--- license: apache-2.0 --- > # Cloned from https://github.com/amazon-science/mm-cot # Multimodal Chain-of-Thought Reasoning in Language Models
"Imagine learning a textbook without figures or tables."
Multimodal-CoT incorporates vision features in a decoupled training framework. The framework consists of two training stages: (i) rationale generation and (ii) answer inference. Both stages share the same model architecture but differ in the input and output. ![](vision_features/mm-cot.png) ## Requirements Install all required python dependencies: ``` pip install -r requirements.txt ``` ## Datasets Download the dataset from the following repository: ``` https://github.com/lupantech/ScienceQA/tree/main/data ``` Download the extracted vision features from [vision_features](https://drive.google.com/file/d/13B0hc_F_45-UlqPLKSgRz-ALtFQ8kIJr/view?usp=share_link) and unzip the files under `vision_features` ## Instructions ### Training ``` # rationale generation CUDA_VISIBLE_DEVICES=0,1 python main.py \ --model allenai/unifiedqa-t5-base \ --user_msg rationale --img_type detr \ --bs 8 --eval_bs 4 --eval_acc 10 --output_len 512 \ --final_eval --prompt_format QCM-LE # answer inference CUDA_VISIBLE_DEVICES=0,1 python main.py \ --model allenai/unifiedqa-t5-base \ --user_msg answer --img_type detr \ --bs 8 --eval_bs 4 --eval_acc 10 --output_len 64 \ --final_eval --prompt_format QCMG-A \ --eval_le experiments/rationale_allenai-unifiedqa-t5-base_detr_QCM-LE_lr5e-05_bs16_op512_ep20/predictions_ans_eval.json \ --test_le experiments/rationale_allenai-unifiedqa-t5-base_detr_QCM-LE_lr5e-05_bs16_op512_ep20/predictions_ans_test.json ``` ### Inference Our trained models are available at [models](https://drive.google.com/file/d/1FtTYOJPHnWnFfCxNC6M3gar4RAX5E21b/view?usp=share_link). To use our trained models, please put the them under the ```models``` folder. ``` # rationale generation CUDA_VISIBLE_DEVICES=0,1 python main.py \ --model allenai/unifiedqa-t5-base \ --user_msg rationale --img_type detr \ --bs 8 --eval_bs 4 --eval_acc 10 --output_len 512 \ --final_eval --prompt_format QCM-LE \ --evaluate_dir models/MM-CoT-UnifiedQA-base-Rationale # answer inference CUDA_VISIBLE_DEVICES=0,1 python main.py \ --model allenai/unifiedqa-t5-base \ --user_msg answer --img_type detr \ --bs 8 --eval_bs 4 --eval_acc 10 --output_len 64 \ --final_eval --prompt_format QCMG-A \ --eval_le models/rationale/predictions_ans_eval.json \ --test_le models/rationale/predictions_ans_test.json \ --evaluate_dir models/MM-CoT-UnifiedQA-base-Answer ``` ## Citing MM-CoT ``` @article{zhang2023multicot, title={Multimodal Chain-of-Thought Reasoning in Language Models}, author={Zhang, Zhuosheng and Zhang, Aston and Li, Mu and Zhao, Hai and Karypis, George and Smola, Alex}, journal={arXiv preprint arXiv:2302.00923}, year={2023} } ``` ## License This project is licensed under the Apache-2.0 License. ## Acknowledgement Part of our codes are adapted from [ScienceQA](https://github.com/lupantech/ScienceQA) and [Transformers](https://github.com/huggingface/transformers). We thank Pan Lu for providing parameter size for ScienceQA baselines.