File size: 4,322 Bytes
aad5bcc
 
 
 
 
 
 
 
 
 
 
81f39cb
aad5bcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9410a1e
aad5bcc
9410a1e
aad5bcc
 
 
 
 
 
2b601a6
aad5bcc
 
3fd13f5
aad5bcc
 
 
 
 
 
 
 
 
c891381
 
 
 
ea96b18
aad5bcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf68423
aad5bcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea96b18
bdad512
aad5bcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
language:
  - en
pipeline_tag: text-generation
inference: false
tags:
  - facebook
  - meta
  - pytorch
  - llama
  - llama-2
  - AWQ
---
# **Llama 2** (4-bit 128g AWQ Quantized)
Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 7B pretrained model, converted for the Hugging Face Transformers format.

This model is a 4-bit 128 group size AWQ quantized model. For more information about AWQ quantization, please click [here](https://github.com/mit-han-lab/llm-awq).

## Model Date

July 19, 2023

## Model License

Please refer to the original LLaMA 2 model license ([link](https://huggingface.co/meta-llama/Llama-2-7b-hf)).

Please refer to the AWQ quantization license ([link](https://github.com/llm-awq/blob/main/LICENSE)).

## CUDA Version

This model was successfully tested on CUDA driver v530.30.02 and runtime v11.7 with Python v3.10.11. Please note that AWQ requires NVIDIA GPUs with compute capability of `8.0` or higher.

For Docker users, the `nvcr.io/nvidia/pytorch:23.06-py3` image is runtime v12.1 but otherwise the same as the configuration above and has also been verified to work.

## How to Use

```bash
git clone https://github.com/mit-han-lab/llm-awq \
&& cd llm-awq \
&& git checkout ce4a6bb1c238c014a06672cb74f6865573494d66 \
&& pip install -e . \
&& cd awq/kernels \
&& python setup.py install
```

```python
import time
import torch
from awq.quantize.quantizer import real_quantize_model_weight
from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer, TextStreamer
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
from huggingface_hub import snapshot_download

model_name = "abhinavkulkarni/meta-llama-Llama-2-7b-chat-hf-w4-g128-awq"

# Config
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)

# Tokenizer
try:
    tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name, trust_remote_code=True)
except:
    tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, trust_remote_code=True)
streamer = TextStreamer(tokenizer, skip_special_tokens=True)

# Model
w_bit = 4
q_config = {
    "zero_point": True,
    "q_group_size": 128,
}

load_quant = snapshot_download(model_name)

with init_empty_weights():
    model = AutoModelForCausalLM.from_config(config=config, 
                                                 torch_dtype=torch.float16, trust_remote_code=True)

real_quantize_model_weight(model, w_bit=w_bit, q_config=q_config, init_only=True)
model.tie_weights()

model = load_checkpoint_and_dispatch(model, load_quant, device_map="balanced")

# Inference
prompt = f'''What is the difference between nuclear fusion and fission?
###Response:'''

input_ids = tokenizer(prompt, return_tensors='pt').input_ids.cuda()
output = model.generate(
    inputs=input_ids, 
    temperature=0.7,
    max_new_tokens=512,
    top_p=0.15,
    top_k=0,
    repetition_penalty=1.1,
    eos_token_id=tokenizer.eos_token_id,
    streamer=streamer)
```

## Evaluation

This evaluation was done using [LM-Eval](https://github.com/EleutherAI/lm-evaluation-harness).

[Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)

|  Task  |Version|    Metric     | Value |   |Stderr|
|--------|------:|---------------|------:|---|------|
|wikitext|      1|word_perplexity|12.1967|   |      |
|        |       |byte_perplexity| 1.5964|   |      |
|        |       |bits_per_byte  | 0.6748|   |      |

[Llama-2-7b-chat (4-bit 128-group AWQ)](https://huggingface.co/abhinavkulkarni/meta-llama-Llama-2-7b-chat-hf-w4-g128-awq)

|  Task  |Version|    Metric     | Value |   |Stderr|
|--------|------:|---------------|------:|---|------|
|wikitext|      1|word_perplexity|12.5962|   |      |
|        |       |byte_perplexity| 1.6060|   |      |
|        |       |bits_per_byte  | 0.6835|   |      |

## Acknowledgements

The model was quantized with AWQ technique. If you find AWQ useful or relevant to your research, please kindly cite the paper:

```
@article{lin2023awq,
  title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
  author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song},
  journal={arXiv},
  year={2023}
}
```