|
Logging training |
|
Running DummyClassifier() |
|
accuracy: 0.495 recall_macro: 0.100 precision_macro: 0.050 f1_macro: 0.066 |
|
=== new best DummyClassifier() (using recall_macro): |
|
accuracy: 0.495 recall_macro: 0.100 precision_macro: 0.050 f1_macro: 0.066 |
|
|
|
Running GaussianNB() |
|
accuracy: 0.830 recall_macro: 0.537 precision_macro: 0.432 f1_macro: 0.400 |
|
=== new best GaussianNB() (using recall_macro): |
|
accuracy: 0.830 recall_macro: 0.537 precision_macro: 0.432 f1_macro: 0.400 |
|
|
|
Running MultinomialNB() |
|
accuracy: 0.900 recall_macro: 0.579 precision_macro: 0.510 f1_macro: 0.514 |
|
=== new best MultinomialNB() (using recall_macro): |
|
accuracy: 0.900 recall_macro: 0.579 precision_macro: 0.510 f1_macro: 0.514 |
|
|
|
Running DecisionTreeClassifier(class_weight='balanced', max_depth=1) |
|
accuracy: 0.400 recall_macro: 0.200 precision_macro: 0.113 f1_macro: 0.124 |
|
Running DecisionTreeClassifier(class_weight='balanced', max_depth=10) |
|
accuracy: 0.909 recall_macro: 0.641 precision_macro: 0.531 f1_macro: 0.520 |
|
=== new best DecisionTreeClassifier(class_weight='balanced', max_depth=10) (using recall_macro): |
|
accuracy: 0.909 recall_macro: 0.641 precision_macro: 0.531 f1_macro: 0.520 |
|
|
|
Running DecisionTreeClassifier(class_weight='balanced', min_impurity_decrease=0.01) |
|
accuracy: 0.931 recall_macro: 0.723 precision_macro: 0.563 f1_macro: 0.595 |
|
=== new best DecisionTreeClassifier(class_weight='balanced', min_impurity_decrease=0.01) (using recall_macro): |
|
accuracy: 0.931 recall_macro: 0.723 precision_macro: 0.563 f1_macro: 0.595 |
|
|
|
Running LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) |
|
accuracy: 0.946 recall_macro: 0.739 precision_macro: 0.614 f1_macro: 0.647 |
|
=== new best LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) (using recall_macro): |
|
accuracy: 0.946 recall_macro: 0.739 precision_macro: 0.614 f1_macro: 0.647 |
|
|
|
Running LogisticRegression(C=1, class_weight='balanced', max_iter=1000) |
|
accuracy: 0.948 recall_macro: 0.749 precision_macro: 0.623 f1_macro: 0.657 |
|
=== new best LogisticRegression(C=1, class_weight='balanced', max_iter=1000) (using recall_macro): |
|
accuracy: 0.948 recall_macro: 0.749 precision_macro: 0.623 f1_macro: 0.657 |
|
|
|
|
|
Best model: |
|
LogisticRegression(C=1, class_weight='balanced', max_iter=1000) |
|
Best Scores: |
|
accuracy: 0.948 recall_macro: 0.749 precision_macro: 0.623 f1_macro: 0.657 |
|
|