File size: 6,983 Bytes
8430477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: 20240327211222_nice_straka
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 20240327211222_nice_straka

This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0208
- Precision: 0.9848
- Recall: 0.9853
- F1: 0.9850
- Accuracy: 0.9923

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 69
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 350
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0519        | 0.09  | 300   | 0.0367          | 0.9736    | 0.9691 | 0.9713 | 0.9856   |
| 0.0518        | 0.17  | 600   | 0.0379          | 0.9717    | 0.9709 | 0.9713 | 0.9855   |
| 0.048         | 0.26  | 900   | 0.0357          | 0.9742    | 0.9692 | 0.9717 | 0.9858   |
| 0.0478        | 0.34  | 1200  | 0.0350          | 0.9736    | 0.9724 | 0.9730 | 0.9863   |
| 0.0495        | 0.43  | 1500  | 0.0366          | 0.9734    | 0.9703 | 0.9718 | 0.9856   |
| 0.0457        | 0.51  | 1800  | 0.0344          | 0.9719    | 0.9749 | 0.9734 | 0.9863   |
| 0.0464        | 0.6   | 2100  | 0.0347          | 0.9731    | 0.9717 | 0.9724 | 0.9861   |
| 0.0447        | 0.68  | 2400  | 0.0329          | 0.9743    | 0.9739 | 0.9741 | 0.9868   |
| 0.0435        | 0.77  | 2700  | 0.0332          | 0.9738    | 0.9748 | 0.9743 | 0.9868   |
| 0.0414        | 0.85  | 3000  | 0.0324          | 0.9729    | 0.9771 | 0.9750 | 0.9871   |
| 0.0412        | 0.94  | 3300  | 0.0312          | 0.9759    | 0.9756 | 0.9758 | 0.9875   |
| 0.0352        | 1.02  | 3600  | 0.0312          | 0.9749    | 0.9760 | 0.9754 | 0.9875   |
| 0.0353        | 1.11  | 3900  | 0.0304          | 0.9767    | 0.9759 | 0.9763 | 0.9878   |
| 0.0348        | 1.19  | 4200  | 0.0305          | 0.9765    | 0.9748 | 0.9757 | 0.9877   |
| 0.0362        | 1.28  | 4500  | 0.0313          | 0.9768    | 0.9738 | 0.9753 | 0.9876   |
| 0.0352        | 1.36  | 4800  | 0.0304          | 0.9764    | 0.9771 | 0.9767 | 0.9880   |
| 0.0344        | 1.45  | 5100  | 0.0306          | 0.9778    | 0.9744 | 0.9761 | 0.9880   |
| 0.0337        | 1.54  | 5400  | 0.0288          | 0.9779    | 0.9769 | 0.9774 | 0.9886   |
| 0.0328        | 1.62  | 5700  | 0.0284          | 0.9776    | 0.9777 | 0.9776 | 0.9888   |
| 0.0335        | 1.71  | 6000  | 0.0277          | 0.9783    | 0.9779 | 0.9781 | 0.9887   |
| 0.0329        | 1.79  | 6300  | 0.0284          | 0.9791    | 0.9752 | 0.9772 | 0.9886   |
| 0.0328        | 1.88  | 6600  | 0.0292          | 0.9764    | 0.9773 | 0.9768 | 0.9882   |
| 0.0316        | 1.96  | 6900  | 0.0268          | 0.9785    | 0.9773 | 0.9779 | 0.9890   |
| 0.0264        | 2.05  | 7200  | 0.0272          | 0.9776    | 0.9803 | 0.9789 | 0.9892   |
| 0.0269        | 2.13  | 7500  | 0.0274          | 0.9792    | 0.9782 | 0.9787 | 0.9891   |
| 0.027         | 2.22  | 7800  | 0.0291          | 0.9774    | 0.9782 | 0.9778 | 0.9889   |
| 0.0262        | 2.3   | 8100  | 0.0249          | 0.9809    | 0.9807 | 0.9808 | 0.9902   |
| 0.0258        | 2.39  | 8400  | 0.0255          | 0.9808    | 0.9805 | 0.9806 | 0.9900   |
| 0.0261        | 2.47  | 8700  | 0.0251          | 0.9808    | 0.9800 | 0.9804 | 0.9900   |
| 0.0251        | 2.56  | 9000  | 0.0250          | 0.9814    | 0.9788 | 0.9801 | 0.9901   |
| 0.0248        | 2.64  | 9300  | 0.0248          | 0.9813    | 0.9791 | 0.9802 | 0.9901   |
| 0.0246        | 2.73  | 9600  | 0.0248          | 0.9800    | 0.9817 | 0.9809 | 0.9902   |
| 0.0243        | 2.82  | 9900  | 0.0239          | 0.9793    | 0.9819 | 0.9806 | 0.9900   |
| 0.0241        | 2.9   | 10200 | 0.0236          | 0.9805    | 0.9823 | 0.9814 | 0.9904   |
| 0.0238        | 2.99  | 10500 | 0.0231          | 0.9822    | 0.9799 | 0.9811 | 0.9907   |
| 0.0187        | 3.07  | 10800 | 0.0259          | 0.9782    | 0.9823 | 0.9802 | 0.9901   |
| 0.0188        | 3.16  | 11100 | 0.0231          | 0.9821    | 0.9827 | 0.9824 | 0.9909   |
| 0.0189        | 3.24  | 11400 | 0.0229          | 0.9830    | 0.9802 | 0.9816 | 0.9910   |
| 0.0191        | 3.33  | 11700 | 0.0220          | 0.9815    | 0.9827 | 0.9821 | 0.9910   |
| 0.0187        | 3.41  | 12000 | 0.0223          | 0.9821    | 0.9834 | 0.9828 | 0.9912   |
| 0.018         | 3.5   | 12300 | 0.0224          | 0.9802    | 0.9829 | 0.9815 | 0.9909   |
| 0.0183        | 3.58  | 12600 | 0.0217          | 0.9823    | 0.9831 | 0.9827 | 0.9911   |
| 0.0176        | 3.67  | 12900 | 0.0214          | 0.9840    | 0.9824 | 0.9832 | 0.9916   |
| 0.0177        | 3.75  | 13200 | 0.0211          | 0.9837    | 0.9834 | 0.9835 | 0.9916   |
| 0.0173        | 3.84  | 13500 | 0.0210          | 0.9828    | 0.9840 | 0.9834 | 0.9916   |
| 0.017         | 3.92  | 13800 | 0.0207          | 0.9832    | 0.9839 | 0.9836 | 0.9916   |
| 0.0141        | 4.01  | 14100 | 0.0213          | 0.9844    | 0.9838 | 0.9841 | 0.9919   |
| 0.0129        | 4.09  | 14400 | 0.0213          | 0.9837    | 0.9849 | 0.9843 | 0.9919   |
| 0.013         | 4.18  | 14700 | 0.0228          | 0.9831    | 0.9834 | 0.9833 | 0.9915   |
| 0.0128        | 4.27  | 15000 | 0.0210          | 0.9844    | 0.9846 | 0.9845 | 0.9920   |
| 0.0126        | 4.35  | 15300 | 0.0212          | 0.9843    | 0.9842 | 0.9842 | 0.9920   |
| 0.0125        | 4.44  | 15600 | 0.0214          | 0.9845    | 0.9844 | 0.9844 | 0.9920   |
| 0.0121        | 4.52  | 15900 | 0.0217          | 0.9844    | 0.9846 | 0.9845 | 0.9921   |
| 0.012         | 4.61  | 16200 | 0.0211          | 0.9847    | 0.9848 | 0.9847 | 0.9922   |
| 0.0119        | 4.69  | 16500 | 0.0209          | 0.9845    | 0.9852 | 0.9848 | 0.9922   |
| 0.0116        | 4.78  | 16800 | 0.0211          | 0.9845    | 0.9847 | 0.9846 | 0.9922   |
| 0.0115        | 4.86  | 17100 | 0.0210          | 0.9850    | 0.9844 | 0.9847 | 0.9923   |
| 0.0115        | 4.95  | 17400 | 0.0208          | 0.9848    | 0.9853 | 0.9850 | 0.9923   |


### Framework versions

- Transformers 4.39.1
- Pytorch 2.2.0a0+6a974be
- Datasets 2.18.0
- Tokenizers 0.15.2