achupakhin commited on
Commit
85123d7
·
verified ·
1 Parent(s): 9cafb70

Upload PPO CartPole-v1 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - CartPole-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: CartPole-v1
16
+ type: CartPole-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 500.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **CartPole-v1**
25
+ This is a trained model of a **PPO** agent playing **CartPole-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbe8cceb490>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbe8cceb520>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbe8cceb5b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbe8cceb640>", "_build": "<function ActorCriticPolicy._build at 0x7fbe8cceb6d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbe8cceb760>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbe8cceb7f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbe8cceb880>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbe8cceb910>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbe8cceb9a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbe8cceba30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbe8ccebac0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fbe8cc8ae80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1734649532391360665, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAAGfS4T0cmwg/igtvvPIB8r4DdQQ+21kcvpXIFr18Iok+P3/SPSO9FL4vUcE8fN87vd/oJD6+bcg+RguWPCyjgL5X1nW9lLRwvopXljzqBZQ+f+khPo25G74eBHi5Gcb/PfdQ6L149a++4TyVPNsnzj5rWkw9SddYPjrvzrwEMeu9tM1HPs0KT71D/lM8tGQnPqUL8D0rNkW+1lGrPL06iD6Edis+jNs6PsGUJTw3n169R7TLPSRpsD4EJqI8Ji7Ivo7pDT0tyQ29OShVu+cN4T32+4g+yw8pPf8K8LxrLeS9D9MgPtjAUb3r+h68/xGTPWUIIj0fFUU+ouaHPY8ku72UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLBIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdAgz0BJZntfHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQINgGuRs/IN1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDYEW1MM7VdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg2BNnGsFMnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQINgyeRPoFF1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDYbD1GsmwdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg2IkK3NLUXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQINinZVXFLp1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDYzk0aZQYdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg2NO8K5TZXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQINjRd6cAip1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDY8la8pTddX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg2PPc8DB/XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQINlQaaTfSB1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDZWKqn3tbdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg2VggHNX5nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQINlhwn6VMV1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDZvv4ubqhdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg2cxBE8aGnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQINnRKFqSHN1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDZ+HO8kD7dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg2kYiosI3XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQINppt1p0wJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDajMDfWMCdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg2siwSrYG3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQINrOmvW6LB1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDazaQFLWadX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg2vnfdhy83V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQINr7sa86FN1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDbUSbpeNUdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg21grxy4nXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQINtXlEJBxB1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDbYIsRQJpdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg5OMCDEm6XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIOTyBoVVPx1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDk9N/OMVDdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg5RSZrpJPXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIOVOe+VTrF1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDla9GI9DAdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg5YfHxSYPXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIOWydSVGCt1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDlt/4IrvtdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg5bX9JjDsXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIOXY0dilSF1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDl2lOXVsldX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg5iBJAdGRXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIOYmEEkjX51fZQoaAZHQH9AAAAAAABoB030AWgIR0CDmJXYDklvdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg5i1FhG6PXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIOZw8bJfY11fZQoaAZHQH9AAAAAAABoB030AWgIR0CDmfNwiqyXdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg5n7lJYkmnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIOaeL1mJ3x1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDm2HJLdvbdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg5vblzU7S3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIOcTsyBTXJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDnOo0hvBKdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg50AH3UQTXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIOc967dzn11fZQoaAZHQH9AAAAAAABoB030AWgIR0CDnXGBnSOSdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg513rMTviXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIOehEtuk1x1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDnp0A93bFdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg56amXPZ7HV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIOeuZ7Xxvx1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDn9DArQPadX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg8ICrLhaT3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIPCDIRywOh1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDwotYjjaPdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg8Nuez2OAHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIPD4MjNY8x1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDxErfcer/dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg8T4Wk8A73V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIPFDkMkQf91fZQoaAZHQH9AAAAAAABoB030AWgIR0CDxQU8FINFdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg8V+XiR4hXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIPFhJK8L8d1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDxpMwlByCdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg8aqSPluFnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIPGp+KCQLh1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDxse9SMtLdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg8fX4bjtHHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIPIAvUSZjR1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDyAuQp4KQdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg8iuUdJaq3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIPKBYvFm4B1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDyqCuloDgdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg8suskpqh3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIPMArlNlAh1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDzBmlImPYdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg8wT7MxGlXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIPMuXb/Ot51fZQoaAZHQH9AAAAAAABoB030AWgIR0CDzMCyQgcMdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg85Gbb1yvXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIPOZF5OafB1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDzmIHC4z8dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg86HanJkoXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIPP7eXRgJF1fZQoaAZHQH9AAAAAAABoB030AWgIR0CD0COXE61cdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg9AydWhh6XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVFgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "2", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-CartPole-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52a16f6caa7b1dda0c39d0c4357f541ed3fb2433388310e8bf043ecc62751e32
3
+ size 139708
ppo-CartPole-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-CartPole-v1/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbe8cceb490>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbe8cceb520>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbe8cceb5b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbe8cceb640>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fbe8cceb6d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fbe8cceb760>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbe8cceb7f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbe8cceb880>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fbe8cceb910>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbe8cceb9a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbe8cceba30>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbe8ccebac0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fbe8cc8ae80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1507328,
25
+ "_total_timesteps": 1500000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1734649532391360665,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAAGfS4T0cmwg/igtvvPIB8r4DdQQ+21kcvpXIFr18Iok+P3/SPSO9FL4vUcE8fN87vd/oJD6+bcg+RguWPCyjgL5X1nW9lLRwvopXljzqBZQ+f+khPo25G74eBHi5Gcb/PfdQ6L149a++4TyVPNsnzj5rWkw9SddYPjrvzrwEMeu9tM1HPs0KT71D/lM8tGQnPqUL8D0rNkW+1lGrPL06iD6Edis+jNs6PsGUJTw3n169R7TLPSRpsD4EJqI8Ji7Ivo7pDT0tyQ29OShVu+cN4T32+4g+yw8pPf8K8LxrLeS9D9MgPtjAUb3r+h68/xGTPWUIIj0fFUU+ouaHPY8ku72UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLBIaUjAFDlHSUUpQu"
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.004885333333333408,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdAgz0BJZntfHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQINgGuRs/IN1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDYEW1MM7VdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg2BNnGsFMnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQINgyeRPoFF1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDYbD1GsmwdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg2IkK3NLUXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQINinZVXFLp1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDYzk0aZQYdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg2NO8K5TZXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQINjRd6cAip1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDY8la8pTddX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg2PPc8DB/XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQINlQaaTfSB1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDZWKqn3tbdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg2VggHNX5nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQINlhwn6VMV1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDZvv4ubqhdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg2cxBE8aGnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQINnRKFqSHN1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDZ+HO8kD7dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg2kYiosI3XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQINppt1p0wJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDajMDfWMCdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg2siwSrYG3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQINrOmvW6LB1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDazaQFLWadX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg2vnfdhy83V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQINr7sa86FN1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDbUSbpeNUdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg21grxy4nXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQINtXlEJBxB1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDbYIsRQJpdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg5OMCDEm6XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIOTyBoVVPx1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDk9N/OMVDdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg5RSZrpJPXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIOVOe+VTrF1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDla9GI9DAdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg5YfHxSYPXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIOWydSVGCt1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDlt/4IrvtdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg5bX9JjDsXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIOXY0dilSF1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDl2lOXVsldX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg5iBJAdGRXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIOYmEEkjX51fZQoaAZHQH9AAAAAAABoB030AWgIR0CDmJXYDklvdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg5i1FhG6PXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIOZw8bJfY11fZQoaAZHQH9AAAAAAABoB030AWgIR0CDmfNwiqyXdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg5n7lJYkmnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIOaeL1mJ3x1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDm2HJLdvbdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg5vblzU7S3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIOcTsyBTXJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDnOo0hvBKdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg50AH3UQTXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIOc967dzn11fZQoaAZHQH9AAAAAAABoB030AWgIR0CDnXGBnSOSdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg513rMTviXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIOehEtuk1x1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDnp0A93bFdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg56amXPZ7HV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIOeuZ7Xxvx1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDn9DArQPadX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg8ICrLhaT3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIPCDIRywOh1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDwotYjjaPdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg8Nuez2OAHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIPD4MjNY8x1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDxErfcer/dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg8T4Wk8A73V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIPFDkMkQf91fZQoaAZHQH9AAAAAAABoB030AWgIR0CDxQU8FINFdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg8V+XiR4hXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIPFhJK8L8d1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDxpMwlByCdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg8aqSPluFnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIPGp+KCQLh1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDxse9SMtLdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg8fX4bjtHHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIPIAvUSZjR1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDyAuQp4KQdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg8iuUdJaq3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIPKBYvFm4B1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDyqCuloDgdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg8suskpqh3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIPMArlNlAh1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDzBmlImPYdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg8wT7MxGlXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIPMuXb/Ot51fZQoaAZHQH9AAAAAAABoB030AWgIR0CDzMCyQgcMdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg85Gbb1yvXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIPOZF5OafB1fZQoaAZHQH9AAAAAAABoB030AWgIR0CDzmIHC4z8dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg86HanJkoXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQIPP7eXRgJF1fZQoaAZHQH9AAAAAAABoB030AWgIR0CD0COXE61cdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAg9AydWhh6XVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 368,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVFgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True]",
60
+ "bounded_above": "[ True True True True]",
61
+ "_shape": [
62
+ 4
63
+ ],
64
+ "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
65
+ "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
66
+ "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
67
+ "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "2",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-CartPole-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1674fc3c16f40d15a5d32ace28e7ac2eac113f7cccb8363ec65c2a1fb3df84df
3
+ size 83242
ppo-CartPole-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1db9acfa40396fb5ec0d617cdb2a48092f4151b179932d2975e1362360b22f0c
3
+ size 41202
ppo-CartPole-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-CartPole-v1/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.0
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (54.5 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-12-19T23:22:38.637668"}