adasdimchom commited on
Commit
389abca
1 Parent(s): 5661451

Upload handler.py

Browse files
Files changed (1) hide show
  1. handler.py +41 -0
handler.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import BlipProcessor, BlipForConditionalGeneration
2
+ from typing import Dict, List, Any
3
+ from PIL import Image
4
+ from transformers import pipeline
5
+ import requests
6
+ import torch
7
+
8
+ class EndpointHandler():
9
+ def __init__(self, path=""):
10
+ """
11
+ path:
12
+ """
13
+ self.device = "cuda" if torch.cuda.is_available() else "cpu"
14
+ self.processor = BlipProcessor.from_pretrained(path)
15
+ self.model = BlipForConditionalGeneration.from_pretrained(path, torch_dtype=torch.float16).to(self.device)
16
+
17
+ def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
18
+ """
19
+ data args:
20
+ inputs (:obj: `str` | `PIL.Image` | `np.array`)
21
+ kwargs
22
+ Return:
23
+ A :obj:`list` | `dict`: will be serialized and returned
24
+ """
25
+ result = {}
26
+ inputs = data.pop("inputs", data)
27
+ image_url = inputs['image_url']
28
+ if "prompt" in inputs:
29
+ prompt = inputs["prompt"]
30
+ else:
31
+ prompt = None
32
+ image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
33
+ if prompt:
34
+ processed_image = self.processor(images=image, text=prompt, return_tensors="pt").to(self.device, torch.float16)
35
+ else:
36
+ processed_image = self.processor(images=image, return_tensors="pt").to(self.device, torch.float16)
37
+ output = self.model.generate(**processed_image)
38
+ text_output = self.processor.decode(output[0], skip_special_tokens=True)
39
+ result["text_output"] = text_output
40
+ feature_vector = output.last_hidden_state[:, 0, :]
41
+ return result