albert-squad-v2 / README.md
abhilash1910's picture
Add evaluation results on the squad_v2 config and validation split of squad_v2 (#1)
7ed5f44
|
raw
history blame
1.66 kB
## Albert Transformer on SQuAD-v2
Training is done on the [SQuAD_v2](https://rajpurkar.github.io/SQuAD-explorer/) dataset. The model can be accessed via HuggingFace:
## Model Specifications
We have used the following parameters:
- num_train_epochs=0.25,
- per_device_train_batch_size=5,
- per_device_eval_batch_size=10,
- warmup_steps=100,
- weight_decay=0.01,
## Usage Specifications
```python
from transformers import AutoTokenizer,AutoModelForQuestionAnswering
from transformers import pipeline
model=AutoModelForQuestionAnswering.from_pretrained('abhilash1910/albert-squad-v2')
tokenizer=AutoTokenizer.from_pretrained('abhilash1910/albert-squad-v2')
nlp_QA=pipeline('question-answering',model=model,tokenizer=tokenizer)
QA_inp={
'question': 'How many parameters does Bert large have?',
'context': 'Bert large is really big... it has 24 layers, for a total of 340M parameters.Altogether it is 1.34 GB so expect it to take a couple minutes to download to your Colab instance.'
}
result=nlp_QA(QA_inp)
result
```
## Result
The result is:
{'answer': '340M', 'end': 65, 'score': 0.14847151935100555, 'start': 61}
---
language:
- en
license: apache-2.0
datasets:
- squad_v2
model-index:
- name: abhilash1910/albert-squad-v2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_v2
type: squad_v2
config: squad_v2
split: validation
metrics:
- name: Exact Match
type: exact_match
value: 23.6563
verified: true
- name: F1
type: f1
value: 29.3808
verified: true
---