import os from torch.utils.data import Dataset import os import json import numpy as np import torch from utils_prompt import * img_shape = { "resnet": (512, 2048), "clip": (49, 2048), "detr": (100, 256), } def load_data_std(args): problems = json.load(open(os.path.join(args.data_root, 'scienceqa/problems.json'))) pid_splits = json.load(open(os.path.join(args.data_root, 'scienceqa/pid_splits.json'))) captions = json.load(open(args.caption_file))["captions"] for qid in problems: problems[qid]['caption'] = captions[qid] if qid in captions else "" train_qids = pid_splits['%s' % (args.train_split)] val_qids = pid_splits['%s' % (args.val_split)] test_qids = pid_splits['%s' % (args.test_split)] print(f"number of train problems: {len(train_qids)}\n") print(f"number of val problems: {len(val_qids)}\n") print(f"number of test problems: {len(test_qids)}\n") qids = {'train': train_qids, 'val':val_qids,'test':test_qids} return problems, qids, def load_data_img(args): problems = json.load(open(os.path.join(args.data_root, 'scienceqa/problems.json'))) pid_splits = json.load(open(os.path.join(args.data_root, 'scienceqa/pid_splits.json'))) captions = json.load(open(args.caption_file))["captions"] name_maps = json.load(open('vision_features/name_map.json')) # check if args.img_type == "resnet": image_features = np.load('vision_features/resnet.npy') image_features = np.expand_dims(image_features, axis=1) image_features = image_features.repeat(512, axis=1) elif args.img_type == "clip": image_features = np.load('vision_features/clip.npy') elif args.img_type == "detr": image_features = np.load('vision_features/detr.npy') else: image_features = np.load('vision_features/detr.npy') print("img_features size: ", image_features.shape) for qid in problems: problems[qid]['caption'] = captions[qid] if qid in captions else "" train_qids = pid_splits['%s' % (args.train_split)] val_qids = pid_splits['%s' % (args.val_split)] test_qids = pid_splits['%s' % (args.test_split)] print(f"number of train problems: {len(train_qids)}\n") print(f"number of val problems: {len(val_qids)}\n") print(f"number of test problems: {len(test_qids)}\n") qids = {'train': train_qids, 'val':val_qids,'test':test_qids} return problems, qids, name_maps, image_features class ScienceQADatasetStd(Dataset): """ Creating a custom dataset for reading the dataset and loading it into the dataloader to pass it to the neural network for finetuning the model """ def __init__( self, problems, qids, tokenizer, source_len, target_len, args, test_le=None ): self.tokenizer = tokenizer self.data = {qid : problems[qid] for qid in qids} self.source_len = source_len self.summ_len = target_len self.target_text = [] self.source_text = [] if test_le is not None: test_le_data =json.load(open(test_le))["preds"] else: test_le_data = None idx = 0 for qid in self.data: if test_le_data is not None: curr_le_data = test_le_data[idx] idx += 1 else: curr_le_data = None prompt, target = build_train_pair(problems, qid, args, curr_le_data) self.target_text.append(target) self.source_text.append(prompt) def __len__(self): return len(self.target_text) def __getitem__(self, index): source_text = str(self.source_text[index]) target_text = str(self.target_text[index]) # cleaning data so as to ensure data is in string type source_text = " ".join(source_text.split()) target_text = " ".join(target_text.split()) source = self.tokenizer.batch_encode_plus( [source_text], max_length=self.source_len, pad_to_max_length=True, truncation=True, padding="max_length", return_tensors="pt", ) target = self.tokenizer.batch_encode_plus( [target_text], max_length=self.summ_len, pad_to_max_length=True, truncation=True, padding="max_length", return_tensors="pt", ) source_ids = source["input_ids"].squeeze() source_mask = source["attention_mask"].squeeze() target_ids = target["input_ids"].squeeze().tolist() return { "input_ids": source_ids, "attention_mask": source_mask, "labels": target_ids, } class ScienceQADatasetImg(Dataset): """ Creating a custom dataset for reading the dataset and loading it into the dataloader to pass it to the neural network for finetuning the model """ def __init__( self, problems, qids, name_maps, tokenizer, source_len, target_len, args, image_features, test_le=None ): """ Initializes a Dataset class Args: dataframe (pandas.DataFrame): Input dataframe tokenizer (transformers.tokenizer): Transformers tokenizer source_len (int): Max length of source text target_len (int): Max length of target text source_text (str): column name of source text target_text (str): column name of target text """ self.tokenizer = tokenizer self.data = {qid : problems[qid] for qid in qids} self.source_len = source_len self.summ_len = target_len self.target_text = [] self.source_text = [] self.image_ids = [] if test_le is not None: test_le_data =json.load(open(test_le))["preds"] else: test_le_data = None idx = 0 for qid in self.data: if test_le_data is not None: curr_le_data = test_le_data[idx] idx += 1 else: curr_le_data = None prompt, target = build_train_pair(problems, qid, args, curr_le_data) self.target_text.append(target) self.source_text.append(prompt) if str(qid) in name_maps: i_vectors = image_features[int(name_maps[str(qid)])] self.image_ids.append(i_vectors) else: shape = img_shape[args.img_type] self.image_ids.append(np.zeros(shape)) def __len__(self): """returns the length of dataframe""" return len(self.target_text) def __getitem__(self, index): """return the input ids, attention masks and target ids""" source_text = str(self.source_text[index]) target_text = str(self.target_text[index]) image_ids = self.image_ids[index] # cleaning data so as to ensure data is in string type source_text = " ".join(source_text.split()) target_text = " ".join(target_text.split()) source = self.tokenizer.batch_encode_plus( [source_text], max_length=self.source_len, pad_to_max_length=True, truncation=True, padding="max_length", return_tensors="pt", ) target = self.tokenizer.batch_encode_plus( [target_text], max_length=self.summ_len, pad_to_max_length=True, truncation=True, padding="max_length", return_tensors="pt", ) source_ids = source["input_ids"].squeeze() source_mask = source["attention_mask"].squeeze() target_ids = target["input_ids"].squeeze().tolist() image_ids = torch.tensor(image_ids).squeeze() return { "input_ids": source_ids, "attention_mask": source_mask, "image_ids": image_ids, "labels": target_ids, }