--- library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - autotrain base_model: symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli widget: - source_sentence: 'search_query: i love autotrain' sentences: - 'search_query: huggingface auto train' - 'search_query: hugging face auto train' - 'search_query: i love autotrain' pipeline_tag: sentence-similarity --- # Model Trained Using AutoTrain - Problem type: Sentence Transformers ## Validation Metrics loss: 1.1031256914138794 runtime: 10.5532 samples_per_second: 473.788 steps_per_second: 14.877 : 4.9968010236724245 ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the Hugging Face Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'search_query: autotrain', 'search_query: auto train', 'search_query: i love autotrain', ] embeddings = model.encode(sentences) print(embeddings.shape) # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) ```