first commit
Browse files
README.md
CHANGED
@@ -4,199 +4,74 @@ tags:
|
|
4 |
- unsloth
|
5 |
- trl
|
6 |
- sft
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
---
|
8 |
|
9 |
-
# Model Card for Model
|
10 |
-
|
11 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
12 |
-
|
13 |
|
|
|
14 |
|
15 |
## Model Details
|
16 |
|
17 |
### Model Description
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
- **
|
24 |
-
- **
|
25 |
-
- **
|
26 |
-
- **Model type:** [More Information Needed]
|
27 |
-
- **Language(s) (NLP):** [More Information Needed]
|
28 |
-
- **License:** [More Information Needed]
|
29 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
30 |
-
|
31 |
-
### Model Sources [optional]
|
32 |
|
33 |
-
<!-- Provide the basic links for the model. -->
|
34 |
-
|
35 |
-
- **Repository:** [More Information Needed]
|
36 |
-
- **Paper [optional]:** [More Information Needed]
|
37 |
-
- **Demo [optional]:** [More Information Needed]
|
38 |
|
39 |
## Uses
|
40 |
|
41 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
42 |
-
|
43 |
### Direct Use
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
[More Information Needed]
|
48 |
-
|
49 |
-
### Downstream Use [optional]
|
50 |
|
51 |
-
|
52 |
|
53 |
-
|
54 |
|
55 |
### Out-of-Scope Use
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
[More Information Needed]
|
60 |
|
61 |
## Bias, Risks, and Limitations
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
[More Information Needed]
|
66 |
|
67 |
### Recommendations
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
72 |
|
73 |
## How to Get Started with the Model
|
74 |
|
75 |
-
Use the code
|
76 |
-
|
77 |
-
[More Information Needed]
|
78 |
-
|
79 |
-
## Training Details
|
80 |
-
|
81 |
-
### Training Data
|
82 |
-
|
83 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
84 |
-
|
85 |
-
[More Information Needed]
|
86 |
-
|
87 |
-
### Training Procedure
|
88 |
-
|
89 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
90 |
-
|
91 |
-
#### Preprocessing [optional]
|
92 |
-
|
93 |
-
[More Information Needed]
|
94 |
-
|
95 |
-
|
96 |
-
#### Training Hyperparameters
|
97 |
-
|
98 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
99 |
-
|
100 |
-
#### Speeds, Sizes, Times [optional]
|
101 |
-
|
102 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
103 |
-
|
104 |
-
[More Information Needed]
|
105 |
-
|
106 |
-
## Evaluation
|
107 |
-
|
108 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
109 |
-
|
110 |
-
### Testing Data, Factors & Metrics
|
111 |
-
|
112 |
-
#### Testing Data
|
113 |
-
|
114 |
-
<!-- This should link to a Dataset Card if possible. -->
|
115 |
-
|
116 |
-
[More Information Needed]
|
117 |
-
|
118 |
-
#### Factors
|
119 |
-
|
120 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
121 |
-
|
122 |
-
[More Information Needed]
|
123 |
-
|
124 |
-
#### Metrics
|
125 |
-
|
126 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
127 |
-
|
128 |
-
[More Information Needed]
|
129 |
-
|
130 |
-
### Results
|
131 |
-
|
132 |
-
[More Information Needed]
|
133 |
-
|
134 |
-
#### Summary
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
## Model Examination [optional]
|
139 |
-
|
140 |
-
<!-- Relevant interpretability work for the model goes here -->
|
141 |
-
|
142 |
-
[More Information Needed]
|
143 |
-
|
144 |
-
## Environmental Impact
|
145 |
-
|
146 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
147 |
-
|
148 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
149 |
-
|
150 |
-
- **Hardware Type:** [More Information Needed]
|
151 |
-
- **Hours used:** [More Information Needed]
|
152 |
-
- **Cloud Provider:** [More Information Needed]
|
153 |
-
- **Compute Region:** [More Information Needed]
|
154 |
-
- **Carbon Emitted:** [More Information Needed]
|
155 |
-
|
156 |
-
## Technical Specifications [optional]
|
157 |
-
|
158 |
-
### Model Architecture and Objective
|
159 |
-
|
160 |
-
[More Information Needed]
|
161 |
-
|
162 |
-
### Compute Infrastructure
|
163 |
-
|
164 |
-
[More Information Needed]
|
165 |
-
|
166 |
-
#### Hardware
|
167 |
-
|
168 |
-
[More Information Needed]
|
169 |
-
|
170 |
-
#### Software
|
171 |
-
|
172 |
-
[More Information Needed]
|
173 |
-
|
174 |
-
## Citation [optional]
|
175 |
-
|
176 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
177 |
-
|
178 |
-
**BibTeX:**
|
179 |
-
|
180 |
-
[More Information Needed]
|
181 |
-
|
182 |
-
**APA:**
|
183 |
-
|
184 |
-
[More Information Needed]
|
185 |
-
|
186 |
-
## Glossary [optional]
|
187 |
-
|
188 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
189 |
-
|
190 |
-
[More Information Needed]
|
191 |
-
|
192 |
-
## More Information [optional]
|
193 |
-
|
194 |
-
[More Information Needed]
|
195 |
|
196 |
-
|
|
|
197 |
|
198 |
-
|
|
|
199 |
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
-
|
|
|
|
|
|
4 |
- unsloth
|
5 |
- trl
|
6 |
- sft
|
7 |
+
- Llama
|
8 |
+
- Finetuning
|
9 |
+
- Medical
|
10 |
+
license: apache-2.0
|
11 |
+
language:
|
12 |
+
- en
|
13 |
+
base_model:
|
14 |
+
- meta-llama/Meta-Llama-3-8B
|
15 |
---
|
16 |
|
17 |
+
# Model Card for Medical Chatbot LLaMA3 8b 4-bit Fine-tuned Model
|
|
|
|
|
|
|
18 |
|
19 |
+
This is a fine-tuned version of the LLaMA3 model designed to assist with medical queries and preliminary health advice through a chatbot. It uses a 4-bit quantization to reduce memory usage while maintaining efficiency for chatbot interactions.
|
20 |
|
21 |
## Model Details
|
22 |
|
23 |
### Model Description
|
24 |
|
25 |
+
This model is a LLaMA3-8b based chatbot fine-tuned specifically for medical symptom analysis and preliminary assessments. It uses 4-bit quantization, which allows for reduced memory usage, making it suitable for deployment on resource-constrained environments. The chatbot can respond to medical inquiries and provide initial health recommendations, though it should not be used as a substitute for professional medical advice.
|
26 |
+
This model is trained on 1M datapoints dataset consisting of Question answering related to Medical field. It would be helpful for both general person who wants info related to medical issues and also for healthcare providers.
|
27 |
+
- **Developed by:** Himanshu Kumar
|
28 |
+
- **Finetuned from model:** LLaMA3 8b
|
29 |
+
- **Language(s) (NLP):** English
|
30 |
+
- **License:** apache-2.0
|
31 |
+
- **Model type:** Causal Language Model (LLM), Fine-tuned with LoRA and 4-bit quantization
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
## Uses
|
35 |
|
|
|
|
|
36 |
### Direct Use
|
37 |
|
38 |
+
The model is primarily intended for use in medical chatbots to handle preliminary health-related queries and symptom analysis. It is designed for interactive applications that aim to provide users with health-related information and advice.
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
### Downstream Use
|
41 |
|
42 |
+
This model can be further fine-tuned or adapted to other medical domains or integrated into larger healthcare-related systems. It can also be used for other conversational AI tasks in the medical domain, such as appointment scheduling, follow-up care reminders, or patient triage systems.
|
43 |
|
44 |
### Out-of-Scope Use
|
45 |
|
46 |
+
- This model should not be used for critical medical decision-making or as a substitute for professional medical advice.
|
|
|
|
|
47 |
|
48 |
## Bias, Risks, and Limitations
|
49 |
|
50 |
+
The model may inherit biases present in the training data, and the responses should be carefully monitored, particularly in sensitive contexts like healthcare. It is recommended that the model's responses be reviewed by healthcare professionals.
|
|
|
|
|
51 |
|
52 |
### Recommendations
|
53 |
|
54 |
+
Users should exercise caution and verify any medical information provided by the model with qualified professionals. The model's limitations in handling complex medical cases must be understood before deployment in real-world scenarios.
|
|
|
|
|
55 |
|
56 |
## How to Get Started with the Model
|
57 |
|
58 |
+
Use the following code to get started with the model:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
```python
|
61 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
62 |
|
63 |
+
model = AutoModelForCausalLM.from_pretrained("abhiyanta/chatDoctor")
|
64 |
+
tokenizer = AutoTokenizer.from_pretrained("abhiyanta/chatDoctor")
|
65 |
|
66 |
+
inputs = tokenizer(
|
67 |
+
[
|
68 |
+
alpaca_prompt.format(
|
69 |
+
"I have fever, what should i do?", # instruction
|
70 |
+
"", # input
|
71 |
+
"", # output - leave this blank for generation!
|
72 |
+
)
|
73 |
+
], return_tensors = "pt").to("cuda")
|
74 |
|
75 |
+
from transformers import TextStreamer
|
76 |
+
text_streamer = TextStreamer(tokenizer)
|
77 |
+
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)
|