SmartSearch / app.py
abhiixxhek's picture
Create app.py
9eb86cf verified
import requests
from bs4 import BeautifulSoup
import pandas as pd
import gradio as gr
from groq import Groq
# Step 1: Scrape free courses from Analytics Vidhya
def fetch_free_courses():
url = "https://courses.analyticsvidhya.com/pages/all-free-courses"
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
courses_data = []
# Extract course details
for card in soup.select('header.course-card__img-container'):
image_element = card.find('img', class_='course-card__img')
if image_element:
title = image_element.get('alt')
img_url = image_element.get('src')
link = card.find_previous('a')
if link:
course_link = link.get('href')
if not course_link.startswith('http'):
course_link = 'https://courses.analyticsvidhya.com' + course_link
courses_data.append({
'title': title,
'image_url': img_url,
'course_link': course_link
})
return courses_data
courses = fetch_free_courses()
# Step 2: Load data into a DataFrame
df = pd.DataFrame(courses)
client = Groq()
# Course search function using Groq
def course_recommendation(query):
try:
print(f"Search query: {query}")
print(f"Total available courses: {len(df)}")
# Prompt construction for Groq
prompt = f"""
Based on the query: "{query}",
Rank the courses below based on relevance (0 to 1), with 1 being highly relevant.
Filter out courses with relevance scores below 0.5.
Courses:
{df['title'].to_string(index=False)}
"""
print("Sending query to Groq for recommendation...")
# Sending the request to Groq for results
response = client.chat.completions.create(
model="mixtral-8x7b-32768",
messages=[
{"role": "system", "content": "You are a course recommendation assistant."},
{"role": "user", "content": prompt}
],
temperature=0.3,
max_tokens=800
)
print("Response received from Groq.")
# Parse the Groq response
recommended_courses = []
content = response.choices[0].message.content
print("Groq's response:\n", content)
for line in content.split('\n'):
if line.startswith('Title:'):
course_title = line.split('Title:')[1].strip()
elif line.startswith('Relevance:'):
score = float(line.split('Relevance:')[1].strip())
if score >= 0.5:
matching_course = df[df['title'] == course_title]
if not matching_course.empty:
course_data = matching_course.iloc[0]
recommended_courses.append({
'title': course_title,
'image_url': course_data['image_url'],
'course_link': course_data['course_link'],
'score': score
})
return sorted(recommended_courses, key=lambda x: x['score'], reverse=True)[:10]
except Exception as e:
print(f"Error during course search: {e}")
return []
# Gradio function to search and display courses
def gradio_search_interface(query):
results = course_recommendation(query)
if results:
html_output = '<div class="results-section">'
for course in results:
html_output += f"""
<div class="course-item">
<img src="{course['image_url']}" alt="{course['title']}" class="course-thumbnail"/>
<div class="course-details">
<h4>{course['title']}</h4>
<p>Relevance: {round(course['score'] * 100, 2)}%</p>
<a href="{course['course_link']}" target="_blank" class="course-link-button">Explore Course</a>
</div>
</div>"""
html_output += '</div>'
return html_output
else:
return '<p class="no-courses-message">No matching courses found. Try another search.</p>'
# Custom CSS to make the interface attractive
custom_css = """
body {
background-color: #eaeef3;
font-family: 'Montserrat', sans-serif;
}
.results-section {
display: flex;
flex-wrap: wrap;
gap: 20px;
}
.course-item {
background-color: white;
border-radius: 12px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
overflow: hidden;
width: 48%;
transition: transform 0.3s ease;
}
.course-item:hover {
transform: translateY(-10px);
}
.course-thumbnail {
width: 100%;
height: 160px;
object-fit: cover;
}
.course-details {
padding: 15px;
text-align: center;
}
.course-details h4 {
font-size: 18px;
color: #333;
margin: 10px 0;
}
.course-details p {
color: #555;
font-size: 14px;
}
.course-link-button {
display: inline-block;
background-color: #ff5733;
color: white;
padding: 8px 16px;
text-decoration: none;
border-radius: 6px;
margin-top: 10px;
}
.course-link-button:hover {
background-color: #c44524;
}
.no-courses-message {
text-align: center;
color: #777;
font-size: 16px;
}
"""
# Setting up the Gradio interface
iface = gr.Interface(
fn=gradio_search_interface,
inputs=gr.Textbox(label="Search for a course", placeholder="e.g., Python for data analysis, ML basics"),
outputs=gr.HTML(label="Course Results"),
title="Analytics Vidhya Course Finder",
description="Discover the best free courses from Analytics Vidhya tailored to your query.",
theme="compact",
css=custom_css,
examples=[
["Data Science for Beginners"],
["Python Programming"],
["Advanced Machine Learning"],
["Business Analytics"],
]
)
# Run the Gradio interface
if __name__ == "__main__":
iface.launch()