File size: 5,476 Bytes
cbd2c5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a1f257
 
 
 
 
 
cbd2c5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a1f257
cbd2c5f
 
 
 
 
 
2a1f257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbd2c5f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: synthea_t5_summarization_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# synthea_t5_summarization_model

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2906
- Rouge1: 0.4543
- Rouge2: 0.137
- Rougel: 0.4022
- Rougelsum: 0.4025
- Gen Len: 11.1279

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 22   | 1.9114          | 0.289  | 0.0651 | 0.2709 | 0.2713    | 9.6279  |
| No log        | 2.0   | 44   | 1.8289          | 0.3265 | 0.0822 | 0.2925 | 0.2935    | 10.2093 |
| No log        | 3.0   | 66   | 1.7603          | 0.3617 | 0.107  | 0.3224 | 0.323     | 10.9651 |
| No log        | 4.0   | 88   | 1.7081          | 0.3505 | 0.1017 | 0.3142 | 0.3146    | 11.7674 |
| No log        | 5.0   | 110  | 1.6651          | 0.3497 | 0.0935 | 0.3055 | 0.3066    | 11.9419 |
| No log        | 6.0   | 132  | 1.6200          | 0.3701 | 0.1022 | 0.3339 | 0.3348    | 11.7209 |
| No log        | 7.0   | 154  | 1.5865          | 0.3726 | 0.1045 | 0.3328 | 0.3336    | 11.6279 |
| No log        | 8.0   | 176  | 1.5552          | 0.3802 | 0.1049 | 0.3412 | 0.3417    | 11.4419 |
| No log        | 9.0   | 198  | 1.5237          | 0.3982 | 0.115  | 0.3519 | 0.3533    | 11.3721 |
| No log        | 10.0  | 220  | 1.4836          | 0.41   | 0.1188 | 0.3643 | 0.3645    | 11.4767 |
| No log        | 11.0  | 242  | 1.4708          | 0.391  | 0.1142 | 0.3492 | 0.3491    | 11.6977 |
| No log        | 12.0  | 264  | 1.4429          | 0.4157 | 0.1184 | 0.3689 | 0.3687    | 11.1977 |
| No log        | 13.0  | 286  | 1.4312          | 0.4229 | 0.1204 | 0.3738 | 0.3741    | 11.0698 |
| No log        | 14.0  | 308  | 1.4162          | 0.4231 | 0.1361 | 0.3806 | 0.3805    | 11.0465 |
| No log        | 15.0  | 330  | 1.4011          | 0.4341 | 0.1406 | 0.3856 | 0.386     | 10.8953 |
| No log        | 16.0  | 352  | 1.3877          | 0.439  | 0.1373 | 0.3942 | 0.3952    | 11.407  |
| No log        | 17.0  | 374  | 1.3794          | 0.4488 | 0.1442 | 0.3987 | 0.3997    | 11.0581 |
| No log        | 18.0  | 396  | 1.3673          | 0.4445 | 0.1418 | 0.3972 | 0.3979    | 11.186  |
| No log        | 19.0  | 418  | 1.3581          | 0.4529 | 0.1375 | 0.4037 | 0.4047    | 11.1279 |
| No log        | 20.0  | 440  | 1.3515          | 0.4378 | 0.1216 | 0.3921 | 0.3921    | 11.0    |
| No log        | 21.0  | 462  | 1.3430          | 0.4533 | 0.1344 | 0.3996 | 0.4012    | 10.6512 |
| No log        | 22.0  | 484  | 1.3390          | 0.4489 | 0.1426 | 0.4041 | 0.4042    | 10.8023 |
| 1.8003        | 23.0  | 506  | 1.3341          | 0.4444 | 0.1359 | 0.3986 | 0.3992    | 10.7674 |
| 1.8003        | 24.0  | 528  | 1.3266          | 0.4525 | 0.1357 | 0.4058 | 0.4059    | 10.9186 |
| 1.8003        | 25.0  | 550  | 1.3290          | 0.4517 | 0.1304 | 0.4024 | 0.4027    | 10.7209 |
| 1.8003        | 26.0  | 572  | 1.3217          | 0.4486 | 0.1405 | 0.402  | 0.402     | 11.4186 |
| 1.8003        | 27.0  | 594  | 1.3194          | 0.4484 | 0.1383 | 0.4004 | 0.401     | 11.1279 |
| 1.8003        | 28.0  | 616  | 1.3158          | 0.4407 | 0.1284 | 0.3946 | 0.395     | 11.4302 |
| 1.8003        | 29.0  | 638  | 1.3111          | 0.4457 | 0.1294 | 0.3974 | 0.397     | 11.2558 |
| 1.8003        | 30.0  | 660  | 1.3075          | 0.4502 | 0.132  | 0.3988 | 0.398     | 11.0581 |
| 1.8003        | 31.0  | 682  | 1.3045          | 0.4482 | 0.1328 | 0.3965 | 0.3963    | 11.0698 |
| 1.8003        | 32.0  | 704  | 1.3012          | 0.4492 | 0.1315 | 0.3978 | 0.3971    | 11.093  |
| 1.8003        | 33.0  | 726  | 1.2988          | 0.4426 | 0.1294 | 0.3922 | 0.3923    | 11.2326 |
| 1.8003        | 34.0  | 748  | 1.2978          | 0.451  | 0.1342 | 0.3992 | 0.3998    | 11.1512 |
| 1.8003        | 35.0  | 770  | 1.2980          | 0.4556 | 0.1386 | 0.4062 | 0.4069    | 11.0698 |
| 1.8003        | 36.0  | 792  | 1.2946          | 0.4578 | 0.1387 | 0.4063 | 0.4062    | 11.0581 |
| 1.8003        | 37.0  | 814  | 1.2921          | 0.4549 | 0.138  | 0.4031 | 0.4031    | 11.1047 |
| 1.8003        | 38.0  | 836  | 1.2910          | 0.4531 | 0.1362 | 0.4014 | 0.4017    | 11.1512 |
| 1.8003        | 39.0  | 858  | 1.2907          | 0.4531 | 0.1362 | 0.4014 | 0.4017    | 11.0814 |
| 1.8003        | 40.0  | 880  | 1.2906          | 0.4543 | 0.137  | 0.4022 | 0.4025    | 11.1279 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.15.2