ppo-LunarLander-v2 / config.json
achupakhin's picture
Upload PPO LunarLander-v2 trained agent
e545fa3 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cd95bc464d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cd95bc46560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cd95bc465f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cd95bc46680>", "_build": "<function ActorCriticPolicy._build at 0x7cd95bc46710>", "forward": "<function ActorCriticPolicy.forward at 0x7cd95bc467a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cd95bc46830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cd95bc468c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7cd95bc46950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cd95bc469e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cd95bc46a70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cd95bc46b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cd8fd8acf80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1731801087839907287, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHN4Qz45/hI/3ZO1vvdko778liO+p2eMvAAAAAAAAAAATXiDPvf3Hr36wpQ7Z/QXukRHjL6QI+O6AACAPwAAgD/NaFG84MyoP5bZFb7Uigi/e8HgOmq2hL0AAAAAAAAAAGaqQz2DLw89n9s/vlmdhb6bAPe9qta8PQAAAAAAAAAAZhuWPakaVz3La+K9T77jvZnPhDzrdsq8AAAAAAAAAACAMG494byjurkCrjpawP41IBykOkVAxrkAAAAAAAAAAID7Az2TmDM/ANCru6bisL7LnBK74JArPQAAAAAAAAAAAIZMPdLHvLvqPZq8EDOLPGxTCT0GK2y9AACAPwAAgD/NP3U9Lt6SP7Wqmz3t+8m+mo28PLn0hj0AAAAAAAAAABrOET0U3JI9gWqPvQG8eL5vHe47W1FrvAAAAAAAAAAATeU+PUhnpLrCruI3nMncMvZThDpDVQK3AACAPwAAgD9mDWK9d8EoPi7Wdj0pb1++q9mWvH5ANr0AAAAAAAAAAM3c7jy+1us9dl0XPSlSh75/v0w96qOEvQAAAAAAAAAAAE9mPdqcGz/Vnww+HUbFvhRyk7o6DCG8AAAAAAAAAADmoG09bgThPdMiUT1H2Ya+2ApiPbzVkz0AAAAAAAAAAKYriD0UhKe6tRIws9Mtm6uRZne62sm1MwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDxp+H8CPqMAWyUTRsBjAF0lEdAmz4+UMXrMXV9lChoBkdAb0LhrnDBM2gHTRMBaAhHQJs/Lr5ZbIN1fZQoaAZHQG1mMKTjebdoB00nAWgIR0CbP1T4L1EmdX2UKGgGR0BwpNuUD+zdaAdNFwFoCEdAmz+k+1SflXV9lChoBkdAb/Cw7DEWI2gHTWUBaAhHQJtAAmtyPuJ1fZQoaAZHQGvXzC+De0poB00CAWgIR0CbQ3EVWS2ZdX2UKGgGR0Bt8ZTyauwHaAdNdQFoCEdAm0Nw6ZH/cXV9lChoBkdAcjotVaOghGgHTUUBaAhHQJtDnAfuCwt1fZQoaAZHQGzvwbuMMqloB00VAWgIR0CbRGksz2vjdX2UKGgGR0BvfnSDyvs7aAdNFAFoCEdAm0TgRkEs8XV9lChoBkdAcFFygPEsKGgHTR4BaAhHQJtFRYDDCP91fZQoaAZHQHEPATufEn9oB00GAWgIR0CbRVrNGEwndX2UKGgGR0ByjDpRoAXEaAdNLAFoCEdAm0V1dHDrJXV9lChoBkdAcNogwoLG72gHTUABaAhHQJtF8kRjBmB1fZQoaAZHQHAgjRUm2LJoB00FAWgIR0CbR2d/axoqdX2UKGgGR0BwWDi4rjHXaAdNRAFoCEdAm0hxZMcp9nV9lChoBkdAcCTbayrxRWgHTSwBaAhHQJtIy87IT5B1fZQoaAZHQG+sNjslb/xoB00vAWgIR0CbSSoFV1fWdX2UKGgGR0BwRrP7el9CaAdNMQFoCEdAm0mAwj+rEXV9lChoBkdAco5BwdbPhWgHTYABaAhHQJtKd64UeuF1fZQoaAZHQHMOQkPczqNoB00BAWgIR0CbSxTC+De1dX2UKGgGR0BwYnOs1baAaAdNCQFoCEdAm0tR60IC2nV9lChoBkdAbhPagVXV9WgHTQ0BaAhHQJtLi35N47l1fZQoaAZHQG4qPFFUhmpoB00dAWgIR0CbTUAbhm5EdX2UKGgGR0BvMMRe1KGtaAdNDwFoCEdAm009BnjABXV9lChoBkdAb+sBBiTdL2gHTS4BaAhHQJtNS1Aqur91fZQoaAZHQHAyif16E8JoB00XAWgIR0CbTbNfw7T2dX2UKGgGR0Bw2vNpudf+aAdNJAFoCEdAm0301yeZonV9lChoBkdAcUsaL4vexmgHTRgBaAhHQJtPp+CsfaJ1fZQoaAZHQGpVcXenAIpoB00DAWgIR0CbUGj4593KdX2UKGgGR0BtwovQF9roaAdNbQFoCEdAm1C7onrpq3V9lChoBkdAcgxwsXizcGgHTRgBaAhHQJtRY/C66J91fZQoaAZHQHBjgIIF/x5oB00hAWgIR0CbUgNwBHTadX2UKGgGR0Byw9oDgZTAaAdNRQFoCEdAm1IbgOz6anV9lChoBkdAcbAvPkaMrGgHTQcBaAhHQJtSNiKBNEh1fZQoaAZHQHCXz6i0v5BoB00CAWgIR0CbUqQdS2pidX2UKGgGR0ByOQU7CBPLaAdL+2gIR0CbUqymALApdX2UKGgGR0BxLlBX0XgtaAdNDgFoCEdAm1NTye7L+3V9lChoBkdAcNccXFcY7GgHTQgBaAhHQJtUwz2vjfh1fZQoaAZHQHHDTMvAXVNoB0v1aAhHQJtU6DpTuOV1fZQoaAZHQGsHtdZ7ojhoB00SAWgIR0CbVXqN6w+udX2UKGgGR0Bv6PO0LMLXaAdNIQFoCEdAm1WKnrIHT3V9lChoBkdAX54N4JNTLmgHTegDaAhHQJtV76XSjQB1fZQoaAZHQGwter2g399oB004AWgIR0CbVh84xUNsdX2UKGgGR0BLjMg+yJKraAdL2WgIR0CbWC5HmRvFdX2UKGgGR0Byo8nE2pAEaAdNGQFoCEdAm1hQlnh86XV9lChoBkdAcrmBpYcNpmgHTVIBaAhHQJtZdp5/smh1fZQoaAZHQG6rMjNY8uBoB00fAWgIR0CbWZbR4QjEdX2UKGgGR0BwccDzRQaaaAdNQAFoCEdAm1nldPci4nV9lChoBkdAbwdS5RTCL2gHTSMBaAhHQJtaYbtJFsp1fZQoaAZHQHCNUEcKgI1oB00pAWgIR0CbWnfbblBAdX2UKGgGR0Bs08jRlYlqaAdNHQFoCEdAm1rFYdQwbnV9lChoBkdAciWiTdLxqmgHTUYBaAhHQJtuQYZVGTd1fZQoaAZHQG7Fxe1KGtZoB01EAWgIR0Cbb07tiQT3dX2UKGgGR0BwxbNNahYeaAdNGAFoCEdAm2+RD9fkWHV9lChoBkdAcLPw71ZkkWgHTQoBaAhHQJtwFHDrJKd1fZQoaAZHQHF20jgQ6IZoB0v6aAhHQJtwTKp1ifB1fZQoaAZHQHLl7U1AJLNoB007AWgIR0CbcR2AG0NSdX2UKGgGR0By3zOW0JF9aAdNNgFoCEdAm3GtHYpUgnV9lChoBkdAbmwN3GGVRmgHTSMBaAhHQJt0putOmBR1fZQoaAZHQG+170e2d/doB01CAWgIR0CbdZSJTER8dX2UKGgGR0Bwf7Ud7v5QaAdNHwFoCEdAm3W8zZYgaHV9lChoBkdAcBRyB06o2mgHTQwBaAhHQJt2GoIfKZF1fZQoaAZHQHKdrrcCYC1oB00xAWgIR0CbdmzXSSeRdX2UKGgGR0ByGbRc/t6YaAdNMAFoCEdAm3a1yq+8G3V9lChoBkdAbTtzVc2R72gHTS0BaAhHQJt3MXHim2t1fZQoaAZHQHMgX9FWn0loB00oAWgIR0Cbd2AtWdVedX2UKGgGR0Bu5NeBxxT9aAdNEAFoCEdAm3iiwfQrtnV9lChoBkdAciruyu6mO2gHTSsBaAhHQJt4sA4n4PB1fZQoaAZHQHJ3/aQFLWZoB0v+aAhHQJt4qzzErG11fZQoaAZHQHGSGqkuYhNoB00SAWgIR0CbeNrvsqrjdX2UKGgGR0ButLzErGzbaAdNOQFoCEdAm3qHvDxb0XV9lChoBkdAcKXDG96C2GgHTSIBaAhHQJt65qBVdX11fZQoaAZHQGxrYBNmDlJoB01YAWgIR0Cbe/v60pmVdX2UKGgGR0ByFjjuKGcnaAdNQQFoCEdAm357cj7hvXV9lChoBkdAa9fbah6By2gHTQ4BaAhHQJt+4J2MbWF1fZQoaAZHQG2bgEEC/49oB00yAWgIR0CbfwxgAp8XdX2UKGgGR0BwJme/Yao/aAdNDAFoCEdAm39dLDhtL3V9lChoBkdAcMObZOBUaWgHTUoBaAhHQJt/rRtxdY51fZQoaAZHQHIbnWattANoB00SAWgIR0Cbf8GxD9fkdX2UKGgGR0BwwUyj59E1aAdNNgFoCEdAm3/bR0EHMXV9lChoBkdAcP4H+ZPVNGgHTUkBaAhHQJuAGvUz9CN1fZQoaAZHQHGN3lS0jTtoB0v0aAhHQJuAJ2mpEQZ1fZQoaAZHQHFbObNKRMhoB00DAWgIR0CbgH5H3DekdX2UKGgGR0ByhjrhR64UaAdNSQFoCEdAm4KUOqebu3V9lChoBkdAcGCrcj7hvWgHTUkBaAhHQJuCxqHoHLR1fZQoaAZHQHCeNO6/ZdxoB01uAWgIR0CbhpCr92ovdX2UKGgGR0Btgq44Ia99aAdNTQFoCEdAm4bPYjB2wHV9lChoBkdAchMSNwR5DGgHTRABaAhHQJuHSl7+kxh1fZQoaAZHQHEi+c+aBqdoB0v+aAhHQJuHkaBI4ER1fZQoaAZHQFw1c1O0svtoB03oA2gIR0CbiGB/qgRLdX2UKGgGR0BybVOzposaaAdNMAFoCEdAm4jtE1EVnHV9lChoBkdAbdX7SiM5wWgHTRYBaAhHQJuI6T0QK8d1fZQoaAZHQG8vuuJUHY9oB00cAWgIR0CbiOm4y44IdX2UKGgGR0BxIO1G9YfXaAdNCgFoCEdAm4lJFLFn7HV9lChoBkdAcPc+mm+Cb2gHTS0BaAhHQJuJ0RODaoN1fZQoaAZHQHK+zQ3PzFxoB01BAWgIR0CbincEeQuFdX2UKGgGR0BwflE+gUUPaAdNhwFoCEdAm4s/jKgZj3V9lChoBkdAcOI69kBjnWgHTScBaAhHQJuMT8fms/91fZQoaAZHQHAXEUTL4etoB01gAWgIR0CbjdijcmBwdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}