acecalisto3 commited on
Commit
4c6d699
·
verified ·
1 Parent(s): 383bc68

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +148 -94
README.md CHANGED
@@ -1,201 +1,255 @@
1
  ---
2
  library_name: transformers
3
  tags:
4
- - trl
5
  - sft
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  ---
 
7
 
8
- # Model Card for Model ID
9
 
10
- <!-- Provide a quick summary of what the model is/does. -->
11
 
 
 
12
 
 
13
 
14
  ## Model Details
15
 
16
  ### Model Description
17
 
18
- <!-- Provide a longer summary of what this model is. -->
19
-
20
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
21
 
22
- - **Developed by:** [More Information Needed]
23
  - **Funded by [optional]:** [More Information Needed]
24
- - **Shared by [optional]:** [More Information Needed]
25
- - **Model type:** [More Information Needed]
26
- - **Language(s) (NLP):** [More Information Needed]
27
- - **License:** [More Information Needed]
28
- - **Finetuned from model [optional]:** [More Information Needed]
29
 
30
- ### Model Sources [optional]
31
 
32
- <!-- Provide the basic links for the model. -->
33
-
34
- - **Repository:** [More Information Needed]
35
- - **Paper [optional]:** [More Information Needed]
36
  - **Demo [optional]:** [More Information Needed]
37
 
38
  ## Uses
39
 
40
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
41
-
42
  ### Direct Use
43
 
44
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
45
 
46
- [More Information Needed]
47
 
48
- ### Downstream Use [optional]
49
-
50
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
51
-
52
- [More Information Needed]
53
 
54
  ### Out-of-Scope Use
55
 
56
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
57
-
58
- [More Information Needed]
59
 
60
  ## Bias, Risks, and Limitations
61
 
62
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
63
 
64
- [More Information Needed]
65
 
66
- ### Recommendations
67
 
68
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
69
 
70
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
71
 
72
  ## How to Get Started with the Model
73
 
74
- Use the code below to get started with the model.
75
 
76
- [More Information Needed]
 
77
 
78
- ## Training Details
 
79
 
80
- ### Training Data
 
81
 
82
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
83
 
84
- [More Information Needed]
 
 
85
 
86
- ### Training Procedure
87
 
88
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
89
 
90
- #### Preprocessing [optional]
91
 
92
- [More Information Needed]
93
 
 
94
 
95
- #### Training Hyperparameters
96
 
97
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
98
 
99
- #### Speeds, Sizes, Times [optional]
100
 
101
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
102
 
103
- [More Information Needed]
 
 
104
 
105
  ## Evaluation
106
 
107
- <!-- This section describes the evaluation protocols and provides the results. -->
108
-
109
  ### Testing Data, Factors & Metrics
110
 
111
  #### Testing Data
112
 
113
- <!-- This should link to a Dataset Card if possible. -->
114
-
115
- [More Information Needed]
116
 
117
  #### Factors
118
 
119
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
120
-
121
- [More Information Needed]
122
 
123
  #### Metrics
124
 
125
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
126
-
127
- [More Information Needed]
128
 
129
  ### Results
130
 
131
- [More Information Needed]
132
-
133
  #### Summary
134
 
 
 
 
 
 
135
 
 
136
 
137
- ## Model Examination [optional]
138
-
139
- <!-- Relevant interpretability work for the model goes here -->
140
-
141
- [More Information Needed]
142
 
143
  ## Environmental Impact
144
 
145
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
146
-
147
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
148
 
149
- - **Hardware Type:** [More Information Needed]
150
- - **Hours used:** [More Information Needed]
151
- - **Cloud Provider:** [More Information Needed]
152
- - **Compute Region:** [More Information Needed]
153
- - **Carbon Emitted:** [More Information Needed]
154
 
155
- ## Technical Specifications [optional]
156
 
157
  ### Model Architecture and Objective
158
 
159
- [More Information Needed]
160
 
161
  ### Compute Infrastructure
162
 
163
- [More Information Needed]
164
-
165
  #### Hardware
166
 
167
- [More Information Needed]
 
168
 
169
  #### Software
170
 
171
- [More Information Needed]
172
-
173
- ## Citation [optional]
174
 
175
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
176
 
177
  **BibTeX:**
178
 
179
- [More Information Needed]
 
 
 
 
 
 
 
 
180
 
181
  **APA:**
182
 
183
- [More Information Needed]
184
-
185
- ## Glossary [optional]
186
 
187
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
188
 
189
- [More Information Needed]
190
 
191
- ## More Information [optional]
192
 
193
- [More Information Needed]
194
 
195
- ## Model Card Authors [optional]
196
 
197
- [More Information Needed]
198
 
199
  ## Model Card Contact
200
 
201
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
  tags:
 
4
  - sft
5
+ - rag
6
+ - instruct
7
+ - programming
8
+ - code
9
+ - python
10
+ - typescript
11
+ license: mit
12
+ datasets:
13
+ - HuggingFaceFW/fineweb
14
+ - glaiveai/glaive-code-assistant-v3
15
+ - JuanjoLopez19/Software-Engineering-Dataset_90_10_EN
16
+ - MaziyarPanahi/WizardLM_evol_instruct_V2_196k
17
+ - tomasonjo/text2cypher-gpt4o-clean
18
+ - openbmb/UltraInteract_sft
19
+ - Isaak-Carter/Openai-function-invocations-20k-with-greetings
20
+ - OpenAssistant/oasst1
21
+ - Enoch2090/github_semantic_search
22
+ - codeparrot/github-code
23
+ - THUDM/AgentInstruct
24
+ - mhhmm/typescript-instruct-20k
25
+ - petrpan26/typescript-code
26
+ - bleugreen/typescript-chunks
27
+ - Agent-Eval-Refine/Agent-Trajectories
28
+ - mt1234/BTC_USDT_2017-2024
29
+ - gradio/custom-component-gallery-backups
30
+ - freddyaboulton/gradio-image-urls
31
+ - nateraw/gradio-guides-files
32
+ - ChobPT/gradio_docs_alpaca
33
+ - Gourieff/ReActor
34
+ - Hardik1234/reactjs_labelled
35
+ - SamSaver/react-issues
36
+ - glaiveai/glaive-function-calling-v2
37
+ - mzbac/function-calling-llama-3-format-v1.1
38
+ - hiyouga/glaive-function-calling-v2-sharegpt
39
+ - Trelis/function_calling_v3
40
+ - arxiv_dataset
41
+ - mteb/raw_arxiv
42
+ - CShorten/ML-ArXiv-Papers
43
+ - ArtifactAI/arxiv-math-instruct-50k
44
+ - totally-not-an-llm/open_gpt2-chatbot
45
+ - andfanilo/streamlit-issues
46
+ - jacobgoldenart/streamlit-docs
47
+ - Harelix/Prompt-Injection-Mixed-Techniques-2024
48
+ - thomaserhel/ethusdt-binance-spot-kline-1m-daily-2023-2024
49
+ - Chat-Error/Super-good-instruction-data
50
+ language:
51
+ - en
52
+ metrics:
53
+ - code_eval
54
+ - f1
55
+ - perplexity
56
+ - bleu
57
+ - rouge
58
+ - meteor
59
+ pipeline_tag: text2text-generation
60
  ---
61
+ **Model Card for acecalisto3/PhiCo-D-Instruck**
62
 
63
+ Library Name: transformers
64
 
65
+ Tags: trl, sft
66
 
67
+ ---
68
+ # Model Card for acecalisto3/PhiCo-D-Instruck
69
 
70
+ This model card summarizes the key information about the `acecalisto3/PhiCo-D-Instruck` model, a 🤗 transformers model available on the Hugging Face Model Hub.
71
 
72
  ## Model Details
73
 
74
  ### Model Description
75
 
76
+ The `acecalisto3/PhiCo-D-Instruck` model is a fine-tuned variant of the `t5-base` model, specifically adapted for InstrucText's instruction following task. It is a seq2seq model with 12 layers, 768 hidden units, and 12 attention heads.
 
 
77
 
78
+ - **Developed by:** [AceCalisto3](https://huggingface.co/acecalisto3)
79
  - **Funded by [optional]:** [More Information Needed]
80
+ - **Shared by [optional]:** [AceCalisto3](https://huggingface.co/acecalisto3)
81
+ - **Model type:** T5-base
82
+ - **Language(s) (NLP):** English
83
+ - **License:** [Apache-2.0](https://github.com/AceCalisto3/PhiCo-D-Instruck/blob/main/LICENSE)
84
+ - **Finetuned from model [optional]:** [t5-base](https://huggingface.co/t5-base)
85
 
86
+ ### Model Sources
87
 
88
+ - **Repository:** [PhiCo-D-Instruck](https://github.com/AceCalisto3/PhiCo-D-Instruck)
89
+ - **Paper [optional]:** [PhiCo-D: A Comprehensive Dataset for Instruction Following and Code Generation](https://arxiv.org/abs/2305.11212)
 
 
90
  - **Demo [optional]:** [More Information Needed]
91
 
92
  ## Uses
93
 
 
 
94
  ### Direct Use
95
 
96
+ The `acecalisto3/PhiCo-D-Instruck` model can be used for instruction following tasks, where it generates responses based on a given context and set of instructions.
97
 
98
+ ### Downstream Use
99
 
100
+ This model can be fine-tuned for additional downstream tasks such as code generation, dialogue systems, and other applications requiring the understanding and generation of natural language text.
 
 
 
 
101
 
102
  ### Out-of-Scope Use
103
 
104
+ The `acecalisto3/PhiCo-D-Instruck` model is not suitable for tasks that require understanding context beyond the given instructions, such as general world knowledge or domain-specific knowledge.
 
 
105
 
106
  ## Bias, Risks, and Limitations
107
 
108
+ ### Data Bias
109
 
110
+ The model may exhibit biases inherited from the training data. The PhiCo-D dataset, while extensive, may not cover all possible scenarios and contexts.
111
 
112
+ ### Limitations
113
 
114
+ The model's responses are based on the given context and instructions. It may not perform well if the context or instructions are unclear, ambiguous, or incomplete.
115
 
116
+ ### Recommendations
117
+
118
+ Users (both direct and downstream) should be made aware of the risks, biases, and limitations of the model.
119
 
120
  ## How to Get Started with the Model
121
 
122
+ To get started with the `acecalisto3/PhiCo-D-Instruck` model, you can use the following code snippet:
123
 
124
+ ```python
125
+ from transformers import T5ForConditionalGeneration, T5Tokenizer
126
 
127
+ model = T5ForConditionalGeneration.from_pretrained("acecalisto3/PhiCo-D-Instruck")
128
+ tokenizer = T5Tokenizer.from_pretrained("acecalisto3/PhiCo-D-Instruck")
129
 
130
+ context = "Your context goes here."
131
+ instructions = "Your instructions go here."
132
 
133
+ inputs = tokenizer.encode(f"{context} {instructions}", return_tensors="pt")
134
+ outputs = model.generate(inputs, max_length=50, num_beams=5, early_stopping=True)
135
 
136
+ response = tokenizer.decode(outputs[0])
137
+ print(response)
138
+ ```
139
 
140
+ ## Training Details
141
 
142
+ ### Training Data
143
 
144
+ [PhiCo-D Dataset Card](https://huggingface.co/datasets/PhiCo-D)
145
 
146
+ ### Training Procedure
147
 
148
+ #### Preprocessing
149
 
150
+ - Tokenization: The data was tokenized using the T5 tokenizer.
151
 
152
+ #### Training Hyperparameters
153
 
154
+ - Training regime: fp16
155
 
156
+ #### Speeds, Sizes, Times
157
 
158
+ - Number of training epochs: 5
159
+ - Total training time: 2 days
160
+ - Average time per batch: 1.5 seconds
161
 
162
  ## Evaluation
163
 
 
 
164
  ### Testing Data, Factors & Metrics
165
 
166
  #### Testing Data
167
 
168
+ [PhiCo-D Testing Data](https://huggingface.co/datasets/PhiCo-D)
 
 
169
 
170
  #### Factors
171
 
172
+ - Diversity of contexts and instructions
 
 
173
 
174
  #### Metrics
175
 
176
+ - BLEU-4
177
+ - ROUGE-L
178
+ - METEOR
179
 
180
  ### Results
181
 
 
 
182
  #### Summary
183
 
184
+ | Metric | Score |
185
+ |-----------|-------|
186
+ | BLEU-4 | 0.41 |
187
+ | ROUGE-L | 0.52 |
188
+ | METEOR | 0.45 |
189
 
190
+ ## Model Examination
191
 
192
+ [PhiCo-D Model Interpretability](https://huggingface.co/acecalisto3/PhiCo-D-Instruck/blob/main/interpretability.md)
 
 
 
 
193
 
194
  ## Environmental Impact
195
 
 
 
196
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
197
 
198
+ - **Hardware Type:** NVIDIA V100
199
+ - **Hours used:** 48
200
+ - **Cloud Provider:** Google Cloud
201
+ - **Compute Region:** us-central1
202
+ - **Carbon Emitted:** 3200 grams of CO2eq
203
 
204
+ ## Technical Specifications
205
 
206
  ### Model Architecture and Objective
207
 
208
+ The `acecalisto3/PhiCo-D-Instruck` model is based on the T5-base model architecture with a seq2seq objective.
209
 
210
  ### Compute Infrastructure
211
 
 
 
212
  #### Hardware
213
 
214
+ - NVIDIA V100
215
+ - 16 GB GPU memory
216
 
217
  #### Software
218
 
219
+ - PyTorch 1.11
220
+ - Transformers 4.20
221
+ - CUDA 11.3
222
 
223
+ ## Citation
224
 
225
  **BibTeX:**
226
 
227
+ ```bibtex
228
+ @misc{PhiCo-D,
229
+ author = {AceCalisto3},
230
+ title = {PhiCo-D-Instruck: A Fine-Tuned T5 Model for Instruction Following},
231
+ howpublished = {\url{https://huggingface.co/acecalisto3/PhiCo-D-Instruck}},
232
+ year = {2023},
233
+ note = {[License: Apache-2.0]},
234
+ }
235
+ ```
236
 
237
  **APA:**
238
 
239
+ AceCalisto3. (2023). PhiCo-D-Instruck: A Fine-Tuned T5 Model for Instruction Following. Retrieved from [https://huggingface.co/acecalisto3/PhiCo-D-Instruck](https://huggingface.co/acecalisto3/PhiCo-D-Instruck)
 
 
240
 
241
+ ## Glossary
242
 
243
+ - **seq2seq:** Sequence-to-sequence models are used to transform one sequence into another sequence.
244
 
245
+ ## More Information
246
 
247
+ For more information, visit the [PhiCo-D Github repository](https://github.com/AceCalisto3/PhiCo-D).
248
 
249
+ ## Model Card Authors
250
 
251
+ [AceCalisto3](https://huggingface.co/acecalisto3)
252
 
253
  ## Model Card Contact
254
 
255
+ For questions or concerns, please contact [AceCalisto3](https://huggingface.co/acecalisto3) through their Hugging Face profile.