import torch | |
from typing import Dict, List, Any | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
# check for GPU | |
device = 0 if torch.cuda.is_available() else -1 | |
class EndpointHandler: | |
def __init__(self, path=""): | |
# load the model | |
tokenizer = AutoTokenizer.from_pretrained(path) | |
model = AutoModelForCausalLM.from_pretrained(path, low_cpu_mem_usage=True) | |
# create inference pipeline | |
self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device) | |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: | |
inputs = data.pop("inputs", data) | |
parameters = data.pop("parameters", None) | |
# pass inputs with all kwargs in data | |
if parameters is not None: | |
prediction = self.pipeline(inputs, **parameters) | |
else: | |
prediction = self.pipeline(inputs) | |
# postprocess the prediction | |
return prediction | |