQFRVF48aNadq0KadPnyYoKIgOHTowY8YMqWOqsLS0xN/fX+OK4Dt37uDs7Cyr1Z7alje92NhYLly4wLt379T2BpPj3knv3r3j2LFjGvOCPK/RGYmNjSUsLIwSJUrIspBRuXJlVq1ahZ2dndq178KFC7i6unLr1i2pYyolJCRw+vRpDhw4wKlTp8ibNy8tWrSgdevW4ntQEH5g2jOdRBAEQUJ37twhOjpa2bc2KiqKefPm8eTJE+zt7RkyZIiy5Zxc/P777wwfPpyYmBhy5cqlNqAutwLRq1evcHd35+bNmwB8PX9Bjq3D0vTv3x9XV1fWr19P5cqVla/PmjWL3377jcWLF0sXLgPLli2jXr16GRaIli1bJssCUePGjTMcPHjw4IGsBw+0xfDhwxk7diy6urrUr18fExMTtQduOQ6qN27cmGXLlmlsSfjw4UPc3Nw4fvy4BMkytmjRIiIiIjQOKk6ZMgUTExNGjBghQbIfS8OGDWnYsCFxcXGcOHGCoKAgZs6cyYwZM3BwcKB169a0bt1a6phqDh8+zLhx43BwcCApKUnlWLFixb57deW/6cSJE/z888+YmZl9cx81hUIhu8HHu3fv0rt3b/Lly4etrS2XL19WDpqGhoayfv16WX6Xa5NXr15l2DLYwMCA6OjobE70bZ8/f+bAgQPs2rWLW7duUapUKfr160e7du0wNjYGoFWrVtjb2zN9+nTZFYgymwuctt+WnGSWNzY2lly5cmVjmqy7fPkyw4YNIzIyUuNxuRWIgoKCGDduHCkpKRgbG2t8RpTbNTqNn58fsbGxymeUq1ev4ubmxqdPn/jpp5/w8/PLtJ2iFMzMzLh9+7bG/W9u3rwpu24k+vr6NG3alKZNmxITE8OxY8cIDAyke/fuODk5MWfOHKkjKq1bty7L58rt91AQ5EYUiARBELJg9uzZ2NnZKW/sfv31V44dO0adOnVYu3YtOjo6siq2AMydO5fKlSsza9YsWbbc+pqHhwehoaHMmjULc3Nz2fe/Tm/o0KF8/vyZ/v37s2nTJsqXL8+UKVPYt28fPj4+mbafk0pmD+Hv37/H0NAwG9NkXWa5ExISZPm5iYuLw9fXl8OHDxMSEqJxpqacilpdunQBYP78+SxYsEDjOXLKm+bNmzca31tI/W8QEhKSzYm+LTAwkGHDhmk8ZmNjw7Jly2RbILpy5Qr+/v48f/5c44pPuaxsSS9Xrlw4Ojri6OjIp0+fOHz4MEuWLOH06dOyLBDFxMRk2IIyNjY2m9NkLn1R6FsFIjmaPXs2VatWxdfXF4VCwb59+5THqlSpwsGDByVM97dGjRpleYa8QqHg2LFj/3KirDM1NeXp06caB0n/+OMPWa7+rVOnDgDNmjXD3d1d40pxgIoVK1KgQIHsjJah9+/fExYWpvz56dOnaoWg+Ph4du3aJYv3/MaNG1y/fl358/79+7l27ZrKOfHx8Rw/fpwyZcpkd7wsmTFjBhUqVMDT05NSpUppXOUuJ4sWLaJJkyb88ssvWrFHUno7duygX79+yp9nz55N2bJlGThwIMuXL2fhwoWyK+Z36tQJHx8fChQoQLNmzYDUrgenTp3Cz8+PkSNHShswEx8+fODt27e8ffuW5ORk2Vzn0sydOzfL54oCkSBkThSIBEEQsuDx48fKdktxcXEcPnwYT09POnbsyJYtW9i4caPsCkSvXr1iwoQJWlEcArh16xZz585V3jhrm/HjxxMTE0Pfvn2pXr06Z8+eZeXKldSuXVvqaEqBgYEEBgYCqTfJc+fOVXswTEhI4M6dO1SvXl2KiBo9efKEJ0+eKH++dOmS2mB/fHw8Bw4coHjx4tkd75umT59OYGAgrVu3xtzcXPYDB7NmzZJliw5N4uPjiY2NVRYOP336xMePH9XOOXbsGIUKFZIgYebCwsIy3ES+SJEisixqQepG866urtjZ2XHnzh3q1atHXFwcwcHBFClSRLbtQNPcvn2boKAgDh48SFhYGKVLl5Y6kkYVKlTgyJEjODg4qB07deoUlSpVkiDVj+n27dt4e3ujp6entlrL2NiYDx8+SJRMVePGjb95ff7jjz+4dOmS7K7jrVu3xtvbmzJlyij3uFMoFDx8+JA1a9bQtWtXiROqGzt2LG3atPnmpJny5cvLpjDq7++Pj48PCoUChULBxIkT1c5JSUlBV1eXqVOnSpBQ1e+//46Pjw+Q+nnYtGmT2jk5cuTA3NxcFnk1efPmDZMmTaJcuXJSR8mS8PBwOnfurHXFIYCQkBBKliwJpK7uvHv3Lps3b6ZGjRokJSUxbdo0aQNq0K9fP969e8eUKVOUn+G06123bt3o3r27lPHUhIWFERQURGBgIHfu3MHKyoqOHTvi6Ogouz0cHzx4IHUEQfhhiAKRIAhCFsTFxSk3vwwODiYhIYHGjRsDqQM4chzEq1ixIu/evZM6RpYVLlxYdm36vtf06dOJjY3l5MmT+Pn5yarIAvDlyxc+f/4MpA4OxMbGqr3n+vr6tG3blv79+0sRUaODBw+qDB54eXlpPM/Q0JDZs2dnZ7QsOXnyJOPHj6dHjx5SR8mSDh06SB0hy1avXs2yZcuA1M9G+lmlX5Njy0RjY2MePXpErVq11I49evQIIyMjCVJ9m7e3Ny4uLowdOxYrKytGjBiBlZUVb968oV+/frIqjKd5/PgxgYGBHDx4kBcvXlC0aFFatWpF69atsbS0lDqeRoMHD2bw4MHExsbSokULFAoFt27dIjAwkF27drF69WqpI2Yosz0QQX6/jwYGBnz69Enjsbdv38qmrebkyZMzPHb//n2WLVvG5cuXKVGihOz2kRs6dCiPHj2iT58+yvdzwIABhIeH06BBA9nlBbTmezu99u3bU7NmTVJSUnBxcWHKlCmULVtW5Rw9PT1KlSoli9UAQ4cOVV4PLCws2L59u8Y2wnJWvXp1nj17hr29vdRRsqRu3brcuHFD42o+ucuZM6fyWn3hwgVy585NtWrVAMiXL58sW1VCaqcMFxcXzp8/T0REBEZGRtjZ2cmqvZy/vz8HDhzg2rVrlCpVCkdHR7y8vJQFOUEQfmyiQCQIgpAFxYsX58yZM9SsWZP9+/djZWWlfLj98OEDefPmlTagBtOmTcPd3Z3ChQtjZ2dHjhzyvuSPGjWK1atXU6NGDdkMxGSmWrVqGmfnpqSk8OXLF5UCi0KhUGuXIYX27dvTvn17AHr27Mm0adMwNzeXONW3ubi40L59e1JSUmjSpAk+Pj5qA7p6enqYmprKbsY0gK6urqweALMqMjKSW7duERkZiZGREdbW1rIrWDRp0oRixYqRkpLCpEmTcHNzU+s9r6enh7m5uSyLAE2aNMHb2xtra2uVAbFbt26xbNkyWrZsKWG6jD158oRRo0aho6ODQqFQtjsrVqwYw4YNw9vbm7Zt20qc8m9OTk48fvyYAgUK0KJFC2bNmoWNjY3Usb6pQYMGLFy4kHnz5ilb9k2fPp0iRYqwYMEC2Q7uZWUPRLkViBwcHFi+fDl2dnbK1SIKhYK4uDg2btyY4d45cnD79m2WLVvG6dOnKVWqFHPmzMHJyUl2k2709fVZvnw5Fy9eVBkktbe3l+3AujbuE1esWDFl94CNGzdSsWJFWT6naKKtqwFmzJjBiBEj0NPTw87OTuPKHDk920yfPp1Ro0YRFxdH7dq1Na6Qs7KykiDZt1lbW7Nq1Sp0dHTw8/OjXr16yhaKL1++lN0Kl/SKFy9O586dpY6RoalTp5InTx5atWqlvGfOaGWknNu1xcfH8+rVK42TU+T6uRYEOVCkZNbMXxAEQQBg586deHh4kD9/fiIjI5k3bx5OTk4A/PLLLzx79oy1a9dKnFJVtWrVSExMJDExER0dHXLmzKlyXC5FizSDBg3i/v37REdHY2lpqfZwpVAoWL58uUTp1Hl7e39XMUJug2Ha6s2bN5iamspyr6GM+Pj48OLFC+bPny91lCxJSUlh/vz5bN68WWVPH319fXr27Im7u7uE6TK2Z88e6tevr9w4XBtER0fTq1cvHjx4gLm5OYUKFSIsLIwnT55gaWnJhg0bZNkCxt7envnz51OnTh3q1avHyJEjlSvPTp06xciRI7lx44a0IdOZOHEirVq1ws7OTnabsmfVs2fPlAPqci/sOzk5YWxsLPs9EGNjY5Wrw0NDQ+natSufPn2iVq1aHDt2jLp16/L48WMUCgXbt2/HxMRE4sSqbty4gY+PD+fOnaNs2bK4ubnRsmVLWU6UgNSVWKamphrbrCYmJhIWFiaLPXHSa9y4McOGDaNdu3Zqx/bt28eyZcs4cuRI9gf7gdy9e/e7zpfjAG90dDSTJ0/myJEjGf7+yWnvxrdv3zJmzBiuX7+uljclJQWFQiGrvOk9fvwYV1dX3rx5g5mZGevWrVOucOnbty+mpqbftS9NdggKCuLt27cauzP4+flhZmYmiwlBFhYWWT5Xjp+RhIQEpk2bRkBAgFqr2DRyyywIciLv6eSCIAgy8fPPP1OyZElu375NxYoVVdrn5M+fn169ekmYTrO+ffvKdpBAk8+fP6vM/E9rhSZXGW0sL2fr1q3L8rlymhmWfk+ZPHnyEBMTQ0xMTIbny2mWJkCuXLm4du0aXbp0UZmdnkZO7zXAihUr2LBhA/3796dly5YULFiQP//8k4MHD7JmzRoMDQ1xdXWVOqaatNVx2iRfvnz4+/uzd+9eLl68yMePHylfvjwuLi60bdtWtoVQCwsLnj17Rp06dbCzs2PFihUUKFCAHDlysHjxYsqXLy91RBVybD35vUqXLi3bvZK+pi17IDo6OuLp6UmjRo0oXLgwe/fuZf369Zw/f54SJUrw8eNHnJycVFqiycGVK1fw9fXlwoULVKxYkaVLl9K0aVOpY31T48aN8ff319g+7MGDBzg7O8tu8E4b94mrXr06GzdupFKlShmudk8jh8liHTt2zNLzipwLF+7u7gQHB9OnTx9Kly4t+70mx48fz7t37/D09KRUqVKyz5te2bJlOX78OBEREWotEsePH4+pqalEyTK2atWqDNs358qVi9WrV8uiQKStK/jSLFu2jHPnzjFnzhzGjh3LlClTyJ07NwEBAbx8+RJPT0+pIwqCrIkCkSAIQhbZ2tpq3HhbroUCuebKiKZNabVNSkoKz549U7bkKl26tKyKdN8zo05ORYvatWt/1/sot8GDBQsWAKkzNjWtqpDTew2wY8cO3NzcVFa9FSxYEAsLC/T09PD395dNgcjJyQkvLy/Kly+vXNWZEYVCQUBAQDYlyzp9fX06depEp06dpI6SZS4uLrx+/RqA0aNHM2jQINzc3IDUQdO0PcOkdOTIEWXrnKzM8G/WrFk2pPp+T58+5ciRIxr38lEoFMyaNUuiZBnTlj0QK1euzODBg2natCmenp4UKlSI4cOHM3z4cKmjZahnz55cvXoVa2trVq5cKevWd1/LrHFJQkKCLAvi2rhPXNoqirQ/y+k+VJONGzdKHeF/dvHiRaZPny6r1qqZuXXrFl5eXjRp0kTqKP+Ypv2zKlSoIEGSb3v+/DnlypXTeMzc3Jxnz55lc6Lv9/jxYx49eoSxsTE1atSQ5WrsQ4cOMXToUFq2bMnYsWOxtramUqVKtGvXjvHjx3PixAmt+s4UhOwmCkSCIAjfQfS0FTKyZcsWfH19CQ8PV85yNDExYfDgwXTr1k3qeID2zgybNWuW7Ac4MqNt7/v79++pXr26xmPVqlVj5cqV2ZwoY5UqVVK2iLKystLqz4k2Sf+AXbhwYXbv3s2LFy+Ii4ujTJkyshjoHT58uHKz828N+Mt1VvrevXuZNGkSOXPmxMzMTONePnKkLXsgLl26lDNnzjBz5kxatmzJyJEj6dGjh2zfV0hdPQTw8OFDRo0alem5clgd8uTJE548eaL8+dKlS2qrbuLj4zlw4ADFixfP7njfpI37xKWf3KENk8Vq1qwpdYT/WeHChWXZDjYjJUuWJDExUeoY/1hUVBSHDx/m2bNnKq2Q03h4eEiQKmM5c+bkw4cPGo+9f/9eNt+RKSkprFmzhqNHj5KYmEiLFi0YMGAAkydPZs+ePcrn27Jly7JhwwbZtXQOCQmhdOnS6OrqkjNnTqKiopTH2rRpw+jRo5k+fbqECQVB3uRxJRIEQZA5belpO2jQICZMmECpUqUYNGhQpufKYU+fdevW4eTkRMGCBb/Z/kxuqyzS8/f355dffqFVq1Y4OjoqW3IFBQXxyy+/oKenh7Ozs9QxtVZGbRmEf0exYsU4deqUxk3DT58+Lau2Uelbh82ZM0fCJP/c3r178ff35/nz5xonHwQHB0uQ6vsoFApKlSoldQwVx48fV86iP378uMRp/pnly5fTvHlzZs2apSyEaoPOnTuTmJjIwIEDZb8HYr169QgMDGT58uXMnz+fffv20adPH40tl+Swykzb9jM8ePCgckWhQqHAy8tL43mGhoaybAU5cuRIgoOD6dy5s8Z94r5VpJPaokWLcHJyomzZslJH+aENHz6cVatWYWNjI8tVZV+bOHEic+fOpVy5crLf0+5rz58/p0uXLiQkJBAbG4uxsTGRkZEkJiZiZGRE3rx5ZVcgsrW1ZdWqVTRq1IjcuXMrX4+JiWHNmjWyKZL6+fmxcOFCGjduTJ48eVi+fDl//PEHZ86cYfz48ZQpU4aHDx+yYsUKfH19Zfc+m5qaKotCP/30E5cuXVI+yzx//lzCZIKgHUSBSBAEIQu0paft58+flQUsue/hA6ktz2xsbChYsOA325/JuUC0fv16evbsyeTJk1Veb9y4McbGxvj5+cm2QCRWxf077t69i7m5Obly5crSBsxyeq979+7NtGnTCA8Pp0WLFpiYmPDhwwcOHTrEgQMHmDZtmtQRfxj79u3D09OT9u3bc/36dTp27EhycjInTpzA0NBQVu1qtK2gn76QqVAoMDU11Tjon5iYSFhYWHZGy7KwsDCmTZumVcUh0I62Vunp6+szYsQI9PX1WbJkCWPGjFE7Ry6rzP6XAtHbt28pVKhQts5Wd3FxoX379qSkpNCkSRN8fHywtLRUOUdPTw9TU1NZfma0dZ+4NDt37mTVqlWULVsWJycnHB0d+emnn6SOlSltnDSxf/9+3r59S8OGDbG0tFRbTSSHSXnpzZo1i/fv3+Pk5EShQoU05pVjS15InQxUpUoVlixZQtWqVVm1ahUWFhYEBQWxaNEilixZInVENaNGjaJLly40bdqU5s2bKwvNhw8f5suXLyxcuFDqiADs3r2bwYMHK1ceNmvWjKFDhzJ58mR69OgBpE6qyJEjB1u2bJFdgahmzZpcvXqVRo0a4ezszLx583j69Cl6enocO3aM1q1bSx1REGRNkZJZM2BBEAQBgObNm9O/f386dOiAlZUVO3fupFKlSkDqhpi5cuUSS5b/wypXrszKlSs1rrg4d+4cgwYN4vbt2xIky5i2rIrT5MqVK5kOHuzfv1+CVKosLCyU7a0sLCwyHPiS66bLmzZtwtfXl4iICBQKBSkpKRgbGzN48GDlQ6Ic/f777xw+fFjjfi0gv70O2rVrR/PmzRk4cCBWVlbs2rULKysrPn36RL9+/WjRogV9+vSROiag/pnOjNw+05aWlvj7+6u0iEpz584dnJ2dZZU3zYABA3BwcMDFxUXqKD+0169fM2PGDM6ePUv79u0ZOHCgxmKinFZPfq+kpCQqVarEzp07JZuQ8ObNG0xNTWVfVPmRJCcnc+HCBQIDAzl+/DjR0dFUqVKF1q1b07JlS0xMTKSOqGLfvn14eHjQvn17tm/frnHShBxX0fXs2fOb58hpr9UJEyZ8syArxxV9APb29vz666/Ur1+fihUr8ttvv1G1alUg9R4vKCiI3377TdqQGrx48YKlS5dy6dIlPn78SP78+bGzs2Po0KGULFlS6ngAWFtbq6xo+vz5MzY2Nmzbto1q1aopz7t69Sq9e/fmzp07UkXV6P3790RERFC+fHkgdQLnoUOHiI+Px97eniFDhqis4BIEQZVYQSQIgpAF2tjT9u7du5kOAuzbt09Ws9PTbpYz8vDhQ+UNn9yYmppy/fp1jQWiGzduKNscyYm2rIr72tmzZ3F1dcXOzo47d+5Qr1494uLiCA4OpkiRItja2kodEUh9SE1r2yG3okRW9OzZk+7du/P06VMiIyPJnz8/pUuXRkdHR+poGVqzZg0LFiygWLFimJuba8V+AC9evKB69ero6uqiq6vLp0+fAMibNy8DBgxg1qxZsikQpd9LS9v21cpsPlxCQoKsBqw/fvyo/PPo0aNxd3cnZ86c1KlTR+NnOrPvTSFziYmJrFmzhhUrVlC0aFE2btwom++Qf4PU80LTCmxnzpzh9u3bhISE4ObmhpmZGVeuXKFEiRIULlxY0oyZ+fDhg8aJB2ZmZhKkyRodHR3q1KlDnTp1+PLlC6dPnyYoKAgvLy9mz55N7dq18fPzkzqm0rp16xg8eDADBw5k+/btdOvWTWXSRJ48eaSOqJGcij9Zoa0teSH1Oztv3rzo6OhgZGSksgK4XLlysr0/KVmyZIYtNuUiISGBXLlyKX9O+/PX90h6enoZTi6Ukqmpqcozd+/evSVfzS4I2kQUiARBELJAG3va9u/fn82bN2vsLe3v78+MGTNkVSDq168fGzdu1Pjwd/v2bfr378+lS5ckSPZtP//8M76+viQkJChbcoWHh3Pw4EH8/PwYMmSI1BHVHDp0iKFDh9KyZUvGjh2LtbU1lSpVol27dowfP54TJ06obEQvF97e3ri4uDB27FisrKwYMWIEVlZWvHnzhn79+lG7dm2pIwKqmy5/q7d4WlFAbnR0dLRq34KtW7fSo0cP2bW8yEzevHmVGywXLlyYx48fU6tWLSB1xn9ERISU8bTakydPePLkifLnS5cuERISonJOfHw8Bw4coHjx4tkdL0O1a9dWmdmdkpLCtGnTMpztLceVT5Ba/Ny9e3eGKz1XrFghQSpVbdq04fXr1wwcOBBXV1eNq4aE/z/h4eEMHjyYmzdvUrRoUd69e0eXLl0wMzNj165dGBgYMHXqVKljqoiIiGDmzJkcOXKExMRElWNyXQGcET09PZo0aUKjRo04fvw4v/zyC+fPn5c6lgptmjQhSKNUqVK8efMGW1tbKlasyNatW7G3tydHjhz4+/tTqFAhqSP+cOTY/lMQhP9/okAkCIKQBdrY07ZRo0b07t2brVu3qgx+bdiwgXnz5jFp0iQJ02nm6urKmjVrVGYvXb9+nQEDBlCvXj0Jk2XOzc2NqKgo/Pz8WLVqlfJ1XV1devbsiZubm4TpNNPGVXGQOug7atQodHR0UCgUxMbGAqkzk4cNG4a3t7esCp8AkydP5tdff9V47OPHj/Tr149du3Zlc6qMpW0oromOjg758uXD0tKSGjVqZGOqb/v48SONGzeWOsZ3qVSpEn/88Qd169alUaNGLFu2jJSUFHLkyMGqVauUbVPk5s6dO0RHR2NnZwdAZGQk8+fP58mTJ8o2HlKvNjt48KDys6xQKDKcuWtoaCirVjqzZs3S+sGYW7du0bNnT8zMzHj+/DkVKlQgOjqaN2/eUKRIEUqUKCF1RAAKFizIsmXLKF269Hf/s1Ls56Ptfv31VyIiIggMDKRkyZLKVs0AdnZ2stqjJY2HhwdXrlzB1dUVc3NzrS4iXrt2jQMHDnD48GHCw8MpX7687FrGatOkCW3bl+9r2taSN02rVq2Uq4RGjBhBv379qFmzprIdshxXRyUnJ7Njx44M32+FQsGxY8ckSqfKxcVF7R6ke/fuahNX5KJXr15ZPlehULBhw4Z/MY0gaDdxRysIgpAFo0aNUj6UpN3gp/W07dmzpyxXiMycOZMxY8bg4uLCtm3bKFy4MCtWrMDb25tp06bh7OwsdUQVa9asoVevXgwZMoQVK1agp6fHxYsXcXNzo3nz5syaNUvqiBqlpKQQGRnJqFGjcHV15datW0RGRmJkZIS1tTUFChSQOqJG2rgqDiBnzpwkJycrN51/+fKlslCRJ08etRUCcnDixAlmzZqlVpQNDw/HxcVFVg9akFpE/vLlC3FxcUDqe572MJsrVy4SExNJSkqiYsWKrF69GmNjYynjKjVs2JBr164pixbawNXVlbdv3wIwfPhw3rx5w6xZs0hOTqZy5crMmDFD4oSazZ49Gzs7O+V7PWvWLI4dO0adOnVYu3YtOjo6kn8vuri40L59e1JSUmjSpAk+Pj5YWlqqnKOnp4epqamsCjIdOnSQOsL/bP78+bRs2ZJff/0VKysr5f8NDg5mzJgxDBgwQOqIwD8fAE1KSqJx48aS7uejjU6fPs0vv/yCubm5WnuiokWLEhoaKlGyjF26dAkPDw/atWsndZR/5O7duxw4cICDBw8SEhJC8eLF6dSpE61bt9bYYUBq2jRpYu7cudjY2FCwYEHmzp2b6blyKxBpY0veNOlXkFWtWpXAwEDOnDlDfHw8tWvXlmU78vnz57Nu3TpsbW2pVauWbAvNctzf61suX75Mnjx5sLW1RVdXV+o4gqDVRIFIEAQhC7Sxp61CoWD+/PkMHToUFxcXGjRowKZNm5gzZw5OTk5Sx1NToEAB1q5dS48ePRg1ahQdOnRg1KhRtGvXTpYrWdJ8+fIFe3t7fH19adCggSzbsmmijaviACwsLHj27Bl16tTBzs6OFStWUKBAAXLkyMHixYtl+WC4Zs0aevfuTe7cuRk5ciQAoaGhuLi4kCtXLtauXSttwK9s2LCBUaNGMWTIEBo3bkyePHn4/PkzR48exdfXl7lz5xIXF4e7uzvz5s2TdLbm3bt3lX/u2LEj06ZNU25Ga2hoqHa+3AZzq1atqhzwMjQ0ZPny5SQkJCh77MvV48ePGThwIABxcXEcPnwYT09POnbsyJYtW9i4caPkBaJ8+fIpB72OHz+OqamprPYayorGjRuzbNkyLCws1I49fPgQNzc3jh8/LkGyzP3xxx8MHDhQuYosrcBcvXp1hg4dipeXF3Xr1pUy4v9MboV9bZCUlJThBuFRUVGyHDQ1NDSU7USfrOjYsSOFChXC0dGRVq1aUblyZakjZUqbJk0cP35c2c5MrvveZEQbW/JmpGjRonTu3FnqGJnav38/w4YNk/y+6Fu0sUDUqlUrTpw4wY0bN2jevDmtW7f+ofcSFIR/kygQCYIgfIfIyEgePXrEu3fvqFevHkZGRsTHx6Onpyd5Ox1NdHV1WbJkCYMGDWLLli0sWrSIZs2aSR0rQ6ampqxfv57u3btz/PhxevXqxcSJE6WOlSl9fX2KFCkiy806M6ONq+IgdVXA69evgdQN3AcNGqRs4VekSJFM26NJxcrKihUrVtC/f3/y5MmDo6MjLi4u5M+fn7Vr12osZEhpxowZ9OnThzZt2ihfy5MnD+3atSM2NpZZs2axY8cO3NzcWLZsmYRJUwe/vm57sXr1alavXq32urbsFaGvry/7QkZcXBwGBgYABAcHk5CQoGzvV6FCBdmt5CtWrJjyz7GxsRrb6eTPnz8bE2XNmzdvlO2WvhYXFye79zmNQqFAT08PhUKBiYkJb9++pXr16kDqdVrOq1SFf4+1tTW7du3SOJHmwIEDys+InPTr149NmzZRp04drWwnuHHjRmxtbWW1SjIz2jRpokmTJvj7+2NtbS11lO+mjS150/vy5Qs7d+7k9u3bhISEMGXKFEqVKkVQUBAVKlSQ3eq4hIQEWV7ffgReXl7ExcVx4sQJAgMD6du3LyYmJjg6OuLk5KS2clwQhIxp312OIAiCBJKTk1m8eDGbNm0iNjYWhULBzp07MTIyYujQoVSpUkUWs24yWhkUFxeHvr4+3t7eeHt7A6kDOAEBAdkZT83MmTM1vm5ubk5MTAxJSUkq58h1plu3bt1Yv349Dg4O5MyZU+o4WaKNq+IAlYGlwoULs3v3bl68eEFcXBxlypSR7cC6jY0Ny5YtY9CgQaxZs4ayZcuyatUq8uTJI3U0Nffu3WPw4MEajxUrVoyHDx8CUK5cOaKjo7MzmpoNGzZozcBXmoyuexmR43WvePHinDlzhpo1a7J//36srKyUBZYPHz7IbiAvJSUFX19f/P39ef/+vcZz5FI8jI+PJzY2VrlC5dOnT3z8+FHtnGPHjsl2M25zc3NevXpF7dq1qVq1KmvXrqV8+fLKNlHp90UUsodCocDW1lbS75yRI0fSq1cvunfvTvPmzZX7bqxcuZLTp0+zdetWybJl5OnTpzx58oSmTZtia2urcUKHHK/RaWrWrCl1hH8sJSWFsLAwTExMZPedAtq9ilAbW/KmefXqFb179yYiIoKKFSty7do1Pn/+DMCVK1c4e/asrPYVhNTn8xMnTmjl+60NcuXKhaOjI46OjkRFRXH48GGCgoLYsGEDJUuWZMCAAbRv317qmIIge6JAJAiCkAVLlixh8+bNjB8/Hjs7O5o3b6481qhRI3bs2CGLApGVlZVWDZaeOHEiw2O5c+dWOa5QKGT7EP7u3TuePXtGgwYNqFmzJgULFlT77yDX7Nq2Ku5rCoWCUqVKSR1DzZEjRzS+3qpVK06ePImzszPnzp1Tvi6nlX1mZmbs3LmTevXqqR3bvn07ZmZmQOoMVKlb76RtXq1NMrvufU2u173evXvj4eHBzp07iYyMZN68ecpjly9fpkKFChKmU7d+/XrWr19P//79WbRoEW5ubujq6nLgwAG+fPnCoEGDpI6otHr1auXKPIVCQb9+/TI8Vw73HZp06tRJ2SZq9OjR9O3bl7Zt2wJgYGDA0qVLpYz3w3jw4AGhoaEaV+ScPn2awoULK9sT6ujosGnTpuyOqKJatWps3LgRLy8v5s6dS0pKCitWrKBq1aqsX79edi1AAU6ePKm8n7t69aracTleowcNGsSECRMoVarUN69tCoWC5cuXZ1OyrDl79ize3t7cu3ePpKQk5V5fHh4e1KxZU2V1s5B12t6SN83MmTMxNjZmx44dGBoaUqlSJeUxW1tbFi5cKGE6zapUqcLixYv58OFDhu+3nJ4DtJmhoSHOzs7UrVuX9evXs3HjRo4fPy4KRIKQBaJAJAiCkAV79uxh9OjRdOnSRa2VWIkSJXj16pVEyVRJuRfIP/E9A6VydvLkSeXKldu3b6sdl+MAgrasitPk0aNH+Pr6KltL+Pv7Y2VlxaJFi6hevbos9oEaPnx4pscnTJig/LPcWp+NGTOGkSNH0rx5cxo2bIixsTHh4eGcPHmS169fs2TJEgAuXLggeZ9vV1dXbGxsqF69OtbW1rJdQZbej3Dd+/nnnylZsiS3b9+mYsWK1K5dW3ksf/78uLi4SJhO3c6dOxk2bBjdu3dn0aJFNGnSBCsrKwYPHoybmxsvX76UOqJSkyZNKFasGCkpKUyaNAk3NzdKlCihco6enh7m5uaybZ3Srl075Z/Nzc0JCgri+vXrxMfHU7VqVUxMTKQL9wOZNWtWht95t27dIjg4mHXr1kmQLGPVqlVj8+bNxMXFERkZiaGhobJdpRxp4/X68+fPymeVtJUV2iIwMBB3d3datmyJs7Mznp6eymMlSpRg9+7dsioQPX36FF1d3SydK3XB5UdpyXv58mW8vLwwNjZWeyY3NTXNcJWwlMaNGwfA27dvCQoKUjsu5/dbm4SHh3Po0CGCgoIIDg6mbNmyjBgxQrb76gqC3IgCkSAIQhZ8/Pgxw37GSUlJJCYmZnOi7xMXF0dUVBSGhobkypVL6jg/HG0cQNCWVXFfO3fuHK6urlhZWeHk5KQy8zVHjhxs27ZNFgUiOW4cn1VNmzZlx44drFy5kqNHj/L+/XtMTU2pXLkyixcvVg5KT506VeKkqav3Fi9eTEpKCnp6elSsWFFZMLKxsZHlvjI/CltbW40Fwj59+mS4gk4qb968wdLSEl1dXXLkyEFUVBSQuqqiW7duTJ48mdGjR0ucMpWFhYVy1YdCoaBBgwaSr9T7X+XJkwcHBwepY/xwHjx4QP/+/TUeq1q1Kps3b87mRFmXM2dO9PT0xD3pvyD9SjGpV419L19fX1xcXJgwYQJJSUkqBaJy5cqxYcMGCdOpy8o+qXIpuGzcuFHSf///F11d3Qzb+/3555/kzp07mxN9mzY/E8jdp0+fOHbsGIGBgVy4cAEzMzMcHR2ZOnUq5cqVkzqeIGgVUSASBEHIglKlSnHu3DmNvYMvX74s2xuQkydP4uPjw/3795UPKJaWlgwfPlwWg+hfi4yM5MyZM4SEhGjcRFyOBQuAvXv3Ur9+fY2DeB8/fuTUqVMqM6rlQFtWxX3Ny8sLR0dH5s2bR2JiokqByNLSkh07dkiY7m/FihWTOsL/pGLFisqVQnIWEBDAp0+fuHHjBsHBwQQHB7Nt2zb8/PxQKBSULl1aWSyysbFRW4khpdjYWJKSkpR7K8TGxrJ7924eP35MgQIFaNeunazyZubLly+cPn2agIAATp8+TUJCAh06dJA6llL+/PmJiYkBUlso3rt3T/l9HhERQVxcnJTxMtSqVSvu3r3LxYsXAShSpAhWVlZasVIuPDycDRs2cPPmTWWRuUqVKri4uGBsbCx1vP+JHPbzgdSNz798+ZLhMU33UVL7/fff8fHx4e7duyQmJpIjRw6srKwYMmQIdevWlTpehl68eMHz5881vqdybg3l4+ODs7MzhQsXVjsWFhbG9u3bZXVv/erVqwyfTwwMDCTf9/Brnp6elC1bVuoYWaLN+1GlZ2try7p166hXr56yFbZCoSAlJYXt27fLcp8fbX8mkLM6deqQI0cOGjdujK+vL1WqVFEe+3r/RkBMHBOETIgCkSAIQhb07t0bT09PcuTIQYsWLQAICQnhxo0bbNq0SXabYQIcO3aMYcOGUaVKFSZMmEDBggV5//49hw4dws3NjaVLl9KkSROpYyr9/vvvDB8+nJiYGHLlyoWenp7KcYVCIauH2PQmTpyIv7+/xgLR69evmThxouwKRNq6Ku7Ro0eMGTMGQG2fJ0NDQyIiIqSIpUbTQ0lm5PrA8u7dO969e4eFhYUsZ2UC5M2bFwcHB+UKheTkZB48eKAsGJ07d45du3ahUCi4d++exGlTPxvu7u6cO3eOlJQU7O3tmTt3Lv369eOPP/5Qnrdu3Tr8/f0pX768hGkzd+nSJfbv38/Ro0eJiorCxMSErl27yu56V716dW7fvk39+vVp3bo1Pj4+/Pnnn+TIkUOWA0rx8fEsXryY7du3ExMTo5wtrVAoyJ07N126dGH48OHkzJlT4qSa3bx5k/79+5OcnIy9vT2lSpXiw4cPbN68mc2bN7N27VqVQRw50Lb9fCB1UsS+ffto3Lix2rF9+/Yp88rFrl278PDwoEaNGowbNw4TExM+fPjA4cOHGThwIL/88gs///yz1DFVfPr0iSFDhnD58mUAld/FNFKvDMnMsmXLqFevXoYFomXLlsnq3trU1JSnT59qvCb/8ccfyj0Q5aJSpUpYW1tLHeO7WVpa4u/vrzH7nTt3cHZ2lu3neuzYsXTt2pVWrVrRqFEjFAoFW7Zs4dGjR7x48UI2E8UyEhsbq7HQLNfnALmLj48nPj6egIAA9u/f/83z5fq5FgQ5EAUiQRCELOjQoQORkZF4e3uzcuVKAIYMGYKBgQEjR47E0dFR4oTqfHx8aNWqFQsWLFB53cXFhbFjx+Lj4yOrAtHcuXOpXLkys2bN0rqZVhm1OgCIioqSfJaxJtq6Ks7IyIiwsDCNx54/f46pqWk2J9Ksdu3aagWszMjtgcXf3x8fHx/ev3+v3J8qbZZ3zZo1ZbfHTHo6OjoYGRlhZGSEoaEhhoaGhISEyGYwffHixdy+fZsJEyaQO3du1q1bR//+/fny5Qu7d+/G3NycP/74g3HjxrF06VJ8fHykjqzi/v37BAQEEBQURFhYGAYGBjg4OHD06FEWLVok+b5UmgwdOpTQ0FAgdQP3qKgoAgMDlRt0p29jJLX4+HhcXFy4ceMG9vb2NGrUiKJFiwKpBduTJ0/i5+fHtWvX2LBhg2w+1+lNnz6dsmXLsnr1auUKOYDo6GgGDBjAjBkz2LVrl4QJ1Wnjfj6urq64ubkxcOBAOnToQKFChQgLC2P37t38/vvv+Pr6Sh1RxbJly2jfvj2zZs1Seb1nz55MnDgRX19f2RWI5s+fz59//smWLVvo1q0bPj4+GBkZERAQwMWLF/Hy8pI6YqYyuz99//49hoaG2Zjm21q3bo23tzdlypRRrnhRKBQ8fPiQNWvW0LVrV4kT/hgy+1wkJSVleV8lKZibm7Nr1y58fHwIDAxEV1eXU6dOYWdnx4IFC2S58jolJQVfX1/8/f0z3CNJbs8B2kKOk3QFQVuJApEgCEIW9enTh06dOnH9+nUiIiIwMjKiWrVq5MuXT+poGj19+pSxY8dqPNa2bVuGDBmSzYky9+rVKyZMmKA1xaHTp09z9uxZ5c9r166lYMGCKufEx8dz8eJFWW4kro2r4iB1A3dvb2+qVKlCyZIlgdTBg/fv3+Pn56eyl5KUZs2a9V0FIjlZv349CxYsoE+fPtjZ2dG3b1/lsZo1a3Lo0CFZFYiSkpK4d++ecsXQ9evXef/+PWZmZlStWpVOnTpRtWpV2cymP3PmDKNHj6ZTp05A6p4zP//8MwsXLqRixYoAWFtb4+bmplbgl9Ly5csJDAxUbspdt25dxo8fT6NGjUhISJDdvkPplSlThjJlygCgr6+Ph4cHHh4eEqfSbM2aNTx8+JANGzZQq1YtteM9evTg8uXLuLm5sXbtWtzc3CRImbnHjx+zZMkSleIQQL58+RgwYACjRo2SKFnGtHE/nwYNGuDl5cW8efMYOXKkss1SkSJFWLBgAQ0aNJA6oorw8HBatWql8VirVq04ePBgNif6trNnzzJq1CjlirdChQphbW2Nra0tc+bMYd26dSxatEjilKoCAwMJDAwEUu+P5s6dq/askpCQwJ07d6hevboUETM0dOhQHj16RJ8+fZQrKgYMGEB4eDgNGjRg4MCB0gbUYu/fv1eZYJX2XZ5efHw8u3btkt1Kra8VL16cuXPnSh0jy9avX8/69evp378/ixYtws3NDV1dXQ4cOMCXL18YNGiQ1BG1Vvv27f/xP3vlyhWsrKxk2yFBELKbKBAJgiB8B23aaNnIyIhnz55pzPvs2TOMjIwkSJWxihUr8u7dO6ljZNnz5885ceIEkPoAfvXqVbV9IfT09ChXrpxsNj9PTxtXxQGMGTOG27dv06ZNG2XrrUmTJvHq1StKly4tm1Ypctp/5Xtt3ryZwYMHM3jwYLX9qUqXLs2zZ88kSqauZ8+e3Llzh+TkZCpWrEjVqlVp3bo1VatWlc1qsq+Fhoaq7FmQ9jkuXry4ynklSpTgw4cP2ZotM0uWLEGhUGBvb8/s2bMpVKiQ8lhG+6AI3+/AgQO4urpqLA6lqVmzJgMGDCAgIECWBaKSJUsSFRWl8Vh0dLTaZ10OtHE/HwBHR0ccHR15+vQpHz9+JH/+/MpiqNxUqVKFu3fvUqdOHbVj9+7do3LlyhKkylx4eDhFixZFV1cXAwMDlfax9evXZ9iwYdKFy8CXL1/4/PkzkLpyITY2VrlXSxp9fX3atm2bYVFUKvr6+ixfvpyLFy9y/vx55YQ8e3t77O3tpY6nYuPGjRm2apajtJXhCoUChULBxIkT1c5JSUlBV1eXqVOnSpDwn3v9+jUvX76kYsWKsmzVtnPnToYNG0b37t1ZtGgRTZo0wcrKisGDB+Pm5sbLly+ljvifk5SURK9evZQdEgRBEAUiQRCELDlz5gxRUVG0bt0aSG3zMmnSJJ48eYK9vT1TpkyR3ewTR0dHFi5cSK5cuWjevDmGhoZER0dz6NAhFi9erJy9LhfTpk3D3d2dwoULY2dnR44c8v6KcnFxUa6iaNSoEb6+vrJZoZBV2rYqDlJnoP/2228EBARw/vx58ufPj5GREd27d6dt27ZasXm73IWGhlKtWjWNx/T09IiJicnmRBm7cuUKBgYGtGnThpo1a1KtWjV++uknqWNlKikpSeX6ljaD9+sBPB0dnUzbwGS3Hj16cOjQIc6dO4ejoyNNmzbFyclJdvv3pNE0+JURhUKh1vZKKq9fv87SrH4bGxuWL1+eDYm+n7u7OzNmzKBo0aIqG6NfunQJHx8fWbX0S6Nt+/l8Ta5FofQFldGjRzN69GgSEhJo0qQJxsbGhIeHc/ToUfbu3cvChQulC5qBIkWKKPc2LFWqFCdOnKBevXoAXL9+XZYtHtu3b6+cVd+zZ0+mTZumVYUMSG3TW7t2baljZCr9tQ1Si4kbNmzg5s2bvH//HlNTU6pUqYKLiwvGxsYSpfxb+/btqVmzJikpKbi4uDBlyhSVySqQeo9XqlQpjXuqysWcOXNISkpi8uTJABw9epRRo0aRmJiIkZERfn5+VKpUSeKUqt68eYOlpSW6urrkyJFDOYFCR0eHbt26MXnyZFlOJvzRyekeWxDkQN6jb4IgCDKxdOlSWrZsqfx5xowZPHnyhFatWhEQEMDSpUuZMGGChAnVjRkzhrdv3+Lp6cmUKVPIkSMHiYmJpKSk0KxZM9ndiHbu3JnExEQGDhyIjo6O2kO3QqHg2rVrEqXLXNpKIm2kTavi0ujp6dGxY0c6duwodZQsu3LlCv7+/jx//lzjTPSsbKyaXczMzLh9+7bGgf+bN29SqlSp7A+VgYCAAGVruSVLlvDmzRsKFixItWrVlP+zsrJCT09P6qgq0rd2SVul9fTpU7Vz5MTDw4NJkyZx/vx5AgMDOXLkCHv37sXExISGDRsqZyXLRVb6+X/58oUnT57IqkBkYGCgHJDOTEREBAYGBtmQ6PvNnz+f6OhoXFxcyJcvHwUKFCAiIoLo6GgMDQ1ZsGCBsn2iQqEgICBA4sTas5/PunXrcHJyomDBgt/cE0mhUNC7d+/sCZaBr/fjS0lJwcfHh2XLlqm8BtClSxfZ7cNRp04dzp8/T9OmTXFxcWHChAncunULPT09bt26RZ8+faSOmKlNmzZJHeE/4ebNm/Tv35/k5GTs7e0pVaoUHz58YPPmzWzevJm1a9cq2xRKpVixYso23hs3bsTKykqWe6R+y9GjRxk+fLjy54ULF1K/fn1GjBjBvHnzWLx4MWvWrJEwobr8+fMrJ1eZmZlx79495T12REQEcXFxUsYTBEEARIFIEAQhS168eKGcPfrp0yfOnj3LggULaNGiBeXKlcPHx0d2BSJ9fX28vb35448/uHr1KlFRURgZGWFjY0OFChWkjqemb9++shpc/Jbw8HDCwsLUZhU/ePAAX19fnjx5QsGCBXFxcaFRo0YSpVR19+7d7zpfLLn//3H27FlcXV2xs7Pjzp071KtXj7i4OIKDgylSpAi2trZSR1TRqVMnfHx8KFCgAM2aNQMgMTGRU6dO4efnx8iRI6UNmE758uUpX748Xbp0ASAsLIzr169z/fp1Dh48iJeXF7q6ulSsWJHq1avj7u4uceJUmla3uLu7qw2kyu2aqKOjg4ODAw4ODsyYMYPjx48TGBjI3r17SUlJYcKECbRr1462bdtK3kZs7969GR6Lj4/H39+fNWvWoKurm+G+KFKwsbFh8+bNNG3aNMP//ikpKWzZskV2+4eksbKykt0M7m/Rlv185s6di42NDQULFvzmHhxyKBBp8358AGPHjiU2NhaAdu3akSdPHg4dOkR8fDyenp7K7x65WrRoEREREcyYMUPt2JQpUzAxMWHEiBESJPtbtWrVsvwZketksenTp1O2bFlWr16tsvdadHQ0AwYMYMaMGezatUvChKoqVqxIfHy8SoEoICCAJ0+eULt2bdmuDAaUe0wCvHz5kmfPnjF//nzKly9Pz549GT9+vMQJ1VWvXp3bt29Tv359WrdujY+PD3/++Sc5cuRg+/btsn6/BUH471CkiHV1giAI31StWjV8fX2xs7Pj5MmTDBs2jEuXLpEnTx6uXLlCv379uHXrltQxhWzk4eHB3bt32bNnj/K1N2/e0KZNG+Li4qhQoQIhISF8/PiRDRs2yKIIYGFhkaWH8LSBabnM5HVycsryuXKZjZ5ep06dsLGxYezYsVhZWbFr1y6srKx48+YN/fr1w83NjbZt20odU8XMmTPZsmULCoWC5ORkZfuzbt264eHhIXG6rPny5QtXr15lw4YNnD59GsjaqpJ/2+XLl7/r/K/b2MhRWvvSwMBArly5QkpKiize66/FxcWxbds2/Pz8iIyMpE2bNri6ulKiRAmpoyndvHmT7t27U7NmTUaMGKE26/zWrVssWbKES5cusXXrVqytrSVK+uPShv18BCErGjduzLBhw2jXrp3asX379rFs2TKOHDmS/cHS8fb2Vrk3TUpKYvny5XTq1Ellr7s0ctlrMj1ra2uWLFlCw4YN1Y4dP36cUaNGyeo50c3NjUKFCjF9+nQAfHx88PHxwcjIiOjoaBYsWCDbvUjr1KmDp6cnLVq0YNu2bSxevJhLly4BcOHCBQYPHsz169clTqnq6dOnhIaGYmdnR0JCAvPmzePw4cPEx8djb2+Pp6cnJiYmUsf8T0lKSlJ5JhMEQawgEgRByJIyZcoQEBBAlSpV8Pf3p1q1aspZV+/fv5flhphp/vjjD0JCQjS2tUpbHSB8v+DgYH7++WeV19avX09MTAyrV6/GwcGBuLg4+vTpw+rVq2VRINq4caPKz0lJSfTp04fp06dTunRpiVJ9m5WVldrKir1799KgQQNZ90lP8+TJE0aNGoWOjg4KhUI5G7lYsWIMGzYMb29v2RWIPDw8cHFxUdkk2s7OTlbt5b4WHh6uXD0UHBzM3bt3SUhIQEdHB0tLS9mstvhfCj579+6lYcOGGBkZ/T8m+t/ly5cPZ2dnnJ2dCQ0NJSgoSOW41LljYmLYvHkz69evJzo6mg4dOuDq6qqchSwnVapUYd68eXh4eNClSxeMjIyUOd++fUtkZCS5cuVi3rx5WlUcio2NJSwsjBIlSsh+RYm2FIWuXLlCxYoVNbaJiomJ4e7du7K49/hRfPjwQeO9tByvI2nCwsIoWrSoxmNFihQhJCQkmxOpGzZsmMrPaQWizp07a83AbcmSJZX7ynwtOjpa8hW1X7t9+zZTp04FUu+pt27diqurK6NGjWL27Nn4+fnJtkBUo0YNli5dyocPH/Dz86NJkybKY0+fPs3w8y6lMmXKKL9X9PX18fDw0JrJVoIg/HeIApEgCEIWDB48mBEjRrB37150dXVZsWKF8tjZs2epWLGihOk0e/jwISNHjuTZs2caN2GUwwqRQYMGMWHCBEqVKsWgQYMyPVehUMhqQ+7Q0FDKlSun8trJkyextLRU7umTK1cuevTowbx586SIqObrgem0vU8qVaok64fwOXPmqPycmJjI3r17GTZsmKxzp8mZMyfJyckoFApMTU15+fIlNWrUAFL3gJLDAE16aYOOxYsXp3PnzirH5DbouGPHDmVB6MWLF6SkpJA7d26qVKlC//79sbGxoWrVquTOnVvqqP+zpKQkJk6cyM6dO2VXIEqvcOHCKvtySJn706dPbNq0iQ0bNhAbG4uzszMDBgygcOHC2Zrjezk6OlKjRg22b9/O1atXCQ0NBVJXgdra2uLs7KxxZr1c+Pn5ERsbq5zpf/XqVdzc3Pj06RM//fQTfn5+sli1pW37+XytV69e+Pv7aywUPn36lF69ekl+n/c1bdqPD1L3B5k5cyZHjhwhMTFR5ZjcVltrYmxszKNHj6hVq5basUePHsn6u0SbuLu7M2PGDIoWLapyr33p0iV8fHzw9PSUMJ26yMhI5QSrO3fuEBERoZz01qhRI3bs2CFlvExNmjQJd3d3FixYgJWVFaNGjVIeCwgIUN5fSy05OZlTp05RvHhxtefFNI8ePeLVq1fKfRwFQRCkJApEgiAIWdC4cWMOHjzIvXv3qFChgsos+qpVq8pyT5/Jkyejq6vL8uXLKVWqlOw2aQf4/Pmzskjx+fNnidN8n683ZP/zzz95/fo1Li4uKucVLlw4SxuOC1mnbQ9RFhYWPHv2jDp16mBnZ8eKFSsoUKAAOXLkYPHixZQvX17qiCq0adDR09MTU1NTqlevTrdu3ahevTqWlpbo6upKHe1foa2doaXI7e3tzaZNm0hMTKRLly7069dPq1q4FCpU6LtbKUm9UivNjh076Nevn/Ln2bNnU7ZsWQYOHMjy5ctZuHAhixcvli7gX7RtP5+vZfZ7FRsbS65cubIxzbdp2358kLqa9sqVK7i6umJubi7Le+nMNGnSBG9vb6ytrVW+02/dusWyZcto2bKlhOl+HPPnzyc6OhoXFxfy5ctHgQIFiIiIIDo6GkNDQxYsWMCCBQsAebRCLliwII8fP6ZGjRqcPn2aYsWKKVc5xcbGkiOHfIcJCxcurNYRIY2fnx/6+vrZnEiz3bt3M2fOHAIDAzM8J1++fIwbNw4PDw+NbSCFf4+Ojg7t27fXik4UgpBd5HvlFwRBkJnixYtrbBHw9Qx7uXj8+DFLliyhXr16UkfJ0KZNmzT+WRuULl2a8+fPK1cLnTx5EoVCQZ06dVTOe//+PcbGxlJEFGTCxcWF169fAzB69GgGDRqEm5sbkNrixcfHR8p4arRp0PHo0aP/uHWLXAbThX/HsmXLUCgUWFtb8/TpUyZPnpzhuXJbofpPyGmFWUhICCVLlgRSV9vevXuXzZs3U6NGDZKSkpg2bZqk+dI8ePBA45/l7MaNGyr7a+zfv59r166pnBMfH8/x48dl1yrP29sbFxcX5X58I0aMUNmPr3bt2lJHVHPp0iWtHrwdOXIkwcHBdO7cGXNzcwoVKkRYWBhPnjzB0tJSZfWF8M9ZWVlRqVIlqWNkWYsWLZg/fz7nz5/nzJkz9O/fX3ns3r17yuu3tsmbN6/UEZT27dtHly5dKFKkSIbnFClShG7durFr1y6tvcbIyZs3b/j06ZNy4m5CQgJ+fn48efIEe3t7OnTooDxXoVAwe/ZsqaIKgiyJApEgCEIGjhw5Qu3atTE0NMzSBq5y28/HwsKC8PBwqWNkSXx8PM7OzowbN05ZcJG7nj17Mn78eKKioihYsCDbtm2jRIkS2Nvbq5z3+++/y26FiPDvu337NlZWVujo6FC/fn3l64ULF2b37t28ePGCuLg4ypQpI4vZjto66PhPi0NyGkwX/h3pVyNo2wrVf0ouK8xy5szJp0+fgNRNw3Pnzk21atWA1BnT0dHRUsbTSFv28/n999+VkwoUCoXGyTU5cuTA3NxcuceIXGjjfnyGhoZaPcM8X758+Pv7s3fvXi5evMjHjx8pX748Li4utG3bVhb3HxnRptXiX7dClrsxY8aQJ08e7ty5Q9++fRk4cKDy2N27d2nevLmE6dRpY0vye/fu4erq+s3zatasydatW7Mh0Y/P09MTCwsLxo0bB6Su7Nu2bRvly5fn0KFDxMbG0r17d4lTCoJ8iQKRIAhCBoYPH8727duxtrZm+PDhmZ4rxx7kU6ZMYfz48ZiamlKrVi1ZtwvImTMnoaGh6OjoSB0ly9q0aUNoaCibN28mKioKKysrpk6dqvI+f/jwgZMnT6ptwCuVu3fvqvyc1t7v6dOnGs+X+/4+ch48cHZ2xsDAgCpVqlC9enVq1KhBlSpVyJMnDwqFQqVNpRxo86DjPyWXwXTh36Ftq1J/JNbW1qxatQodHR38/PyoV6+esu3jy5cvZbkHlLa01hw6dKiy9aCFhYXyPlUbaNt+fAD9+vVj06ZN1KlTR9b30ZnR19enU6dOdOrUSeX1T58+ERgYqDKrXgrVqlXTeD/XvXt3tdcVCoXa5BW5SUlJISwsDBMTE9l+ZnLkyKHWwjQ8PJyDBw/y4cMHvLy8VFYVSU0bW5J/+fIlSwVYfX19EhISsiHRj+/+/fv06NED+Hu/2rFjx9K7d29WrFjBb7/9JgpEgpAJeX5jCYIgyMDx48cxNTVV/lnbmJubU7VqVfr374+Ojg45c+ZUOS63h6xmzZpx8OBBtRU4cjZgwAAGDBiQ4XETExPOnz+fjYky17FjR40P4e7u7iqvy23jZScnJ42vjxo1Su3hSw693SG1lU5wcDDXr19n9erV+Pr6oqurS/ny5bGxsaF69erY2NjIZqBUmwcdBUGQl/Hjx+Pq6sqgQYMwMzNTaWN18OBB5WoiOdGm1ppptKUtXhpt248PUouDT548oWnTptja2mJoaKh2joeHhwTJ/pkvX75w+vRpAgICOH36NAkJCZIXiPr27SvrCT9ZdfbsWby9vbl37x5JSUns3LkTKysrPD09sbW1pU2bNlJHVBMbG8vRo0cJDAzk/PnzJCUlYWlpycSJE6WOpkIbW5IXLVqUe/fuUbNmzUzPu3v3LkWLFs2mVD+2z58/ky9fPgBu3rzJp0+fcHR0BMDGxoYVK1ZIGU8QZE8UiARBEDJQrFgxjX/WFlOnTiUwMJCmTZtSunRp2W+sW716dRYuXIirqyv16tWjYMGCag+Mcmvjp20y2tRV7qysrNQ+C3Lv9d60aVOaNm0KpPbAvnXrlrJgFBgYyObNm1EoFBQtWpQaNWowb948iRP/TdsGHQVBkJeyZcty/PhxIiIi1Npzpa1slgNtba2Z3pcvX9i5cye3b98mJCSEKVOmUKpUKYKCgqhQoQLm5uZSR1TStv344O/9JQGuXr2qdlyhUGhFgejSpUvs37+fo0ePEhUVhYmJCV27dpXFvidyWWX/vwgMDMTd3Z2WLVvi7OyMp6en8ljx4sXZvXu3bApESUlJnD17lv3793PixAni4uIoWLAgSUlJeHl5KQfUhf9Nw4YNWbt2La1atcrwO+/9+/esW7eOVq1aZXO6H1ORIkW4ceMGtra2HD16lLJly1KoUCEAIiMjZTnRQxDkRJEi+msIgiB80/nz57l+/Tp//vknCoWCggULUq1aNezs7KSOlqHq1aszZswYrVlKbWFhkelxOa1oEYT/1ZUrV/Dz8+P06dMAsvxsx8fH8+rVK+Lj49WOyb394LckJSVhZWXFrl27tObvkpKSwrJly+jcubNsBtizQltzaxtt/ExLzcfHR6W1pqbH4vStNatXr57dETP16tUrevfuTUREBBUrVuTatWvKVQvTp08nLi5O1ptwp6SkyG4/vh/J/fv3CQgIICgoiLCwMAwMDHBwcODo0aNs3LhRFntq/SgcHR2pV68eEyZMULsWnzx5Eg8PD86dOydpxmvXrhEYGMihQ4eIiIggf/78NG/eHCcnJ8qVK0etWrXYtGmTrD8XwcHBbN26lRs3bqg8k1evXp3u3bvLauV7eHg47du3Jzk5mUGDBlG3bl2KFi2KQqHg3bt3nD17lpUrV6JQKNi9ezfGxsZSR9Z6q1atYunSpVSoUIH79+8zceJEevbsCYCXlxfBwcFs2bJF4pSCIF9iBZEgCEImHj58yMiRI3n27JnawIFCoaBs2bIsXrxYVjM00xgaGv7jDdyloI1t/AQhqx4/fsz169cJDg4mODiYly9fkj9/furXry+7QceEhASmTZtGQECAsuf71+RY0NJWWV0BoFAo1PYMkJK25hb+HTNnzqRv376YmZkxc+bMb54vh1UX2t5ac+bMmRgbG7Njxw4MDQ1VVtba2tqycOFCCdN9mxz34/sRLF++nMDAQJ4+fYquri5169Zl/PjxNGrUiISEBI4cOSJ1xEz9/vvvHD58mJCQEI0TVOS4Gv7Vq1fUr19f4zEDAwOio6OzOZG6tD2datWqRZ8+fVT21ZJDvm9Zs2YNCxcuRE9PDysrK6pUqUJKSgohISEcPHiQ/fv3M27cOHr37i11VACMjY3ZuHEjY8eO5ZdfflHrhJCSkoK1tTULFiwQxaH/JwMHDqRQoULcvn2bbt26qbTPjIyMxNnZWcJ0giB/okAkCIKQgY8fP9K3b18APD09cXBwoEiRIgCEhIRw9uxZli9fTt++fQkICMDIyEjKuGr69OnD5s2bsbe3l+0mqelpYxs/bZPRXj6ayGUvH4B169Zl+VyFQiGLh8PLly8rC0LXr1/n06dPlC1blqpVq+Lm5kbVqlVlOzC2bNkyzp07x5w5cxg7dixTpkwhd+7cBAQE8PLlS5XWKcL/RtMKgLQNmK9cucLZs2dluQJAW3P/yHR0dBg6dKiynUp2O3HiBD///DNmZmacOHEi03Pl2JZLG1trXr58GS8vL4yNjdWK+aamprx//16iZH9bt24dTk5OFCxY8Jvf5XL5/k5v7969GR5TKBTky5cPCwsLzMzMsi/UNyxZsgSFQoG9vT2zZ89WuSZ8+fJFwmTftmbNGhYsWECxYsUwNzdX7icid6ampjx9+lRjZ4k//vhDFp+P8uXL8/DhQ65cuYKuri4RERE0adKEvHnzSh3tm27duoWXlxdOTk5MnjxZ7Zn748eP/Prrr8yfPx9bW1vZrKItWbIkO3bs4OrVq1y5coXQ0FAAChcuTM2aNbGxsZE44Y+nXbt2GltnzpgxI/vDCIKWkf+IoSAIgkS2bt3Kly9f2Ldvn7IwlKZEiRJ0796dhg0b0r59e7Zt28agQYMkSqrZy5cvefjwodZsrKuNbfy0jaa9fLTB3Llzs3yuXAaYevXqhYGBAe3bt8fFxQVra2uteAgHOHToEEOHDqVly5aMHTsWa2trKlWqRLt27Rg/fjwnTpzIcKastpB6MD2Ntq4A0Nbc2khbVmqlLwp9q0AkV9q0nw+Arq6uxrZ4AH/++Se5c+fO5kTq5s6di42NDQULFvzmd7lcvr/TmzBhgvK+Kf17nf41hUJBkyZNmDdvHgYGBpLkTK9Hjx4cOnSIc+fO4ejoSNOmTXFyctKK++mtW7fSo0cPWT2fZEXr1q3x9vamTJky1KxZE0j9jDx8+JA1a9bQtWtXiRNCQEAAjx8/JiAggAMHDjBhwgRy5cpF/fr1adiwoayfD3777TcqVaqU4X6d+fPnZ968eTx//pytW7fy66+/ZnPCzNWoUYMaNWpIHeOHVK1atSx/dhUKhdo+g4Ig/E0UiARBEDJw9uxZunTpolYcSs/MzIwuXbpw6tQp2RWITp48iY6ODiDvjXW1uY2ftpkzZ47UEf4RbZzZ3bRpU65fv87WrVs5d+4c1apVo1q1alSvXp1y5cpJHS9TISEhlC5dGl1dXXLmzElUVJTyWJs2bRg9ejTTp0+XMGHGtGUwPY02rADQRBtzP336lCNHjmhsW6RQKJg1a5ZEyTImVmplH218r21tbVm3bh316tVT3u+l7aW0fft2WRQE0n9/a+N3+Z49exg5ciTt2rWjcePGmJiY8OHDB44ePcq+ffuYPn06r1+/Zs6cOXh5ecnivtrDw4NJkyZx/vx5AgMDOXLkCHv37sXExERZCJBrMeDjx480btxY6hjfbejQoTx69Ig+ffqQP39+AAYMGEB4eDgNGjRg4MCB0gb8S9myZRk9ejSjR49W7kl0+PBhDh8+jEKhULbvk9s+RNevX8fFxSXTcxQKBR07dmTDhg3ZlOr7hYaGEhoaqrF1otzec23Rt29f2V7PBEHbiAKRIAhCBp4+fZqlok/16tX57bffsiHR99GGGbza3sZPEDLi7e0NpA46Xrt2jeDgYDZv3sy0adPImzcv1tbWyoJRlSpVyJMnj8SJ/2ZqaqosCv30009cunQJe3t7AJ4/fy5hssxp4wCvNqwA0ETbcu/du5dJkyaRM2dOzMzM0NPTUzku18EFbVqpdffu3e86Xy4tgNJo03udZuzYsXTt2pVWrVrRqFEjFAoFW7Zs4dGjR7x48YIdO3ZIHVHrLViwAGdnZ/r37698zcTEhPLly6Ovr8+KFSvYsGEDERERbN68WRYFIkhdJevg4ICDgwMzZszg+PHjBAYGsnfvXlJSUpgwYQLt2rWjbdu2stqvtGHDhly7dk0Wxc3voa+vz/Lly7l48SLnz58nIiICIyMj7O3tlfdPcmNjY4ONjQ0eHh78/vvvBAYGcvz4cY4dO4aZmZms9oYNDQ2ldOnS3zyvdOnSyjZucvLq1Svc3d25efMmgMYJkWJvz39m2LBhUkcQhB+GKBAJgiBk4NOnT1kqSBgZGfHp06dsSPTj0fY2ftouKiqKw4cP8+zZMxISEtSOy2WgQ5P4+HhevXqlcRaenAYeixcvTvHixZX9sKOjo5V7E126dAlfX190dHS4c+eOtEHTqVmzJlevXqVRo0Y4Ozszb948nj59ip6eHseOHaN169ZSR9RIGwd4tWEFgCbalnv58uU0b96cWbNmyaIFVFZp00qtjh07ZqnQltaSS26DYdr0XqcxNzdn165d+Pj4EBgYiK6uLqdOncLOzo4FCxZQokQJqSNy5cqV7zpfbrPor127ppzI9LWKFSuybNkyAKytrQkPD8/OaFmmr69Py5YtadmyJdHR0Rw6dIjAwEB8fX1ZtmyZrH4XO3bsyLRp04iPj8fe3l5je2w53eN9rXbt2tSuXVvqGN9FV1eX+vXrU79+feLi4jh27BiBgYFSx1IRExOTpe/uXLlyERsbmw2Jvo+HhwehoaHMmjULc3Nz9PX1pY4kCIKgRhSIBEEQMpCUlKQc+MqMQqEgOTk5GxJ9W3h4OGFhYVhYWKi8/uDBA3x9fXny5AkFCxbExcWFRo0aSZTyb9rexk+bPX/+nC5dupCQkEBsbCzGxsZERkaSmJiIkZERefPmlWWBKCEhgWnTphEQEKA2iJdGToMd6cXExHDnzh1u3brF7du3uXfvHsnJyRmuxJDKqFGjiIiIAFDuB3Ho0CHi4+Pp2bMnQ4YMkTBdxrRxgFdbVwBoW+6wsDCmTZumVcUh0K6VWmmtidIkJSXRp08fpk+fnqWZ31LTpvc6veLFi3/XPn3ZrWfPnsriMaiu1ksrFqYnt+9vY2NjDh8+TJ06ddSOHTp0CGNjYwA+f/6ssZghN/ny5cPZ2RlnZ2dCQ0MJCgqSOpKKtGLc6tWrWb16tcbPi9w+I+mdOXNG2eLWzc0NMzMzrly5QokSJShcuLDU8b4pV65ctG7dWpYTgT59+sTHjx8zPSc6Ojp7wnynW7duMXfuXJo1ayZ1FEEQhAyJApEgCEIm5s6dS758+TI9R043owsXLuTu3bvs2bNH+dqbN2/o3r07cXFxVKhQgUePHjF06FA2bNgg+UxNbW/jp83mzJlDlSpVWLJkCVWrVmXVqlVYWFgQFBTEokWLWLJkidQRNVq2bBnnzp1jzpw5jB07lilTppA7d24CAgJ4+fIlnp6eUkdUevfuHcHBwcr/PXr0iMTERPT09KhUqRJdu3alevXqVK9eXeqoKkxNTTE1NVX+3Lt3b9ltHK6JNg7wasMKAE20LXeNGjV4+PCh7FY2fYs2rdRK25g9TVqRtlKlSrKe8Z9Gm95rTUJCQggLC6Nw4cKyGojeu3ev8s8fPnxg8uTJ1KpVi+bNm1OwYEH+/PNPDh06xOXLl2W3sTzAwIEDmTZtGq9fv6Zhw4YYGxsTHh7O8ePHuXjxonI/vosXL2JtbS1x2u9TuHBh+vTpI3UMFV8XmrVFeHg4gwcP5ubNmxQtWpR3797RpUsXzMzM2LVrFwYGBkydOlXqmFqtX79+3zxHU9FZDgoXLpylSaeCIAhSEgUiQRCEDKQVT9L2sMiIjo4ONWrUyI5I3xQcHMzPP/+s8tr69euJiYlh9erVODg4EBcXR58+fVi9erXkBSLRxk86t27d4tdff1W2Ofjy5Qu6uro4OTkRERHBzJkzZVmUO3ToEEOHDqVly5aMHTsWa2trKlWqRLt27Rg/fjwnTpygfv36Usekfv36hIWFkZKSgpGREdWqVaNly5bY2NhQuXJl2bWXSEhIwN/fn8qVK1O1alWN59y4cYPbt2/TuXNn2eUH7R3glfsKgIxoU+7Ro0fj7u5Ozpw5qVOnjsaJH2kbi8uJtq3U0mba+l77+/uzfPlyQkNDlYOjhQoVws3NjS5dukgdT2VF+/Dhw3F0dGTcuHEq5zRq1Ii5c+eybds2jSt1pNSlSxdMTU1ZsWIFc+fOJTExkRw5cmBpaYmvr69yNf7QoUPJkUMeQytOTk5ZPlehUBAQEPAvpvk+XxeatcWvv/5KREQEgYGBlCxZUqXFrZ2dHcuXL5cwnfaT2/6R32vUqFGsXr2aGjVqyPJeQxAEAUSBSBAEIUObNm2SOsJ3Cw0NpVy5ciqvnTx5EktLSxwcHIDU9gE9evRg3rx5UkRUoY1t/H4UCQkJ5M2bFx0dHYyMjAgLC1MeK1euHA8ePJAwXcZCQkIoXbo0urq65MyZk6ioKOWxNm3aMHr0aOWMXilVrFiRwYMHY2NjQ9myZaWO801bt25l9erVHDx4MMNzzM3NGTp0KJDaNkhutHGA99OnT8TExFCoUCG1Y2FhYeTJk4c8efJIkCxz2pa7ffv2AEybNi3D2cVybFukbSu1tJk2vtcrV65k0aJFtG3bVm1FzvTp04mMjMTV1VXqmEpnz57Fx8dH4zEHBwfl94vcNG7cmMaNG5OcnEx4eDjGxsZq965ZmeyUXaysrGS5iuJ7PHnyRNmqrWPHjpiamvLixQtMTEzImzev1PHUnD59ml9++QVzc3O1FrdFixYlNDRUomQ/hrTvcG21Z88eQkJCaNSoEZaWlmqTVBQKhSgiCoIgOVEgEgRByIK9e/dSv359ChQooHbs48ePnDp1SrkJvZQUCoXKQ+Gff/7J69evcXFxUTmvcOHCyj1GpKZtbfx+FKVKleLNmzfY2tpSsWJFtm7dir29PTly5MDf31/jwK8cmJqaKotCP/30E5cuXcLe3h5I3VdJLk6dOoWbmxtly5alV69eTJ06FXNzc6ljZejAgQP06NEj0z0U8uXLR48ePdi/f78sC0TaOMDr4eFBnjx5NLZW8vb2JiYmBi8vLwmSZU7bcs+aNUtrB0y1aaWWttO293rTpk3069cPd3d3ldcbNWqEiYkJmzZtklWBKE+ePFy4cEHjKqFz587JqqisiUKhICkpieTkZFm3i5ozZ47UEf6x2NhYPDw8CAoKQkdHh+TkZOrWrYupqSleXl789NNPaivQ5CApKSnDNrZRUVHo6ellc6If14IFC/j5558pVaqU1FGy7PPnzyr3oN/qTiIIgiAFUSASBEHIgokTJ+Lv76+xQPT69WsmTpwoiwJR6dKlOX/+vHK10MmTJ1EoFGoP4+/fv1durCslbWzj96No1aqVcpXQiBEj6NevHzVr1lS25JLrAEPNmjW5evUqjRo1wtnZmXnz5vH06VP09PQ4duyYbDbWzZkzJ/Hx8QBcvnxZ9g+Djx8/ZvTo0d88r0qVKqxcuTIbEv0z2jbAe/Xq1Qz3Jahfv74sVsNpom25O3ToIHWEf0SbVmrdvXtX5ee0WfRPnz7VeL6c9yWS634+X/v8+bNygsTXHBwcZNcmtlu3bixdupQPHz7QuHFjTExM+PDhA8eOHWPfvn0MGzZM6oganT17Fm9vb+7du0dycjI7duzAysoKT09PbG1tadOmjdQRfxhz587l4sWLynZc6Vve1q9fn/Xr18uyQGRtbc2uXbs0tjg+cOCA7Paa1Gb79u3Dz8+PatWq4ezsTIsWLTAwMJA6Vqa0sSuJIAj/PaJAJAiCkAUZbXwOqTPD5DJA07NnT8aPH09UVBQFCxZk27ZtlChRQm0A4ffff6d8+fISpfybuGGWTvqNiatWrUpgYCBnz54lLi6O2rVry+LzocmoUaOUq9969+4NpO5LFB8fT8+ePRkyZIiE6f5WoUIF5s2bR7169QDYsWMHZ86c0XiuQqGQPHdm17j/5dzspE2D6WkiIyMzzGRgYMDHjx+zN1AWaWtubaNNK7U6duyocZWWu7u7yutp++TIsaWf3Pfz+ZqDgwPnz5/PcEWO3PZdGzx4MIaGhqxatYo9e/YoJ6SYmpoyadIkWa5MDQwMxN3dnZYtW+Ls7Iynp6fyWPHixdm9e7fsC0RRUVEcPnyYZ8+ekZCQoHbcw8NDglSaHT58mHHjxuHg4KDWqq1YsWK8efNGomSZGzlyJL169aJ79+40b94chULBsWPHWLlyJadPn2br1q1SR/xhnD59mjNnzrB79248PT2ZOXMmjo6OdOjQgWrVqkkdTxAEQWuJApEgCEIGTp8+zdmzZ5U/r127loIFC6qcEx8fz8WLF7G0tMzueBq1adOG0NBQNm/eTFRUFFZWVkydOlVl49wPHz5w8uRJ2c7UFKRRtGhROnXqJHWMbzI1NcXU1FT5c+/evZWFIjmZMmUKM2fOZMuWLSgUCg4cOICurq7Gc+VQICpevDjBwcHfHFAMDg6mePHi2ZTq+2jTYHqa4sWLc/78eY2rAC5cuECxYsUkSPVt2pj7ypUr+Pv78/z5c+XqvvT2798vQarMadNKrY0bN0od4X+iLfv5pF+p9fPPPzN16lTCw8PVVuRcvHhRVp+PND169KBbt26EhITw/v17TE1NKVKkiGxbtvn6+uLi4sKECRNISkpSKRCVK1eODRs2SJju254/f06XLl1ISEggNjYWY2NjIiMjSUxMxMjIiLx588qqQBQTE6Nyj5debGxsNqfJumrVqrFx40a8vLyYO3cuKSkprFixgqpVq7J+/XpZr5jUNjo6OjRo0IAGDRoQERHBvn372LNnDzt37qRMmTJ07NiRtm3bYmJiImnOdevW4eTkRMGCBVm3bl2m5yoUClk+ywiC8N8iCkSCIAgZeP78OSdOnFD+fPXqVfT19VXO0dPTo1y5cllqzZRdBgwYwIABAzI8bmJiwvnz57MxUcaOHDnyXec3a9bsX0ry3xMUFMTbt2/p37+/2jE/Pz/MzMxo2bKlBMky17hxY5YtW4aFhYXasYcPH+Lm5sbx48clSKbKysqKbdu2AWBhYcH69euxtraWOFXGmjdvzoYNG2jRokWGeyU9efKEjRs30qtXr2xOlzXaNJiextnZGS8vL4yMjOjYsSPGxsaEh4eze/du1q9fL6vvlvS0LffZs2dxdXXFzs6OO3fuUK9ePeLi4ggODqZIkSLKdqdyo00rtWrWrPmP/9m9e/fSsGFDjIyM/h8TfR9t2c/n65VaKSkp7NmzR2VFTppBgwbJcqWWjo4OZmZmmJmZSR3lm169eqWxbRik/g7KfY/MOXPmUKVKFZYsWULVqlVZtWoVFhYW/9fenUdVVa9/HP9scUaRGBzDUK8KUuaECg4oWpZT5nQ1NdTS1LCyNIecS80xDaccwqlywCEkM8fInKM0K6f0OiuiAg4oKJ7fHy3PLwIcUtnnHN6vte5anP39ttYn7gkO+9nf59GaNWv0ySefaMqUKWZHTKN8+fJat26dtVX2333//fd6+umnTUh1fypXrqxFixbpxo0bSkxMlIuLi823PrN3TzzxhDp37qyaNWtq1KhR2r17t8aNG6dJkyapSZMm6t+/v2kt1ceOHauqVavKw8Pjnq2PKRABsAUUiAAgEyEhIQoJCZH01w2C6dOnZ3hTGv/eW2+9dd97bbUljb2aNWtWpnM58ubNq9mzZ9tkgej06dMZtkiRpBs3bujcuXNZnChjoaGh6tevn5566imNGTMm0ydibUXXrl313XffqXXr1mrfvr3q1KmjYsWKyTAMnTlzRj/++KO++uorlShRIk17QltiTzfT7+jcubNOnDihSZMmadKkSXJycrK21WnXrp26du1qcsKM2VvusLAwhYSEqG/fvvLz89Pbb78tPz8/nT59Wq+99ppq1qxpdsQM2eNJrQeVmpqqgQMHKiIiwtQCkb3M87H3k1r2xtPTU0ePHs3wdO3Bgwdtvsj166+/atSoUdYH3G7evCknJyc1a9ZM8fHx+uijj2zmvS391YawV69eun79ul544QUZhqFff/1VUVFRWr58uWbPnm12xHvKmzev8ubNa3YMh3flyhWtXr1aERER2r9/v3x8fDR06FA999xzio6O1owZM9SnTx/TTvndmfP6z68BwFZRIAKAe0hOTla5cuVs/ilBe2QLJz2yq2PHjqls2bIZrpUpU0b/+9//sjhR5pKTk3X9+nXrk9FXr15Nd7M/OTlZGzZsyHD+jBk2bdqkbt266amnntKgQYO0ZMkSFStWzOxYmcqfP78WLFig4cOHKzw8PMN2GI0aNdKwYcOUP39+ExLemz3eTDcMQ8OGDVNISIh27NihhIQEubq6qmbNmvL29jY7XqbsLfeRI0fUp08f5ciRQ4ZhWFsVlShRQr1791ZYWJheeuklk1OmZ28ntf4tW5hrZi/zfB7mpBYeXNOmTRUWFqbSpUtbv/eGYejQoUOaM2eO2rdvb3LCu0tJSVGBAgWUI0cOFSpUSOfPn7eulS1b1uZuXNerV0+TJk3SuHHjrG0/R4wYoaJFi2rChAk289+hJH300UcPtN+WWvnZs+3btysiIkIbN26Uk5OTmjRpopEjR6Y5Xda6dWsVK1ZMPXr0MDHp/7vzGSkzhw4dstnZrwCyDwpEAHAPefLk0e7duzn6/RjY4g3b7CJPnjy6ePFihmtxcXFp5laZbfbs2Zo2bZqkv27MvPbaa5nuDQ0NzapYd1WkSBFt2rRJ7u7uslgsiouL05kzZzLdbwtPIT/xxBOaMmWKzpw5o59++kmxsbGS/vp38ff3t+kCl2TfN9O9vb1tsrByL/aSO0+ePLp9+7YMw5Cnp6dOnDihatWqSZKcnZ1t5uThP9nbSS17Y+/zfPD4hYaG6vDhw+rSpYv1Bm+3bt106dIl1atXT927dzc34D14e3vr9OnT8vf3V4UKFfTll18qMDBQOXPm1JIlS2zmoZq/e+GFF/TCCy/of//7n+Lj41WoUKFMW9+a6e9tyO/FMAwKRI9Ily5d9Oyzz2rw4MFq0qRJpm38vL291bRp0yxOl7HXXntNCxYsyPCU+759+/T6669r586dJiQDgP9nWGzhkS0AsHFvvfWWnnrqKb333ntmR3FoFotF0dHRiomJUWJiogoVKqRq1aqpbt26aXru4+GFhobqxIkTWrx4cZoTIUlJSWrfvr2efPJJa1HGbAcOHND+/ftlsVg0aNAg9ezZUyVLlkyzJ1euXCpTpox8fX1NSpnWvHnz7tlzXPrrPU/7xEfDYrFo5MiR1nY5/7yZntl8IluQnJyskydPKjk5Od2aLQ+3tpfcXbt2VXBwsDp27Kj+/fvrl19+0cCBA5UzZ05NnDhRuXPn1tKlS82Omaljx47ZxUmtfyM1NVV+fn5avnx5lr9nfHx80s3zueOf83xs9ef0qlWrtGTJEh07dizD/w5//vlnE1I5nh07dmjbtm3WgkVgYGCmLQltSXh4uGJjYzVgwADt2bNHr732mq5fv259f3/88cdq3ry5qRktFou2bdsmd3d3aytvi8WiUaNGpdnn7OysPn36mBERNsQeT9u0atVK+fLl05w5c9K0H/zll1/UrVs31a1bV5MmTTIxIQBQIAKA+xIdHa2hQ4eqQYMGCgoKkru7e7qChS3dDLNHiYmJ6t69u/bu3SsXFxfr07uXL1+2DtZ1cXExO6bDOHLkiNq1a6fcuXOrUaNGKly4sM6fP6/vvvtON2/e1FdffWWTT2yuXLlSQUFBpg2dfRDHjx/X0aNH1bNnT/Xt2/euN3QbNmyYdcHuw82bNxUREaF9+/bp3LlzGjp0qLy9vbVmzRqVL1/eJt8bd9jTzfSUlBQNHz5ckZGR1mLWP9niTWl7yx0dHa1Tp06pQ4cOio2NVY8ePaz5ihYtqrCwMD3zzDMmp8yezCwQ7dq164H221p7t6+//lqDBw/Wyy+/rKVLl6pVq1a6ffu2Nm3aJBcXF7300ks2c6r2nywWi86fPy93d3ebOrH8d8nJyWrTpo3ef/991a5d2+w4j8TZs2e1ZcsW3bhxQzVr1rSJG+3ffPON3n//fS1evNj6c/jOzwVPT0/lypVLknTx4kWNGTNGjRs3NjMubMjZs2d19uxZ+fj42Gz7Y0mKj4/Xq6++qsKFC2vmzJnKlSuXduzYoZ49e6pRo0YaPXq0cuTIYXZMANkcBSIAuA93nmi7459PnNrqk6X2ZNCgQdq8ebMmTJiQZgbA1q1b1a9fP9WvXz/d04R4OMePH9enn36qnTt3Wm+mBwQEKDQ0VE899ZTZ8RzGwIED1atXL3l5eZkd5b6cPHlSnTt3Vnx8vCpUqKCYmBhFRETIz89PI0aM0I0bNzRmzBizYzqETz75RKtWrVK/fv3Ut29fDR06VPnz51dkZKROnDihIUOGKCgoyOyY6dhr7jssFouOHz+uGzduqHTp0tYB7rbKXk5q/RtmFojsXYsWLdSoUSN17949zffw6tWreu211/TCCy+oS5cuZsdMY8uWLQoLC9Mff/yh27dva9myZfLz89OQIUPk7+9v+mmWf6pRo4Y++eQTuzgtZK/eeOMNubi4aPz48dZrGf1cGD9+vP7880999tlnZkVN49KlSzp//ny6vxEPHDig6dOn68iRI/Lw8FBISIiCg4NNSumYlixZoqlTpyouLk6GYVg/o7755puqXr26QkJCzI6YTlxcnDp27KiyZcuqZcuW6tOnj1q0aEH7UgA2wzYf1wEAG7NgwQKzIzi8TZs2qV+/fukGRNeqVUvvvvuuJkyYQIHoEXvqqac0ceJEs2M8kBs3bmj69On67rvvdO7cOaWkpKTbY2vFWnsrpnz00Udyc3PTsmXL5OLikmbwr7+/v823wbCnm+lr165VaGioXnzxRfXt21cVK1bU008/rRYtWqh///7atGmTTRZa7C338uXL1apVK+trwzCsp8osFouGDh2qkSNHmpQuc/Z2UgtZ6/jx46pSpYqcnJzk5OSkq1evSpIKFCigbt26afTo0TZVIIqKilK/fv304osvqk2bNhoyZIh1zcvLSytWrLC5AtHzzz+vb7/91m4LRGvWrNGZM2f0+uuvp1ubO3euihcvrhdffNGEZP/vt99+09ChQ++5z9/fX19//XUWJLo/kyZN0u+//66VK1dar50+fVodOnTQjRs3VL58eR0+fFihoaGaP3++/P39TUzrOObNm6cJEyaoS5cuCggISDOLr3r16lq7dq1NFog8PT01b948dejQQRs3btSrr76qgQMHmh0LAKwoEAHAfbC1tiKO6Pr16/Lw8MhwzdPTU9evX8/iRLBFI0aMUFRUlJo2baoyZcpYW4/Ymo8++khdu3ZV8eLF9dFHH91zvy0NL961a5cmTpwoNze3dDelPT09FRcXZ1Kyu7PHm+nnzp1TqVKl5OTkpDx58ujy5cvWtebNm+vdd9+1yadL7S33sGHDlD9//nQ3Qi0Wi95//31t2rTJJgtE06ZN09atW/Xxxx9nelLL3uXIkUOhoaEqXLiw2VHsbp5PgQIFrA9JFClSRH/++adq1Kgh6a8TGPHx8WbGS2f69OkKCQnRgAEDlJqamub9W7ZsWc2fP9/EdBmrUqWKJk2apDfeeEN169aVh4dHuhbTzz//vEnp7m3WrFlq2bJlhmt58+bV7NmzTS8QJSYmyt3dPc01JycnTZkyJc28yQIFCighISGL02Xu559/VuvWrdNcmzdvnpKSkjR79mzVrl1bN27cUJcuXTR79mwKRI/IokWL1KtXL/Xq1SvdZ71SpUrpf//7n0nJ0srss3+ZMmWUlJSk1NTUNHts6e8AANkTBSIAgE3w9fXVokWLVLt2bTk5OVmv3759WwsXLlSFChVMTOcYevTooQEDBsjb21s9evS4617DMDRjxowsSnb/Nm/erP79+6tjx45mR7mrTZs2qXXr1ipevLg2bdp0172GYdjUH4ZOTk7KrAPxhQsXbLbPuz3eTPf09LQWV5588knt3LnT+qT6sWPHTEx2d/aWe8SIEerfv7/y5cunevXqSfrrBnqfPn20fft2ff755+YGzIS9ndT6u/udY2YYhk3Myfn66681ZMgQvfzyy/rll18ynOdja55++mkdPHhQderUUXBwsKZNmyaLxaKcOXNq1qxZqlSpktkR0zh58mSm79d8+fLpypUrWZzo3u484R8dHa3o6Oh067beYvrYsWMqW7ZshmtlypSxiZvpBQsWzPDBk0aNGqV5HRcXp4IFC2ZVrHuKjY1N973dvHmzfH19rTOr8ubNq44dO2rcuHFmRHRIsbGxqly5coZruXLlUlJSUhYnytjdPvvnz58/zbqt/R0AIHuiQAQA98neniy1N++99566du2q5557Tg0aNJCHh4cuXryoDRs26MKFCzZ7A8+eXLt2zfq03bVr10xO8+84OTlZW0PZsr//4XevApGt8ff3V3h4uOrWrWsdmmsYhiwWi5YuXaqAgACTE2bMHm+mV69eXT/99JOCg4PVpk0bjRs3TkePHlWuXLm0fv16NWvWzOyIGbK33K1atVJSUpLefvttffbZZ6pSpYp69+6tvXv3av78+Tb7AIK9ndS6I6M5Znd+5+zevVtbtmyxudab4eHh6tWrl7p3766lS5fqlVdeSTPPx9nZ2eyI6bzxxhs6c+aMJOmtt97S6dOnNXr0aN2+fVvPPPOMzZ2K8/T01NGjRzP8HXLw4EEVL17chFR3t3HjRrMjPJQ8efLo4sWLGa7FxcUpZ07zbwc988wz+vbbb+95kunbb79VxYoVsyjVvRmGkeY02YULF3Tq1Kl07c2KFClic6f57Fnx4sW1b9++DH+O7N2712b+RrC3z/4AYP4nAgCwA/b4ZKm98ff311dffaWZM2cqKipKly9fVqFChVS1alX16NHD5maH2KOFCxdm+LU9ad++vb7++mvr05m27tSpU1q2bJn27NmjCxcuyDAMeXh4qEqVKmrTpo2KFStmdsR0+vbtq/bt26tJkyYKDg6WYRj64osvdPjwYR0/flzLli0zO2KG7PFmep8+faw3jjp37izpr0JXcnKyQkJC7nnSzyz2mLtTp05KSkpSr169VK5cOZ08eVILFixQuXLlzI6WKXs7qXWHPc4xs7d5PpJUqVIl6ykhFxcXzZgxQykpKUpJSVGBAgXMDZeBpk2bKiwsTKVLl7a2bjYMQ4cOHdKcOXPUvn17kxOmV6JECbMjPBR/f3/NmjVLwcHBaU7/JiUlac6cOTbRQrtDhw564403NG3aNPXs2dP6YModFotFM2bM0Pr16zVz5kyTUqZXqlQpbdu2zfp5dPPmzTIMI90s1bi4OLm5uZkR0SG1bdtWU6dO1RNPPGFt73jr1i19//33mjt3rt555x1zAwKAnaJABAD3wR6fLLVHTz/9tKZOnWp2jGwtJSVFuXPnNjtGpvLmzauYmBi1a9dOAQEBcnFxSbNuGIb1hrXZVq9erQ8++EApKSkqUqSIihUrJovFov/973/asWOH5s6dqzFjxqhx48ZmR02jTJkyWr58uaZOnaqoqCg5OTnp+++/V0BAgCZMmJBmJoAtsceb6Z6envL09LS+7ty5szp37qwLFy5o/vz5ql+/vnbv3m1iwozZQ+6MZlX897//1enTp7Vu3TrNmDFDhQsXtu5zdXXN0nz3w95Oat1hj3PM7G2eT2Zy585ts7/DQ0NDdfjwYXXp0sX631u3bt106dIl1atXT927dzc34F1s3bpVe/fuVVxcnDw9PfXss8+mKwTYoj59+qhdu3Z67rnn1KhRIxUuXFjnz5/Xd999p5s3b9pEsTYoKEjdu3dXWFiYlixZopo1a1ofnomNjdX27dt1/vx5devWzaZOAXfq1En9+/fX5cuX5eHhoa+++kolS5a0fu6448cff7TpBxHszWuvvaazZ89q6NChGjZsmCRZi8uvvPKKOnToYGY8q0uXLun8+fPy8fFJc/3AgQOaPn26jhw5Ig8PD4WEhCg4ONiklADw/ygQAcB9sMcnS4G7WbVqla5cuaJOnTpJkg4dOqTQ0FCdOnVKVatW1eTJk9MNDbYFEyZMkCSdOXNGe/bsSbduKwWiI0eOaNCgQapataqGDBlinbdxx+HDh/Xhhx9qwIAB8vX1ValSpUxKmjEvLy+NHTvW7BgPxJ5upu/Zs0crV67U2bNn5eXlpU6dOsnb21sXLlzQtGnTtGLFCt26dcvmiof2lLtmzZrphsnfYbFY9Morr6S5ZotzROzxpJZkn3PM7GWez0cffaSuXbuqePHimQ5B/ztbmmuRO3duzZgxQzt27NC2bdsUHx+vQoUKKTAwMN1NdVsRFxen3r17a8+ePSpUqJDc3d118eJFJSYmqlKlSgoLC0tTLLc1ZcqUUUREhD799FOtW7dOCQkJcnV1VWBgoEJDQ/XUU0+ZHVGS9O6776pKlSoKDw/X2rVrrcXa3Llzq0qVKho5cqRNFYekv04mx8bGatGiRbp8+bL8/Pw0bNiwNG37Ll68qM2bN6t3794mJnU8gwcPVkhIiLZu3aqEhAQVKlRIAQEBNtNeTpImTZqk33//XStXrrReO336tDp06KAbN26ofPnyOnz4sEJDQzV//nz5+/ubmBYAJMOS2ad3AIBVnTp1NHr0aOuNg9dee836hNJ3332nAQMG6JdffjE5pX27ffu2li1bpu+++07nzp1LN+fJMAxt2LDBpHSOp1mzZmrXrp31fdypUyddunRJ7du318KFC1WtWjWNGjXK5JT268MPP9T27du1atWqTJ/mTklJUYsWLRQYGGhTN/HsVVxcnOLj461P6s6bN896M71WrVrq0aOHTbRdio6OVs+ePWWxWOTm5qbExEQ5Oztr3Lhxev/993XlyhU1adJEvXr1sqnCob3lXrFiRaYFooy8/PLLjzHNo3XnpNbixYtNP6mVkZ49e+rKlSsKDw9Xjhw55OfnpxUrVsjX11ddu3bVE088YRMnF/5uz549OnPmjBo3bqzLly+rf//+io6Ots7zmTRpkry8vMyOqeDgYE2fPl0+Pj73fOrcMAy7n6Fjtl69eunXX3/VhAkTVLNmTev17du3q1+/fnr22Wc1bdo0ExM6ntTU1DQnO52cnMwNBPwLjRs3VuvWrdW1a1frtVGjRmnRokWaPXu2ateurRs3bqhLly4qWLCgZs2aZWJaAOAEEQDcF3t5stSejR8/XuHh4fL391eNGjWUK1cusyM5tNOnT1tPtVy6dEkxMTGaOXOm6tatKzc3N7s7PWJrdu3apbZt29611U/u3LnVtm1brVixIguT3durr76a6VqOHDlUsGBB+fr6qlWrVipSpEgWJrs7e2h7JkmfffaZfH19NX36dBUpUkTXrl3T4MGD9eabb8rT01Nz585NM7PFVthb7pYtW5od4V+zp5NaGbHHOWb2Ms/n74PP7XUIemxsrGJjY9M9CCTJ5p6i37Ztm4YPH56mOCQp3pCZAABLmUlEQVRJAQEB6tu3r4YPH25OMAfm5ORkkyfYYTtSU1O1d+9enTt3znra7O9atGiR9aH+ITY2VmXLlk1zbfPmzfL19bXOrcqbN686duyocePGmRERANKgQAQA9+GNN97QmTNnJElvvfWWTp8+rdGjR1ufLB05cqTJCe3f6tWr1bt3b7355ptmR8kWcuTIoZs3b0qSdu7cqZw5c1pvgHh6emY4v8NW3Lx5UxEREdq3b5/OnTunoUOHytvbW2vWrFH58uXTtXMzw9mzZ1W+fPl77itfvrxOnz6dBYnuX8GCBfX7778rLi5O5cuXt7bUOXjwoDw9PVWyZEmFh4dr7ty5WrBggfz8/EzNa283048cOaJRo0ZZi2vOzs7q16+fvv32W7333ns2VWT5O3vNnZmYmBgdPXpUVatWVenSpc2OY/XPk1rbtm1TVFSUzZ7Uyoi9zjH7J1ue53Pq1CktW7ZMe/bs0YULF2QYhjw8PFSlShW1adPGOsPFlpw8eVL9+vXT3r17JSldG0LDMGyu1aOLi4sKFSqU6VrBggWzONG99ejRQwMGDJC3t/c921AahqEZM2ZkUTLg4f3+++/q3bu3zp49m2ErU8MwbKJAZBhGmlPMFy5c0KlTpxQSEpJmX5EiRexmxh0Ax0aBCADug708WWrPUlJSVKVKFbNjZBs+Pj768ssvVbRoUS1cuFA1a9a03gg7c+aMzT69efLkSXXu3Fnx8fGqUKGCYmJidO3aNUnS7t27tWXLFo0ZM8bklNK1a9fk7Ox8z3358+dXUlJSFiS6fy+88IJOnDihL774QiVKlLBeP3XqlHr27KmXX35ZYWFh6tKliyZNmqS5c+ealtUeb6YnJiaqcOHCaa7dKbrYyjyIjNhrbkl67733lDt3buvPhq+++kojRoyQ9FcR4LPPPlNAQICZEa3s7aRWZuxhjpm9zvNZvXq1PvjgA6WkpKhIkSIqVqyYLBaL/ve//2nHjh2aO3euxowZYzNF8TsGDx6s2NhYjR49WmXKlLHZ4tvfhYSEaNasWapevXqa3+lXr17V7Nmz73ri1izXrl1Tamqq9WvAkQwfPlwFChTQ/Pnz9Z///MdmO06UKlVK27Zts54W2rx5swzDUK1atdLsi4uLk5ubmxkRASANCkQA8IAsFovOnz8vd3d3ikOPULNmzbRp0yabuUnn6Pr06aMePXqoefPmcnZ2Vnh4uHVtw4YNeuaZZ0xMl7mPPvpIbm5uWrZsmVxcXNLcKPX397eZuRb2POJx6tSpeu+999IUhyTpySef1JtvvqmJEyfq5ZdfVteuXTVs2DCTUv7FUW6m32GvsxZsPXdMTIzef/996+tZs2apTZs2GjBggIYPH66pU6fazO8eRzipdfXqVSUlJaUrKErS+fPn5ezsfF8F9Mdt06ZNat26tYoXL37Pdm2GYdhEgejIkSMaNGiQqlatqiFDhqQ7MXv48GF9+OGHGjBggHx9fW2mMC5Jv/76q8aOHavnn3/e7Cj37cyZMzp9+rSCgoJUo0YN64nanTt3ytnZWbGxsWmKi7bwHlm4cGGGXwOO4M8//9TkyZNVvXp1s6PcVadOndS/f39dvnxZHh4e+uqrr1SyZEkFBgam2ffjjz9aZ2cCgJkoEAHAfdqyZYvCwsL0xx9/KDU1VREREfLz89PgwYNVvXp1NW/e3OyIdmfdunXWrytVqqRPPvlEFy9eVGBgoFxcXNLtt6ebCrauatWq2rx5s44dO6aSJUum+X63bt3aZlsA7dq1SxMnTpSbm5v1Cdk7PD09FRcXZ1Ky9EJCQtK0l8iILRaSzp49m2luwzAUGxsrSSpcuHC6/w+ymr3eTM/svdGhQ4c01w3DUExMTFZGuyt7zX3p0iVrseLw4cM6e/asXn31VTk7O+vll1/W22+/bXLC/2fPJ7XuGDx4sJydnTVq1Kh0a2FhYUpKStLEiRNNSJaWPc7z+fLLL+Xl5aVZs2ZleAKnbNmymjNnjlq0aKEvvvjCJgoWdxQpUkQ5cuQwO8YD2bx5s3LmzCkXF5c07e/ufGb6+/vGVoqI9yMlJcUuTnAB/+Tt7W0XJ+OaN2+u2NhYLVq0SJcvX5afn5+GDRumnDn//xbsxYsXtXnzZvXu3dvEpADwFwpEAHAfoqKi1K9fP7344otq06aNhgwZYl0rWbKkVqxYQYHoX3jrrbfSXTtz5ozWrFmT7rot9qa3Zz/88IPq1KmT4Q30oKAgExLdHycnp0yLKhcuXFD+/PmzOFHGQkNDzY7wrz3zzDP69NNP9fTTT6eZY3H69GmFhYWpYsWK1td3blybxR5vptvre8Nec0uSq6urTp8+rWrVqmnLli3y9PS0Do9OTU3V7du3TU54f2z9pNYdP/30U6anC4OCgqzt/WyFPc3z2bVrl9q2bXvXm/u5c+dW27ZttWLFiixMdm99+vTR7NmzVa1aNbm6upod577YS+EwM6tWrdKVK1fUqVMnSdKhQ4cUGhqqU6dOqWrVqpo8ebLNthQGMjJw4ECNGjXKZmaO3k23bt3UrVu3TNfd3d21bdu2LEwEAJmjQAQA92H69OkKCQnRgAEDlJqamqZAVLZsWc2fP9/EdPZr48aNZkfItrp3766iRYvq5ZdfVsuWLeXl5WV2pPvi7++v8PBw1a1b1/oksmEYslgsWrp0qc20ibLnm+kjRoxQly5d9Nxzz6lcuXJ64oknFB8fr4MHD8rd3V1TpkyR9FdBrm3btianzZyt3ky31/eGveaWpLp162rChAk6cOCAVq5cqZdeesm6dvjwYT355JMmpkvPXk9q3ZGYmJhpC7l8+fIpISEhawPdhb3N8zl79qzKly9/z33ly5fX6dOnsyDR/Vu5cqXOnTun4OBg+fr6qmDBgmnWDcPQjBkzTErnmObOnat27dpZX3/44YfKlSuXBg0apIULF2rSpEkZnvQDbNWHH36ouLg4NWvWTIULF87w50hkZKRJ6QDAflEgAoD7cPLkyUxPVeTLl09XrlzJ4kSO4Z8zTpB1vvnmG0VERGjZsmX67LPPVK1aNbVp00aNGjWy6bYjffv2Vfv27dWkSRMFBwfLMAx98cUXOnz4sI4fP65ly5aZHdHu/ec//9GGDRsUERGh3377TXFxcSpfvrxat26t1q1bW1vM3e2pyKxk7zfT8fj1799fqamp+vHHHxUUFJSmncv69etVp04dE9OlZc+FuDu8vLy0bdu2dLMWJGn79u0287vfHuf5XLt27b7mN+XPn19JSUlZkOj+Xbt2LU37WntoE2XvTp8+bX1fX7p0STExMZo5c6bq1q0rNzc3jR071uSEwIPx8/O7Z/tmAMCDo0AEAPfB09NTR48ezfB0wsGDB1W8eHETUjkei8Wi6OhoxcTEKDExUYUKFVK1atVUt25d/hh4xMqUKaP+/furb9+++v7777V8+XINHDhQI0eOVNOmTdWqVSubnN9SpkwZLV++XFOnTlVUVJScnJz0/fffKyAgQBMmTLDZ2Un2Jk+ePOrQoYP19aVLl/Ttt9/q1Vdf1d69e22m3aMj3EzH41ewYEGNGTMmw7Wvvvoqi9PcnSO8p9u0aaOJEyeqUKFCatWqldzc3HTp0iWtWLFC8+bN07vvvmt2REn2Oc/HFufW3a+FCxeaHSHbyZEjh27evClJ2rlzp3LmzKmaNWtK+utvG1s6zQfcj48//tjsCADgkCgQAcB9aNq0qcLCwlS6dGlVr15d0l9Pox86dEhz5sxR+/btTU5o/xITE9W9e3ft3btXLi4ucnd318WLFzV79mxVqlRJs2bNsg4FxqPj5OSkBg0aqEGDBoqNjVXfvn311VdfafHixSpbtqxCQkLUqlUrs2Om4eXlxVOvWeD69etav369oqKitG3bNqWmpsrX11cDBw40O5qVI9xMBxxN586ddeLECU2aNEmTJk2Sk5OTUlNTJUnt2rVT165dTU74F3ud55PZqcm/s+dCEh4dHx8fffnllypatKgWLlyomjVrWt/vZ86cYf4QAACQRIEIAO5LaGioDh8+rC5dulgH63br1k2XLl1SvXr11L17d3MDOoCxY8fqxIkTmjt3rmrVqmW9vnXrVvXr109jx46lT/pjcuTIEUVERCgyMlKXL1/WCy+8oOeee07R0dEaNmyY9u7dq5EjR5qW70EKEoZhaPTo0Y8xjWNLTU3Vli1btHr1am3atEk3btyQh4eHUlNTNXHiRJuZwwE8qN27d2vJkiU6duyYkpOT062vXr3ahFSOyTAMDRs2TCEhIdqxY4cSEhLk6uqqmjVrytvb2+x4VvY4z8feiuLh4eFq1qyZPDw8FB4efte9hmGoc+fOWRMsm+jTp4969Oih5s2by9nZOc3/Bxs2bNAzzzxjYjrg/jzog0mZnRgGAGTOsPB4EQDctx07dmjr1q1KSEhQoUKFFBgYmGGPfTy4mjVrql+/fhmeVomIiNCECRO0Y8cOE5I5pmvXrumbb77R8uXL9euvv8rb21tt2rRRixYt5ObmZt23atUqjRgxQr/88otpWX18fOTs7KySJUve86lowzC0cuXKLErmOGJiYhQVFaW1a9cqPj5erq6uatSokZo1a6ayZcuqRo0aWrhwofz9/c2OCjywLVu26I033lBAQIC2bt2qunXr6saNG/r5559VtGhR+fv7c0MpG/L19dWSJUtUsWLFu+7bu3ev2rVrZzOtNe2Jj4+Pli5dqooVK8rHx+euew3D4Hv8GFy9elXHjh1TyZIl05zEj46OVsmSJW1ithZwNy1atEjzOjY2VvHx8SpUqJC140RiYqKeeOIJFS1alL8DAOBf4AQRADyAmjVrWnt349G6fv26PDw8Mlzz9PTU9evXsziRY7tzSuv5559Xv379VK1atQz3VahQQU888URWRkunUqVK2rt3r1JTU9W0aVM1adLEZoacO4oOHTrIMAzVqFFDXbp0Ua1atZQz518fE69cuWJyOuDhhIWFKSQkRH379pWfn5/efvtt+fn56fTp03rttdf4vf6YJCcn6+TJkxme2PLz8zMhUVo8J/n4HThwIMOv7cXUqVMzXcuRI4cKFiwoX1/fTD9Dme2HH35QnTp1MpwpGRQUZEIi4MGtWrXK+vUPP/yg4cOH65NPPknzu3v79u364IMP9M4772R9QABwABSIACATlStXvmeP9zsMw1BMTMxjTuTYfH19tWjRItWuXVtOTk7W67dv39bChQtVoUIFE9M5nr59+6p58+b3nOtUrlw5bdq0KYtSZWzx4sU6c+aMvvnmG0VFRemTTz5RpUqV1LRpU7344otpTjzh3ylXrpwOHTqk3bt3y8nJSfHx8WrYsKEKFChgdjTgoR05ckR9+vRRjhw5ZBiG9YGDEiVKqHfv3goLC9NLL71kckrHkZKSouHDhysyMtI6e+ifbOWkCPN8cDfz58/XzZs3dePGDUlSnjx5rAXPvHnz6tatW0pNTVWFChU0e/Zsm/s80r17dxUtWlQvv/yyWrZsKS8vL7MjAQ9l/Pjxeuutt9I92BEQEKDevXtr/PjxFD8B4F+gQAQAmejatWuamwapqamaMWOG2rZtq8KFC5uYzDG999576tq1q5577jk1aNBAHh4eunjxojZs2KALFy7o888/NzuiQ+nYsaPZER5I8eLF1a1bN3Xr1k1//vmnoqKitGDBAo0ZM0Y1a9ZUp06d+IPwIURGRurPP/9UZGSkvvnmGw0YMEB58+ZVUFCQ6tevf9/FcsAW5cmTR7dv35ZhGPL09NSJEyesT/w7Ozvr3LlzJid0LNOmTdPWrVv18ccfq2/fvho6dKjy58+vyMhInThxQkOGDDE7oiT7m+djj37//fcH2m8LJ8v+bv78+erTp4/efPNNNWjQQM7Ozrp27ZrWr1+v6dOna+zYsbpx44b69euncePG6eOPPzY7chrffPONIiIitGzZMn322WeqVq2a2rRpo0aNGil37txmxwMe2PHjx63zgP+pUKFCOnHiRNYGAgAHwQwiALhPqamp8vPz0/Lly23uD1hH8dtvv2nmzJmKiYnR5cuXVahQIVWtWlU9evTge/4YHD16VOvWrdO5c+fStQAyDEOjR482Kdn9SU5O1pQpUzRv3jwFBwfftRUMHsydmUTfffedLl26JMMw1LBhQ7366qvMIYLd6dq1q4KDg9WxY0f1799fv/zyiwYOHKicOXNq4sSJyp07t5YuXWp2TIfRqFEjvf7662rZsqX8/PwUERFhbXHVv39/5c2bVyNGjDA5JbKCj4/PfT1gYLFYbHIGUbt27dSiRQu1a9cu3dpXX32lFStWaNmyZfriiy80bdo0bdu2zYSU95aamqrvv/9ey5cv1w8//KB8+fKpadOmatWqVYbt5wBb1bJlS+XNm1ezZ8+Ws7Oz9frVq1f1+uuvKyUlRStWrDAxIQDYJ04QAQBsxtNPP81N/iyyatUqDRo0SHny5FHx4sWVK1euNOu2emIkNTVVP/74o9asWaONGzfKyclJrVu3VuvWrc2O5lCqVq2qqlWravDgwfrxxx8VFRWljRs3asOGDSpevLg2btxodkTgvoWEhOjUqVOSpHfffVc9evRQz549JUlFixbl984jdu7cOZUqVUpOTk7KkyePLl++bF1r3ry53n33XQpE2cSCBQvMjvBQ/vjjD/Xq1SvDtRIlSujQoUOSpLJly9r0vD4nJyc1aNBADRo0UGxsrPr27auvvvpKixcvVtmyZRUSEqJWrVqZHRO4p8GDB+v1119XUFCQatSoIXd3d128eFE7d+5Uamqq5syZY3ZEALBLFIgAADbh6tWrSkpKyrB93/nz5+Xs7JzmSTE8nBkzZqhRo0YaPXq08uXLZ3ace9q9e7eioqK0du1apaSkqEGDBpowYYJq166tnDn5OPO4ODk5KSgoSEFBQbpx44Y2bNigqKgos2MBD+Tv7SeLFCmiFStW6Pjx47px44ZKly5Nq6VHzNPT01oUevLJJ7Vz504FBgZKko4dO2ZiMmS16tWrS/prLtX3338vX19fu5qDU7x4cUVERKhu3brp1pYuXarixYtLkhISEvTEE09kdbwHcuTIEUVERCgyMlKXL1/WCy+8oOeee07R0dEaNmyY9u7dq5EjR5odE7irKlWqaN26dZo3b55+/fVXHT16VJ6enmrXrp1CQkLk6elpdkQAsEvcUQEA2ITBgwfL2dlZo0aNSrcWFhampKQkTZw40YRkjun8+fMaPny4XRSHgoKCFB8fr7p162r48OEKDg5Wnjx5zI6V7eTNm1dNmzZV06ZNzY4CPBTDMOTt7W12DIdVvXp1/fTTTwoODlabNm00btw4HT16VLly5dL69evVrFkzsyMii+XOnVvvvfee5syZY1cFovfee0/vvPOOGjVqpPr168vNzU2XLl3S5s2bderUKU2ZMkWStH37dptsv3rt2jV98803Wr58uX799Vd5e3vrtddeU4sWLeTm5iZJatKkiQIDAzVixAgKRLALHh4e6tu3r9kxAMChUCACgAdkq6237N1PP/2kYcOGZbgWFBREO5pHrFq1ajp06JACAgLMjnJPsbGxypkzp7Zu3XrP/v6GYSgmJiaLkgGwVeHh4fe91zAMde7c+fGFyWb69Omj+Ph4SbJ+X9euXavk5GSFhISoR48eJqaDWUqXLq2zZ8+aHeOBPPfcc1q2bJk+++wzrV+/XnFxcfL09NQzzzyjyZMny9fXV5Iy/fxqtlq1akmSnn/+efXr10/VqlXLcF+FChVs/gQUAAB4fAyLxWIxOwQA2KLKlSunKwYlJSUpX7586a5zU/rhPfPMM/rss8+sbWj+buvWrerRo4f27dtnQjLHkZCQYP367Nmz6tevnzp27KhatWqpYMGC6fa7urpmXbi7eND5IKGhoY8pCQB74ePjc997DcPQ/v37H2MaSNKFCxc0f/58LV68WLt37zY7DrJYdHS0Ro8erQkTJuiZZ54xO062sGjRIjVv3lwuLi5mRwH+tWbNmmnixIkqV67cfZ1AXb16dRakAgDHwgkiAMhE165dOS2Uhby8vLRt27YMC0Tbt29XiRIlTEjlWGrWrJnmPW2xWDR8+PBM3+e2csOUgg+AB3XgwAGzI2Q7e/bs0cqVK3X27Fl5eXmpU6dO8vb21oULFzRt2jStWLFCt27dUuPGjc2OChNMmDBBCQkJatu2rVxdXeXh4ZFm3TAMRUZGmpTOMXXs2NHsCMBDe/rpp60tsf38/O7693lycnJWxQIAh0KBCAAy0bt3b7MjZCtt2rTRxIkTVahQIbVq1cra533FihWaN2+e3n33XbMj2r3Ro0dT9ASAv7l69arWrVunli1bmh3FrkVHR6tnz56yWCxyc3PTtm3bFBUVpXHjxun999/XlStX1KRJE/Xq1UulSpUyOy5M4Ofnp6efftrsGA/k9u3bWrZsmb777judO3cu3c1nwzC0YcMGk9Ldn6NHj2rdunWZ5h89erRJyYD7U61aNevsso8//jjTfVevXqWFKQD8S7SYAwDYBIvFopEjR2rx4sWSJCcnJ6WmpkqS2rVrZ7P93e3Nn3/+qcWLF+vUqVMqXLiwGjVqZO1RDwDZwc2bNxUdHa3IyEhFR0crJSXFZk5M2qtXXnlFycnJmj59uooUKaJr165p8ODBWr9+vTw9PRUWFmZ3xQFg7NixCg8Pl7+/v/7zn/8oV65c6fYMGjTIhGT3Z9WqVRo0aJDy5Mmj4sWLp8tvGIZWrlxpUjrg/vj6+mrkyJFq06ZNpnsuXryo119/XceOHdMvv/yShekAwDFQIAIA2JRjx45px44dSkhIkKurq2rWrClvb2+zYzmEn376SV26dNGtW7fk5uamhIQE3b59W0OHDlX79u3NjgcAj9XOnTu1evVqrV+/XpcvX5a7u7uaNm2qFi1aPNDMIqRXo0YNjRo1Sg0bNrReO3PmjIKDgzVhwgQ1bdrUxHSwNRaLRefPn5e7u7ty5rTdpia1a9dW+/bt9eabb5od5V9p1KiRKlSooNGjR1tbdAH25uOPP9aCBQs0bNgw/fe//023fvr0aXXp0kWJiYn67LPPVKlSpawPCQB2znY/jQEAsiVvb28KQo9JWFiYSpcurZkzZ6pYsWK6evWqBg4cqMmTJ1MgAuCQ9u/fr8jISK1Zs0bnz59Xvnz5VLt2ba1fv16ffPKJ/P39zY7oEBITE1W4cOE014oUKSJJeuqpp8yIBBu0ZcsWhYWF6Y8//lBqaqoiIiLk5+enIUOGyN/fX82bNzc7YhopKSmqUqWK2TH+tfPnz2v48OEUh2DXBgwYICcnJw0fPlypqal65ZVXrGuHDx/Wa6+9JklatGiRypYta1ZMALBrFIgAAKb5/fffH2i/n5/fY0qSPRw6dEgjRoxQsWLFJEkFChRQ//791bBhQ509e9Z6HQDs3YwZMxQVFaWjR4/KyclJderUUf/+/RUcHKyUlBStW7fO7IjZhpOTk9kRYAOioqLUr18/vfjii2rTpo2GDBliXfPy8tKKFStsrkDUrFkzbdq0SQEBAWZH+VeqVaumQ4cO2W1+4I5+/fopZ86c+vDDD5WamqpOnTrp559/Vs+ePeXq6qrPP/9cJUqUMDsmANgtCkQAANO0atVKhmHcc5/FYpFhGMyIeEjx8fEqWrRommt3ikLx8fEUiAA4jClTpsgwDAUGBmrMmDFpTrfcvHnTxGSOKyQkJMPf6R06dEhz3TAMxcTEZGU02IDp06crJCREAwYMUGpqapoCUdmyZTV//nwT02Xs2Wef1eTJk3Xx4kUFBgbKxcUl3Z7nn3/ehGSZS0hIsH797rvvql+/fsqTJ49q1aqlggULptvv6uqadeGAh9CnTx/lzJlTo0aN0uHDh7V69Wp5e3tr7ty5cnNzMzseANg1CkQAANMsWLDgvveePHnyMSYBADiSjh07au3atdq6dasaN26s5557Ts2aNeNJ+sckNDTU7AiwcSdPnlRQUFCGa/ny5dOVK1eyONG9vf/++5L+mqe1Zs2adOu2+PBSzZo10xRkLRaLhg8fnukDWbaWH7ib3r17K1euXJo8ebL8/f01Y8YMFShQwOxYAGD3KBABAExTvXr1u65funRJ3377rVavXq29e/eqVatWWZTMcfGEN4DsYPDgwRo0aJC2bdumqKgorVu3TqtWrZK7u7vq168vwzDu6wQr7g8FItyLp6enjh49mmGR9uDBgypevLgJqe5u48aNZkd4YKNHj+ZnGxxK5cqVM3xP//bbb6pbt26aa/z9AgD/DgUiAIBNuX79utavX6+oqCht27ZNqamp8vX11cCBA82OZve4gQcgO8mRI4dq166t2rVra+TIkdq4caOioqK0atUqWSwWDRgwQC1atNBLL70kLy8vs+MCDq1p06YKCwtT6dKlrQ8IGYahQ4cOac6cOWrfvr3JCdOzx5kmLVu21J9//qnFixfr1KlTKly4sBo1aqRatWqZHQ34V7p27UrREwAeM8NisVjMDgEAyN5SU1O1ZcsWrV69Wps2bdKNGzfk4eGhCxcuaOLEiWrcuLHZEQEADuLKlStau3atoqKitHv3blksFtosAY9ZSkqK3n77bW3evFmurq5KSEiQu7u7Ll26pHr16iksLEw5c5r//GpCQoJcXFyUI0eONPN8MmNrM3x++ukndenSRbdu3ZKbm5sSEhJ0+/ZtDR061CaLcAAAwHwUiAAApomJiVFUVJTWrl2r+Ph4ubq6qlGjRmrWrJnKli2rGjVqaOHChfL39zc7KgDAjpw7d05Fixa9577Y2FitWbNGXbp0yYJUAHbs2KFt27YpPj5ehQoVUmBgoAIDA82OZeXr66slS5aoYsWK8vHxuefJBVsrLoeEhCghIUEzZ85UsWLFdPXqVQ0cOFC7du3Szp07zY4HAABsEAUiAIBp7vzhXaNGDXXp0kW1atWyPj165coV+fv7UyACADwwHx8f+fj4qF69egoODlbFihXNjgTADqxcuVL16tXTE088oZUrV95z/8svv5wFqe5fQECARowYoeeff9567dSpU2rYsKE2b96sYsWKmZgOAADYIvPPcAMAsq1y5crp0KFD2r17t5ycnBQfH6+GDRuqQIECZkcDANixb7/9Vt9//702b96sOXPmyNXVVXXq1FGDBg0UGBio/Pnzmx0RcHhnzpx5oP3Fixd/TEnu352Cz61bt1SuXDkVK1ZMbm5uJqe6f/Hx8elOT94pCsXHx1MgAgAA6VAgAgCYJjIyUn/++aciIyP1zTffaMCAAcqbN6+CgoJUv359BpICAP6VUqVKqVSpUurSpYuuXLmiH374Qd9//70++OADXb9+Xf7+/qpfv77q1aunJ5980uy4gEMKDg5+oM9yttSuLUeOHPrvf/+rWbNm2VQLPAAAgEeNFnMAAJtxZybRd999p0uXLskwDDVs2FCvvvoqbeYAAA/t9u3b+vnnn/X999/r+++/15EjR1SmTBnVr19f7733ntnxAIeyYcMG69dJSUmaOHGiSpYsqeeff17u7u66cOGC1q1bp5MnT6pv375q1qyZiWnTe+GFF/T222/rxRdfNDvKffPx8VG+fPnSFeaSkpLSXTcMQzExMVkdEQAA2BgKRAAAm5Oamqoff/xRUVFR2rhxo65fv67ixYtr48aNZkcDADiQkydPavPmzYqOjtbcuXPNjgM4rMGDBys1NVVjxoxJtzZw4EBJynDNTKtWrdLcuXM1Z84cFSlSxOw492Xq1KkPtD80NPQxJQEAAPaCAhEAwKbduHFDGzZsUFRUlGbOnGl2HAAAADygatWqacqUKapVq1a6tR9//FF9+vTR7t27TUiWuR49eui3335TYmKiypcvLw8PjzTrhmFoxowZJqUDAAB4NJhBBACwaXnz5lXTpk3VtGlTs6MAAOzQ7du3tWzZMn333Xc6d+6ckpOT06wbhpGmFRaAR8/JyUl//PFHhgWiP/74Qzly5DAh1d1du3ZNpUqVSvMaAADA0VAgAgAAAOCwxo8fr/DwcPn7+6tGjRrKlSuX2ZGAbKd58+b69NNPlZycrIYNG8rNzU2XLl3S+vXrNWvWLLVr187siOksXLjQ7AgAAACPHS3mAAAAADis2rVrq3379nrzzTfNjgJkW7du3dLEiRP11VdfpTnFlydPHrVr107vvfcexVsAAAATUCACAAAA4LCqV6+uKVOmKCAgwOwoQLaXmJioQ4cOKS4uTp6enipXrpwKFSpkdqwMTZ069Z57QkNDsyAJAADA40OBCAAAAIDD+vDDD5UjRw598MEHZkcBsqXk5GQFBgZq/PjxCg4ONjvOffP39093LSkpSampqcqbN69y586tXbt2mZAMAADg0WEGEQAAAACH9eyzz2ry5Mm6ePGiAgMD5eLikm7P888/b0IyIHvIkyeP8uXLJycnJ7OjPJDdu3enu3br1i1t375d48eP17hx40xIBQAA8GhxgggAAACAw/Lx8bnrumEY2r9/fxalAbKnCRMm6Pjx4woLCzM7yiMRERGhiIgILV682OwoAAAAD4UTRAAAAAAc1saNG82OAGR7Li4u2rNnj5o1a6Y6derIw8NDhmFY1w3DUOfOnc0L+ICKFi2qAwcOmB0DAADgoXGCCAAAAAAAPDaOdJLv5MmTGjx4sC5duqTVq1ebHQcAAOChcIIIAAAAQLZw/fp1JScnp7vu6uqa9WGAbMQeT9tUrlw5zSkn6a8ZRDdv3lTevHk1depUk5IBAAA8OhSIAAAAADgsi8Wi6dOna8mSJYqLi8twj72cXACQdbp27ZquQJQ7d24VLVpUdevWpbAMAAAcAi3mAAAAADis8PBwTZ8+Xa+//ro++eQT9ezZU05OTvrmm2908+ZN9ejRQ61btzY7JuDwkpKStHLlSsXExCgxMVGFChVS1apV9fLLLyt//vxmxwMAAMiWKBABAAAAcFhNmjTRf//7X3Xo0EF+fn5avny5/Pz8dPv2bfXs2VPly5fXu+++a3ZMwKGdPXtWnTp10unTp+Xj4yN3d3ddvHhRBw8eVIkSJbRgwQIVK1bM7JgAAADZDi3mAAAAADis06dPy9fXV05OTsqZM6cuX74sScqRI4deeeUVffDBBxSIgMdszJgxkqRvvvlGpUuXtl4/evSoevTooY8//lhTpkwxK55VcHBwurZyd7Nx48bHmAYAAODxy2F2AAAAAAB4XFxdXZWUlCRJKl68uP744w/rWnx8vG7cuGFWNCDb2LZtm9599900xSFJKl26tN5++21t3brVpGRpNWjQIM3/bt26pYSEBFWoUEF16tRRhQoVlJCQoNTUVDVs2NDsuAAAAA+NE0QAAAAAHFaVKlW0b98+BQUFqWnTppo6daouXLignDlzaunSpQoICDA7IuDwUlNTlSdPngzX8uTJo9TU1CxOlLEPPvjA+vWcOXNUrFgxzZkzRwUKFLBev3Llirp16yZ3d3czIgIAADxSnCACAAAA4LBCQ0NVtWpVSVKPHj3UqlUrRUVFacmSJQoICNDw4cPNDQhkA1WqVNGMGTN05cqVNNevXLmimTNnqkqVKiYly9zChQvVvXv3NMUhSSpYsKC6deumRYsWmZQMAADg0eEEEQAAAACHVbp0aWtbq9y5c2vw4MEaPHiwyamA7KV///7q2LGjgoKCVLNmTXl4eOjixYvavn27cuXKpdGjR5sdMZ3ExMR0Ba07rly5Yp1nBgAAYM84QQQAAAAAAB6bcuXKKTIyUm3atNH58+e1Y8cOnT9/Xm3bttXXX3+tcuXKmR0xnZo1a2rChAnatWtXmus7d+7UxIkTVbNmTZOSAQAAPDqGxWKxmB0CAAAAAB6VHj16aMCAAfL29laPHj3uutcwDM2YMSOLkgGwF+fPn1fPnj31xx9/qGDBgnriiScUHx+vK1euyNfXVzNmzFCRIkXMjgkAAPBQaDEHAAAAwKFcu3bNOvT+2rVrJqcBcMeVK1d08OBBxcXFqXDhwipXrpwKFixodqwMFS5cWMuXL9cPP/ygX3/9VXFxcfL09FTFihVVt25ds+MBAAA8EpwgAgAAAAAAj83t27c1efJkLVy4UNevX7dez5cvnzp27Kh33nlHTk5OJiYEAADInjhBBAAAAAAAHptx48Zp0aJF6t69uxo1aiQPDw9duHBBa9eu1ezZs3Xz5k0NGDDA7JiKj4/XE0888cD/XEJCglxdXR99IAAAgMeME0QAAAAAHMrUqVMfaH9oaOhjSgJAkmrUqKHXXntN3bt3T7f22Wef6fPPP9fOnTtNSJZWlSpV1KpVK7Vq1Uo+Pj533ZuUlKT169drwYIFatiwoXr27JlFKQEAAB4dThABAAAAcCjz589P8/rmzZu6ceOGJClPnjxKTk6WJOXNm1e5c+emQAQ8ZqmpqfLz88twzc/PzzozzGxfffWVpkyZopdfflklS5ZU5cqVVb58eT3xxBPKnTu3rly5olOnTun333/Xzz//rIIFC6pbt25q166d2dEBAAD+FU4QAQAAAHBY+/bt0zvvvKNevXqpUaNGKlCggK5evaq1a9dqxowZ+uSTT1SxYkWzYwIO7YMPPpDFYtHo0aPTrQ0cOFCSNGbMmKyOlamTJ09q1apV2r59u3777TelpKRY14oXL67KlSvrhRdeUP369ZUzJ8/dAgAA+0WBCAAAAIDDatu2rVq0aKFXXnkl3doXX3yhlStXKiIiwoRkgGNbt26d9eukpCR98sknKlmypBo2bCh3d3ddvHhRGzZs0IkTJ9SnTx+1aNHCvLD3kJiYqOTkZLm6uip37txmxwEAAHhkKBABAAAAcFgVK1bU1KlTVbdu3XRrP/zwg3r37q29e/eakAxwbPea4fN3hmFo//79jzENAAAAMsJZaAAAAAAOq0SJElq8eLHq1KkjwzCs1y0Wi7788ksVL17cxHSA49q4caPZEQAAAHAPnCACAAAA4LA2bNigt99+W8WLF1f9+vWtra02b96sM2fOaMqUKWrYsKHZMQEAAAAgy1EgAgAAAODQ9u/fr1mzZunXX39VXFycPD09VbFiRXXv3l2+vr5mxwMAAAAAU1AgAgAAAAAAAAAAyGZymB0AAAAAAAAAAAAAWSun2QEAAAAA4HG5ffu2li1bpu+++07nzp1TcnJymnXDMLRhwwaT0gGwVT/88IMuX76spk2bSpLOnj2rQYMG6ciRIwoMDNTQoUOVP39+k1MCAAA8HApEAAAAABzW+PHjFR4eLn9/f9WoUUO5cuUyOxIAO/Dpp5/qxRdftL4eOXKkjhw5oiZNmigyMlKffvqpBgwYYGJCAACAh0eBCAAAAIDDWr16tXr37q0333zT7CgAMnDmzBm5uLioQIECZkdJ4/jx4/Lx8ZEkXb16VVu2bNGECRP0wgsvqGzZspo6dSoFIgAAYPeYQQQAAADAYaWkpKhKlSpmxwCQieDgYNWqVUsffvihzp07Z3Ycq1u3bilHjr9umezevVuSVKdOHUmSl5eXLly4YFo2AACAR4UCEQAAAACH1axZM23atMnsGAAy8eabb6pDhw46cOCAdd6PLShdurQiIyOVlJSkJUuWqHLlynJ2dpYkxcXFydXV1dyAAAAAjwAt5gAAAAA4rGeffVaTJ0/WxYsXFRgYKBcXl3R7nn/+eROSAZCk3r17W7++efOmiUnS6tWrl95++22tWrVKTk5OmjlzpnVty5YtqlChgonpAAAAHg3DYrFYzA4BAAAAAI/DnRkimTEMQ/v378+iNADsycmTJ/XHH3+ofPny8vb2tl5fsmSJypcvr0qVKpmWDQAA4FGgQAQAAADAYZ0+ffqee0qUKJEFSYDsLTY2VvPmzdPPP/+shIQEubq6qmrVqgoJCVGRIkXMjgcAAJAtUSACAAAAAACPzaFDh9SxY0fdvHlTtWrVkru7uy5evKht27YpV65cWrRokcqWLWt2zHQuXbqkzz//XPv27dO5c+c0depUlS1bVvPnz9ezzz7LCSIAAGD3mEEEAAAAAAAem7Fjx8rLy0uff/65ChUqZL2emJiorl27auzYsZozZ46JCdP7/fff1blzZxUsWFD+/v7atWuXUlJSJP3/aajJkyebGxIAAOAhUSACAAAA4FAqV64swzDua69hGIqJiXnMiYDs7eeff9b48ePTFIckqVChQurZs6f69etnUrLMjRkzRpUqVdL06dNlGIa+/vpr69qzzz6rb7/91sR0AAAAjwYFIgAAAAAOpWvXrvddIALw+Dk5OVlP3/xTSkqKnJycsjjRve3bt09hYWHKlSuXUlNT06y5ubnp4sWLJiUDAAB4dCgQAQAAAHAovXv3NjsCgL8JDAzU5MmT5evrq1KlSlmvHzt2TFOmTFFgYKCJ6TKWL18+Xb16NcO1M2fOyNXVNWsDAQAAPAYUiAAAAAAAwGMzYMAAdezYUU2aNFHZsmXl4eGhixcv6tChQypWrJgGDhxodsR0ateurRkzZiggIEAuLi6S/mpJeePGDS1YsEBBQUEmJwQAAHh4hsVisZgdAgAAAAAAOK5r165p+fLliomJ0eXLl1WoUCFVrVpVLVu2lLOzs9nxJEnXr19Xvnz5JEmxsbFq3769rl69qho1amjDhg2qU6eO/vzzTxmGoaVLl8rd3d3kxAAAAA+HAhEAAAAAAMj26tevryFDhig4OFiSdPnyZc2bN0/btm1TfHy8ChUqpICAAHXp0oUWcwAAwCFQIAIAAAAAANneW2+9pXXr1um5557TkCFDVLhwYbMjAQAAPFYUiAAAAAAAwCMVHBwswzDua69hGNqwYcNjTnR/fvjhB3300Ue6ePGi3nnnHXXs2PG+/z0AAADsDQUiAAAAAADwSI0aNeqehZWDBw9q586dMgxD+/fvz6Jk95aSkqIZM2Zo7ty5KleunLp06aJcuXKl2/f888+bkA4AAODRoUAEAAAAwGHdvn1by5Yt03fffadz584pOTk5zbotnVwAsov9+/dr2rRp2rhxo7y8vNS9e3e1bt3a7FjpzJgxQ1OmTMlwzdaKWgAAAP9GTrMDAAAAAMDjMn78eIWHh8vf3181atTI8BQAgKyxb98+TZs2TdHR0fL29tbHH3+sZs2aKUeOHGZHS+PUqVMaOXKktmzZopYtW6p79+787AAAAA6JE0QAAAAAHFbt2rXVvn17vfnmm2ZHAbKtPXv2aOrUqdq6dav+85//qGfPnnrxxRdtbrbPrVu3NGfOHM2cOVPFihXTyJEj5e/vb3YsAACAx4YTRAAAAAAcVkpKiqpUqWJ2DCBb2r17t6ZPn67t27erQoUK+vTTT/Xcc8+ZHStTzZs316lTp9S9e3e98cYbnBoCAAAOjwIRAAAAAIfVrFkzbdq0SQEBAWZHAbKVTp066aefflLFihX12WefKSgoyOxI9+Th4aFp06apVKlSD/zPnjlzRoULF1bOnNxmAQAA9oMWcwAAAAAcVmRkpCZPnqxKlSopMDBQLi4u6fY8//zzJiQDHJuPj48kKV++fPdsJWcYhmJiYrIi1mORmpqqp59+WhEREfLz8zM7DgAAwH3j0RYAAAAADuv999+X9NfT/WvWrEm3bhiG9u/fn9WxAIcXGhpqdoQsxbO3AADAHlEgAgAAAOCwNm7caHYEIFt6mAIR7doAAACyBp+2AAAAADisEiVKmB0BwANITU1VgwYNaNcGAACQBSgQAQAAAMgWrl+/ruTk5HTXXV1dsz4MgEzRrg0AACBrUCACAAAA4LAsFoumT5+uJUuWKC4uLsM9zCACAAAAkB3lMDsAAAAAADwu8+bN07x589ShQwdZLBb16NFDb775pry9vVWiRAl9+OGHZkcEAAAAAFNQIAIAAADgsCIiItS7d2+9/vrrkqSGDRsqNDRU33zzjcqUKaMTJ06YnBCAvTMMQ/7+/nJ2djY7CgAAwAOhQAQAAADAYZ0+fVq+vr5ycnJSzpw5dfnyZUlSjhw59Morr2jFihUmJwRgiw4cOKDo6OgM16Kjo3XgwAHr6xw5cmjhwoXy9vbOonQAAACPBgUiAAAAAA7L1dVVSUlJkqTixYvrjz/+sK7Fx8frxo0bZkUDYMNGjx6tX375JcO1X3/9VWPHjs3iRAAAAI9eTrMDAAAAAMDjUqVKFe3bt09BQUFq2rSppk6dqgsXLihnzpxaunSpAgICzI4I4G9spV3bgQMHrK0p/6lSpUpatGhRFicCAAB49CgQAQAAAHBYoaGhio2NlST16NFDly9fVlRUlJKTkxUYGKghQ4aYnBBwfAcOHFBsbKyCgoLSrUVHR6tIkSLy8fGR9P/t2syWkpKimzdvZrqWnJycxYkAAAAePcNisVjMDgEAAAAAABzTq6++qipVquidd95JtxYWFqaff/5Z4eHhWR/sLtq3by9PT099+umn6dbeeustnT9/XosXLzYhGQAAwKPDDCIAAAAADuvq1as6f/58hmvnz5/XtWvXsjgRkP0cOHBAVapUyXCtUqVKaWaD2Yo33nhD69evV/fu3bV27Vr9/PPPWrt2rbp3764NGzaoR48eZkcEAAB4aLSYAwAAAOCwBg8eLGdnZ40aNSrdWlhYmJKSkjRx4kQTkgHZhz22a6tXr54mTpyocePG6Z133pFhGLJYLCpatKgmTJigevXqmR0RAADgoVEgAgAAAOCwfvrpJw0bNizDtaCgII0YMSKLEwHZj6+vr77++ms1aNAg3drXX39tnT9kaxo3bqzGjRvr6NGjSkhIkKurq0qXLm12LAAAgEeGAhEAAAAAh5WYmChnZ+cM1/Lly6eEhISsDQRkQ2+88YZ69uyp7t27q2XLlipcuLDOnz+vFStW6Mcff9T06dPNjnhXFIUAAICjokAEAAAAwGF5eXlp27ZtCgwMTLe2fft2lShRwoRUQPZiL+3awsPD1axZM3l4eCg8PPyuew3DUOfOnbMmGAAAwGNiWCwWi9khAAAAAOBxCA8P18SJE/X222+rVatWcnNz06VLl7RixQpNnjxZ7777rrp27Wp2TCDbsOV2bT4+Plq6dKkqVqx4z7Z3hmFo//79WZQMAADg8aBABAAAAMBhWSwWjRw5UosXL5YkOTk5KTU1VZLUrl27TOcTAQAAAICjo0AEAAAAwOEdO3ZMO3bssJ5cqFmzpry9vc2OBTgse2/Xtnv3blWoUCHDGWZJSUn6/fff5e/vb0IyAACAR4cCEQAAAAAAeKTsvV2br6+vlixZoooVK6Zb++2339SmTRubywwAAPCgcpodAAAAAAAepd9//11lypRR3rx59fvvv99zv5+fXxakArKXAwcOZPi1vbjbs7TXr19X3rx5szANAADA40GBCAAAAIBDadWqlfXkQqtWrWQYRob7LBaLTZ5cAByNvbRr27Nnj3755Rfr69WrVysmJibNnuTkZG3cuFGlS5fO6ngAAACPHC3mAAAAADiUXbt2yc/PT87Oztq1a9c991evXj0LUgHZl720a5s6daqmTp0q6a+2dxndLsmZM6fKlCmjYcOGqUqVKlkdEQAA4JHiBBEAAAAAh3Kn4JOSkqKEhAT5+vrKy8vL5FRA9mUv7dpCQ0MVGhoqKe0MJQAAAEdFgQgAAACAQ8qdO7fee+89zZkzhwIRkMXsvV2bPc5NAgAAeFAUiAAAAAA4rNKlS+vs2bNmxwCynR9//DFNu7aFCxem2/P3dm226ObNm4qIiNC+fft07tw5DR06VN7e3lqzZo3Kly+vMmXKmB0RAADgoTCDCAAAAIDDio6O1ujRozVhwgQ988wzZscBsiV7bNd28uRJde7cWfHx8apQoYJiYmIUEREhPz8/jRgxQjdu3NCYMWPMjgkAAPBQOEEEAAAAwGFNmDBBCQkJatu2rVxdXeXh4ZFm3TAMRUZGmpQOyB7ssV3bRx99JDc3Ny1btkwuLi56+umnrWv+/v6aNGmSiekAAAAeDQpEAAAAAByWn59fmhu7AMxhb+3adu3apYkTJ8rNzU2pqalp1jw9PRUXF2dSMgAAgEeHAhEAAAAAh/Xxxx+bHQHI9jJq13bt2jVJ0u7du7Vlyxaba9fm5OSkzDryX7hwQfnz58/iRAAAAI9eDrMDAAAAAEBWsFgsio2N1a1bt8yOAmQrd9q1bdiwQfPmzUtTePH399fu3btNTJcxf39/hYeH6+bNm9ZrhmHIYrFo6dKlCggIMDEdAADAo0GBCAAAAIBD27Jli9q2batnnnlG9erV08GDByVJQ4YMYf4QkAV27dqlnj17ys3NTYZhpFmz1XZtffv21aFDh9SkSRONHz9ehmHoiy++0H//+1/98ccfeuedd8yOCAAA8NAoEAEAAABwWFFRUerevbuefPJJDRs2LM3JBS8vL61YscLEdED2YI/t2sqUKaPly5ercuXKioqKkpOTk77//nuVLFlSy5YtU8mSJc2OCAAA8NCYQQQAAADAYU2fPl0hISEaMGCAUlNTNWTIEOta2bJlNX/+fBPTAdnDnXZtdevWVY4cfz2nag/t2ry8vDR27FizYwAAADw2FIgAAAAAOKyTJ08qKCgow7V8+fLpypUrWZwIyH769u2r9u3bq0mTJgoODra2azt8+LCOHz+uZcuWmR3xrs6dO6fz58+rSJEiKlKkiNlxAAAAHhlazAEAAABwWJ6enjp69GiGawcPHlTx4sWzOBGQ/dhru7YlS5aoXr16ql+/vtq2bat69eopKChIixcvNjsaAADAI8EJIgAAAAAOq2nTpgoLC1Pp0qVVvXp1SX+1tjp06JDmzJmj9u3bm5wQyB7srV3bZ599pk8++UQvvfSSGjVqJA8PD124cEFr167ViBEjlJiYqDfeeMPsmAAAAA/FsGQ2KRIAAAAA7FxKSorefvttbd68Wa6urkpISJC7u7suXbqkevXqKSwsTDlz8twckFXspV1b7dq19dJLL6lfv37p1saOHavVq1frxx9/NCEZAADAo8NfQgAAAAAcVu7cuTVjxgzt2LFD27ZtU3x8vAoVKqTAwEAFBgaaHQ/INpYsWaIZM2YoNjZWFotFhmGocOHC6tmzp9q1a2d2vHSuXbuW6c+I2rVr02YOAAA4BApEAAAAABxezZo1VbNmTbNjANmSPbZrq127trZt26ZatWqlW9u6dasCAgJMSAUAAPBo0WIOAAAAgMO7evWqzp07p+Tk5HRrfn5+JiQCsg97adf2+++/W7++cOGChg0bpoCAADVo0EDu7u66ePGiNmzYoB07dmjEiBEKCgoyMS0AAMDDo0AEAAAAwGHFxsZq0KBB2rZtW7q1O22u9u/fb0IyIPuoXLmypk6dmulpnNDQUP3yyy8mJEvLx8dHhmFYX//9dolhGOle87MDAADYO1rMAQAAAHBY/fv317FjxzR48GB5e3srV65cZkcCsh17ade2YMECsyMAAABkKU4QAQAAAHBYlStX1vjx49WwYUOzowDZCu3aAAAAbB8FIgAAAAAOq0WLFurRo4deeOEFs6MA2Qrt2gAAAGwfLeYAAAAAOKz+/fvr448/Vvny5VWqVCmz4wDZhiO0a1u1apWWLFmiY8eOKTk5Od36zz//bEIqAACAR4cCEQAAAACHFRAQoMDAQDVp0kSFCxdWwYIF06wbhqHIyEiT0gGOq3r16mZHeChff/21hgwZopdfflm//PKLWrVqpdu3b2vTpk1ycXHRSy+9ZHZEAACAh0aBCAAAAIDDGj9+vMLDw+Xn5ydvb2/lzp3b7EgA7EB4eLh69eql7t27a+nSpXrllVfk5+enq1ev6rXXXpOzs7PZEQEAAB4aBSIAAAAADmvp0qV666231KtXL7OjANmavbVrO378uKpUqSInJyc5OTnp6tWrkqQCBQqoW7duGj16tLp06WJySgAAgIeTw+wAAAAAAPC45MqVS88++6zZMYBs7U67trJlyyo+Pl4vvviiGjVqpFy5csnd3V1du3Y1O2I6BQoUUEpKiiSpSJEi+vPPP61rqampio+PNysaAADAI8MJIgAAAAAOq02bNoqMjFStWrXMjgJkW/bYru3pp5/WwYMHVadOHQUHB2vatGmyWCzKmTOnZs2apUqVKpkdEQAA4KFRIAIAAADgsAoUKKBdu3apXbt2CggIkIuLS5p1wzDUuXNnc8IB2YQ9tmt74403dObMGUnSW2+9pdOnT2v06NG6ffu2nnnmGY0cOdLkhAAAAA+PAhEAAAAAhzVx4kRJ0tmzZ7Vnz5506xSIgMcvo3ZtNWrUkGS77doqVapkPSXk4uKiGTNmKCUlRSkpKSpQoIC54QAAAB4RCkQAAAAAHNaBAwfMjgBke47Sri137tzKnTu32TEAAAAeGcNisVjMDgEAAAAAWe3q1atat26dWrZsaXYUwKHt2bNHZ86cUePGjXX58mX1799f0dHR1nZtkyZNkpeXl9kx9dFHH6lr164qXry4Pvroo3vuHzx4cBakAgAAeHwoEAEAAADINm7evKno6GhFRkYqOjpaKSkp2r9/v9mxgGzHFtu1BQcHa/r06fLx8VFwcPBd9xqGoY0bN2ZRMgAAgMeDAhEAAAAAh7dz506tXr1a69ev1+XLl+Xu7q6mTZuqRYsW8vHxMTseAAAAAGQ5CkQAAAAAHNL+/fsVGRmpNWvW6Pz588qXL59q166t9evXa8GCBfL39zc7IuCwaNcGAABg+3KaHQAAAAAAHqUZM2YoKipKR48elZOTk+rUqaP+/fsrODhYKSkpWrdundkRAYe3adMmtW7dWsWLF9emTZvuutcwDJsqEJ06dUrLli3Tnj17dOHCBRmGIQ8PD1WpUsX67wQAAOAIOEEEAAAAwKH4+PjIMAwFBgZqzJgxKly4sHXtypUr8vf318KFCzlBBCCd1atX64MPPlBKSoqKFCmiYsWKyWKx6Ny5c4qNjVWePHk0ZswYNW7c2OyoAAAAD40TRAAAAAAcSseOHbV27Vpt3bpVjRs31nPPPadmzZopICDA7GgAbNiRI0c0aNAgVa1aVUOGDFGZMmXSrB8+fFgffvihBgwYIF9fX5UqVcqkpAAAAI8GJ4gAAAAAOJzbt29r27ZtioqK0vr165WUlCR3d3fVr19fERERWrhwoapVq2Z2TMDh2VO7tg8//FDbt2/XqlWrlDt37gz3pKSkqEWLFgoMDLSptngAAAD/BgUiAAAAAA4tJSVFGzduVFRUlH744QfdvHlTTz75pFq0aKGXXnpJXl5eZkcEHJK9tWtr1qyZWrVqpc6dO99137x587RixQpFRkZmTTAAAIDHhAIRAAAAgGzjypUrWrt2raKiorR7925ZLBbt37/f7FiAwzly5IhatGhxz3Zte/bs0ddff20T7dqqVaumsLCwe7aj3L59u0JDQxUTE5NFyQAAAB6PHGYHAAAAAICsUrBgQbVp00bz58/X5s2b9f7776dZX7VqlRITE01KBziOL7/8Ul5eXpo1a1a64pAklS1bVnPmzNGTTz6pL774woSE6V27dk3Ozs733Jc/f34lJSVlQSIAAIDHiwIRAAAAgGypSJEi6tKli/V1amqqBg4cqFOnTpmYCnAMu3btUtu2bTOd5SNJuXPnVtu2bbVr164sTJY5GqwAAIDsJqfZAQAAAADAVnCDGHg0zp49q/Lly99zX/ny5XX69OksSHR/QkJCZBjGXffwcwIAADgKCkQAAAAAAOCRssd2baGhoWZHAAAAyFIUiAAAAAAAwCNlj6dsKBABAIDshgIRAAAAAAB45GjXBgAAYNsoEAEAAAAAgEeK0zgAAAC2jwIRAAAAAAB4pCgQAQAA2L4cZgcAAAAAAFuQI0cOhYaGqnDhwmZHAQAAAIDHzrDQ8BcAAACAA7t586YiIiK0b98+nTt3TkOHDpW3t7fWrFmj8uXLq0yZMmZHBAAAAIAsxwkiAAAAAA7r5MmTeuGFFzR+/HidOHFC27dv17Vr1yRJu3fv1pw5c0xOCAAAAADmoEAEAAAAwGF99NFHcnNz04YNGzRv3jz9vYGCv7+/du/ebWI6AAAAADAPBSIAAAAADmvXrl3q2bOn3NzcZBhGmjVPT0/FxcWZlAwAAAAAzEWBCAAAAIDDcnJyUmZjVy9cuKD8+fNncSIAAAAAsA0UiAAAAAA4LH9/f4WHh+vmzZvWa4ZhyGKxaOnSpQoICDAxHQAAAACYx7Bk9jgdAAAAANi5I0eOqH379nJ1dVVwcLDmz5+vli1b6vDhwzp+/LiWLVumkiVLmh0TAAAAALIcBSIAAAAADu3kyZOaOnWqtm7dqoSEBBUqVEgBAQF66623KA4BAAAAyLYoEAEAAAAAAAAAAGQzzCACAAAA4LCuXr2q8+fPZ7h2/vx5Xbt2LYsTAQAAAIBtoEAEAAAAwGENHjxYU6ZMyXAtLCxMQ4cOzeJEAAAAAGAbKBABAAAAcFg//fST6tWrl+FaUFCQdu3albWBAAAAAMBGUCACAAAA4LASExPl7Oyc4Vq+fPmUkJCQtYEAAAAAwEZQIAIAAADgsLy8vLRt27YM17Zv364SJUpkcSIAAAAAsA0UiAAAAAA4rDZt2mjevHmaPXu2Ll26JEm6dOmS5syZo3nz5qlt27YmJwQAAAAAcxgWi8VidggAAAAAeBwsFotGjhypxYsXS5KcnJyUmpoqSWrXrp2GDRtmZjwAAAAAMA0FIgAAAAAO79ixY9qxY4cSEhLk6uqqmjVrytvb2+xYAAAAAGAaCkQAAAAAAAAAAADZTE6zAwAAAADA45acnKyTJ08qOTk53Zqfn58JiQAAAADAXBSIAAAAADislJQUDR8+XJGRkdbZQ/+0f//+LE4FAAAAAObLYXYAAAAAAHhcpk2bpq1bt+rjjz+WxWLRkCFDNGbMGAUEBKhEiRKaOXOm2REBAAAAwBQUiAAAAAA4rLVr1yo0NFQvvviiJKlixYpq0aKFPv/8c1WtWlWbNm0yOSEAAAAAmIMCEQAAAACHde7cOZUqVUpOTk7KkyePLl++bF1r3ry51q5da2I6AAAAADAPBSIAAAAADsvT09NaFHryySe1c+dO69qxY8dMSgUAAAAA5stpdgAAAAAAeFyqV6+un376ScHBwWrTpo3GjRuno0ePKleuXNqwYYOaNm1qdkQAAAAAMIVhsVgsZocAAAAAgMchLi5O8fHxKleunCRp3rx5Wrt2rZKTkxUYGKg333xT+fPnNzklAAAAAGQ9CkQAAAAAsq2rV6+qQIECZscAAAAAgCzHDCIAAAAA2c7Fixc1adIk1a9f3+woAAAAAGAKZhABAAAAcDh79uzRypUrdfbsWXl5ealTp07y9vbWhQsXNG3aNK1YsUK3bt1S48aNzY4KAAAAAKagxRwAAAAAhxIdHa2ePXvKYrHIzc1NiYmJcnZ21rhx49S/f39dvnxZTZo0Ua9evVSqVCmz4wIAAACAKSgQAQAAAHAor7zyipKTkzV9+nQVKVJE165d0+DBg7V+/Xp5enoqLCxMTz/9tNkxAQAAAMBUzCACAAAA4FCOHDminj17qkiRIpIkZ2dn9evXT7du3dJ7771HcQgAAAAARIEIAAAAgINJTExU4cKF01y7Uyx66qmnzIgEAAAAADaHAhEAAACAbMPJycnsCAAAAABgE5hBBAAAAMCh+Pj4KF++fDIMI831pKSkdNcNw1BMTExWRwQAAAAA0+U0OwAAAAAAPEqhoaFmRwAAAAAAm8cJIgAAAAAAAAAAgGyGGUQAAAAAAAAAAADZDAUiAAAAAAAAAACAbIYCEQAAAAAAAAAAQDZDgQgAAAAAAAAAACCboUAEAAAAAAAAAACQzVAgAgAAAAAAAAAAyGYoEAEAAAAAAAAAAGQzFIgAAAAAAAAAAACyGQpEAAAAAAAAAAAA2cz/AWibGpq6mrAUAAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
],
"source": [
"data_corr = t_df.corr()\n",
"mask = np.triu(np.ones_like(t_df.corr(), dtype=bool))\n",
"\n",
"corr_ft = plt.figure(figsize= (19, 10))\n",
"corr_ft = sns.heatmap(data_corr, mask=mask,vmin= -1, vmax = 1, annot=True, linewidths= 0.3, cmap= \"BrBG\")\n",
"corr_ft.set_title(\"The Pearson Correlation between Features\",\n",
" fontsize= 15,\n",
" pad= 12)\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "a5f40a0a",
"metadata": {
"id": "a5f40a0a"
},
"source": [
"#### Observations: \n",
"1. There seems multicollinearity exists among some of the features like `PhysicalHealth, MentalHealth, DiffWalking` with `GenHealth`, as if teh adults are suffering with physical illness or mental illness for many days their genHealth will be poor and adults find with difficult with Walking are not very good in their health condition.\n",
"2. `DiffWalking` also has significant negative correlation with `PhysicalAcitivity`, as expected adults who are regularly doing physical activity wont find any difficulty in walking as they will be active.\n",
"3. Some of our Race features are correlated with other Race features, so lets consider only Race_white as it has high weightage compare to other race features with Target.\n",
"4. `Diabetic_Yes` and `Diabetic_No` are highly negatively correlated as both are very realted, so lets consider `Diabetic_Yes`. `Diabetic_Yes` is again correlated with GenHealth, so lets confirm the multicollinearity using VIF or OLS methods."
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "376801d5",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 582
},
"id": "376801d5",
"outputId": "24834c6f-e116-4abc-ddbc-fd8d11fe9527"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Features FeatureWeights\n",
"0 AgeCategory 0.233432\n",
"1 DiffWalking 0.201258\n",
"2 Stroke 0.196835\n",
"3 Diabetic_Yes 0.183072\n",
"4 KidneyDisease 0.145197\n",
"5 PhysicalHealth 0.136415\n",
"6 Smoking 0.107764\n",
"7 SkinCancer 0.093317\n",
"8 Is_Male 0.070040\n",
"9 BMI 0.052175\n",
"10 Asthma 0.041444\n",
"11 Race_White 0.040121\n",
"12 Diabetic_No, borderline diabetes 0.016182\n",
"13 SleepTime -0.003802\n",
"14 Diabetic_Yes (during pregnancy) -0.013930\n",
"15 AlcoholDrinking -0.032080\n",
"16 GenHealth -0.243182"
],
"text/html": [
"\n",
"
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Features
\n",
"
FeatureWeights
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
AgeCategory
\n",
"
0.233432
\n",
"
\n",
"
\n",
"
1
\n",
"
DiffWalking
\n",
"
0.201258
\n",
"
\n",
"
\n",
"
2
\n",
"
Stroke
\n",
"
0.196835
\n",
"
\n",
"
\n",
"
3
\n",
"
Diabetic_Yes
\n",
"
0.183072
\n",
"
\n",
"
\n",
"
4
\n",
"
KidneyDisease
\n",
"
0.145197
\n",
"
\n",
"
\n",
"
5
\n",
"
PhysicalHealth
\n",
"
0.136415
\n",
"
\n",
"
\n",
"
6
\n",
"
Smoking
\n",
"
0.107764
\n",
"
\n",
"
\n",
"
7
\n",
"
SkinCancer
\n",
"
0.093317
\n",
"
\n",
"
\n",
"
8
\n",
"
Is_Male
\n",
"
0.070040
\n",
"
\n",
"
\n",
"
9
\n",
"
BMI
\n",
"
0.052175
\n",
"
\n",
"
\n",
"
10
\n",
"
Asthma
\n",
"
0.041444
\n",
"
\n",
"
\n",
"
11
\n",
"
Race_White
\n",
"
0.040121
\n",
"
\n",
"
\n",
"
12
\n",
"
Diabetic_No, borderline diabetes
\n",
"
0.016182
\n",
"
\n",
"
\n",
"
13
\n",
"
SleepTime
\n",
"
-0.003802
\n",
"
\n",
"
\n",
"
14
\n",
"
Diabetic_Yes (during pregnancy)
\n",
"
-0.013930
\n",
"
\n",
"
\n",
"
15
\n",
"
AlcoholDrinking
\n",
"
-0.032080
\n",
"
\n",
"
\n",
"
16
\n",
"
GenHealth
\n",
"
-0.243182
\n",
"
\n",
" \n",
"
\n",
"
\n",
" \n",
" \n",
" \n",
"\n",
" \n",
"
\n",
"
\n",
" "
]
},
"metadata": {},
"execution_count": 41
}
],
"source": [
"# Selecting independent features and computing their feature weights using Pearson correlation\n",
"drop_feat = ['MentalHealth', 'PhysicalActivity', 'Race_Black', 'Race_Asian',\n",
" \"Race_American Indian/Alaskan Native\", 'Race_Other', 'Race_Hispanic', 'Diabetic_No']\n",
"\n",
"t_df_imp = t_df.drop(drop_feat,axis=1).copy()\n",
"\n",
"data_corr = t_df_imp.corr()\n",
"\n",
"fwt = pd.DataFrame(data_corr['HeartDisease'].values, columns=['FeatureWeights'])\n",
"# fwt['Features'] = data_corr['HeartDisease'].index\n",
"fwt.insert(loc=0, column='Features', value=data_corr['HeartDisease'].index)\n",
"fwt = fwt.loc[1:,:]\n",
"fwt = fwt.sort_values('FeatureWeights', ascending = False).reset_index(drop=True)\n",
"fwt"
]
},
{
"cell_type": "markdown",
"id": "4002906a",
"metadata": {
"id": "4002906a"
},
"source": [
"### Feature Importance using Pearson Correlation:\n",
"\n",
"* AgeCategory, Stroke, Diabetic_yes have very positive correlation with Target where as AlcholDrinking and GenHealth are very negatively correlated with Target.\n",
"* List of Important Features --> `['AgeCategory', 'Stroke', 'Diabetic_Yes', 'KidneyDisease', 'Smoking', 'SkinCancer', 'is_Male', 'BMI', 'Asthma', 'Race_White', 'Diabetic_No, borderline diabetes', 'SleepTime', 'Diabetic_Yes (during pregnancy)', 'AlcoholDrinking', 'GenHealth']`"
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "09af3257",
"metadata": {
"scrolled": false,
"colab": {
"base_uri": "https://localhost:8080/",
"height": 973
},
"id": "09af3257",
"outputId": "0506609b-4c9e-4ba8-896e-32cf1c7865d2"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
"
]
},
"metadata": {},
"execution_count": 64
}
]
},
{
"cell_type": "code",
"source": [
"print(f\"Model Score on Training Data: {forest.score(X_train,y_train)}\")\n",
"print(f\"Model Score on Test Data: {forest.score(X_test,y_test)}\")\n",
"print(f\"Model Score on Validation Data: {forest.score(X_val, y_val)}\")\n",
"print(\"--------------------------------------------------------------\")\n",
"print(f\"Model AUC Score on Training Data: {roc_auc_score(y_train, forest.predict_proba(X_train)[:,1])}\")\n",
"print(f\"Model AUC Score on Test Data: {roc_auc_score(y_test, forest.predict_proba(X_test)[:,1])}\")\n",
"print(f\"Model AUC Score on Validation Data: {roc_auc_score(y_val, forest.predict_proba(X_val)[:,1])}\")"
],
"metadata": {
"id": "jqEJjQZlQS13",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "cd8f5de1-d104-4acd-86fe-51f1e23a8a36"
},
"id": "jqEJjQZlQS13",
"execution_count": 65,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Model Score on Training Data: 0.7706798091214895\n",
"Model Score on Test Data: 0.7682013519213013\n",
"Model Score on Validation Data: 0.7661731573865465\n",
"--------------------------------------------------------------\n",
"Model AUC Score on Training Data: 0.8495585317123676\n",
"Model AUC Score on Test Data: 0.8466466529846044\n",
"Model AUC Score on Validation Data: 0.8449129812668792\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"#### Model Performance is very stable across all the sets (`Train, Test and Valiadtion` sets)\n",
"* This is the best model so far compare to Logistic as we can see the RandomForest model AUC score is ~85% where as Logistic model AUC score is just 83%.\n",
"* Morever RandomForest model performance is pretty stable compare to Logistic model on every dataset like (Train, Test and Validation).\n",
"* Based on the above performance, selecting the RandomForestClassifier Model."
],
"metadata": {
"id": "OfpnRrLCSsfd"
},
"id": "OfpnRrLCSsfd"
},
{
"cell_type": "code",
"source": [
"######Tuning Random forest with different parameters\n",
"forest2 = RandomForestClassifier(n_estimators=50, max_depth=20, max_features='sqrt',criterion='entropy',random_state=0)\n",
"forest2.fit(X_train,y_train)\n",
"print(f\"Model Score on Training Data: {forest2.score(X_train,y_train)}\")\n",
"print(f\"Model Score on Test Data: {forest2.score(X_test,y_test)}\")\n",
"print(f\"Model Score on Validation Data: {forest2.score(X_val, y_val)}\")\n",
"print(\"--------------------------------------------------------------\")\n",
"print(f\"Model AUC Score on Training Data: {roc_auc_score(y_train, forest2.predict_proba(X_train)[:,1])}\")\n",
"print(f\"Model AUC Score on Test Data: {roc_auc_score(y_test, forest2.predict_proba(X_test)[:,1])}\")\n",
"print(f\"Model AUC Score on Validation Data: {roc_auc_score(y_val, forest2.predict_proba(X_val)[:,1])}\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ZeosVU6d3IJ7",
"outputId": "52948025-df6b-4905-fe70-6e2bc25c172c"
},
"id": "ZeosVU6d3IJ7",
"execution_count": 66,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Model Score on Training Data: 0.8140543802594964\n",
"Model Score on Test Data: 0.8018056014681911\n",
"Model Score on Validation Data: 0.8004103636948825\n",
"--------------------------------------------------------------\n",
"Model AUC Score on Training Data: 0.8995244493825688\n",
"Model AUC Score on Test Data: 0.8836961527913156\n",
"Model AUC Score on Validation Data: 0.8833437815378364\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"sorted_idx = forest.feature_importances_.argsort()\n",
"features = X_train.columns.tolist()\n",
"result = sorted(zip(features, forest.feature_importances_), key = lambda x: x[1], reverse=False)\n",
"plt.barh([x[0] for x in result], [x[1] for x in result])"
],
"metadata": {
"id": "64zvic4EQSzB",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 452
},
"outputId": "ae3062d9-704d-4535-c22e-f350372fc9c3"
},
"id": "64zvic4EQSzB",
"execution_count": 67,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
""
]
},
"metadata": {},
"execution_count": 67
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"