adasgaleus commited on
Commit
dca0147
1 Parent(s): 56025e5

Add SetFit ABSA model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - absa
6
+ - sentence-transformers
7
+ - text-classification
8
+ - generated_from_setfit_trainer
9
+ base_model: BAAI/bge-small-en-v1.5
10
+ metrics:
11
+ - accuracy
12
+ widget: []
13
+ pipeline_tag: text-classification
14
+ inference: false
15
+ ---
16
+
17
+ # SetFit Aspect Model with BAAI/bge-small-en-v1.5
18
+
19
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
20
+
21
+ The model has been trained using an efficient few-shot learning technique that involves:
22
+
23
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
24
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
25
+
26
+ This model was trained within the context of a larger system for ABSA, which looks like so:
27
+
28
+ 1. Use a spaCy model to select possible aspect span candidates.
29
+ 2. **Use this SetFit model to filter these possible aspect span candidates.**
30
+ 3. Use a SetFit model to classify the filtered aspect span candidates.
31
+
32
+ ## Model Details
33
+
34
+ ### Model Description
35
+ - **Model Type:** SetFit
36
+ - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
37
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
38
+ - **spaCy Model:** en_core_web_lg
39
+ - **SetFitABSA Aspect Model:** [adasgaleus/absa-model-aspect](https://huggingface.co/adasgaleus/absa-model-aspect)
40
+ - **SetFitABSA Polarity Model:** [adasgaleus/absa-model-polarity](https://huggingface.co/adasgaleus/absa-model-polarity)
41
+ - **Maximum Sequence Length:** 512 tokens
42
+ - **Number of Classes:** 2 classes
43
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
44
+ <!-- - **Language:** Unknown -->
45
+ <!-- - **License:** Unknown -->
46
+
47
+ ### Model Sources
48
+
49
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
50
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
51
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
52
+
53
+ ## Uses
54
+
55
+ ### Direct Use for Inference
56
+
57
+ First install the SetFit library:
58
+
59
+ ```bash
60
+ pip install setfit
61
+ ```
62
+
63
+ Then you can load this model and run inference.
64
+
65
+ ```python
66
+ from setfit import AbsaModel
67
+
68
+ # Download from the 🤗 Hub
69
+ model = AbsaModel.from_pretrained(
70
+ "adasgaleus/absa-model-aspect",
71
+ "adasgaleus/absa-model-polarity",
72
+ )
73
+ # Run inference
74
+ preds = model("The food was great, but the venue is just way too busy.")
75
+ ```
76
+
77
+ <!--
78
+ ### Downstream Use
79
+
80
+ *List how someone could finetune this model on their own dataset.*
81
+ -->
82
+
83
+ <!--
84
+ ### Out-of-Scope Use
85
+
86
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
87
+ -->
88
+
89
+ <!--
90
+ ## Bias, Risks and Limitations
91
+
92
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
93
+ -->
94
+
95
+ <!--
96
+ ### Recommendations
97
+
98
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
99
+ -->
100
+
101
+ ## Training Details
102
+
103
+ ### Framework Versions
104
+ - Python: 3.11.5
105
+ - SetFit: 1.0.3
106
+ - Sentence Transformers: 2.7.0
107
+ - spaCy: 3.7.4
108
+ - Transformers: 4.40.1
109
+ - PyTorch: 2.3.0+cu121
110
+ - Datasets: 2.19.0
111
+ - Tokenizers: 0.19.1
112
+
113
+ ## Citation
114
+
115
+ ### BibTeX
116
+ ```bibtex
117
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
118
+ doi = {10.48550/ARXIV.2209.11055},
119
+ url = {https://arxiv.org/abs/2209.11055},
120
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
121
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
122
+ title = {Efficient Few-Shot Learning Without Prompts},
123
+ publisher = {arXiv},
124
+ year = {2022},
125
+ copyright = {Creative Commons Attribution 4.0 International}
126
+ }
127
+ ```
128
+
129
+ <!--
130
+ ## Glossary
131
+
132
+ *Clearly define terms in order to be accessible across audiences.*
133
+ -->
134
+
135
+ <!--
136
+ ## Model Card Authors
137
+
138
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
139
+ -->
140
+
141
+ <!--
142
+ ## Model Card Contact
143
+
144
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
145
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/adas/knowdroids/absa/data/setfit/setfit_model2-aspect",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.40.1",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "1.13.0+cu117"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "spacy_model": "en_core_web_lg",
3
+ "labels": [
4
+ "no aspect",
5
+ "aspect"
6
+ ],
7
+ "normalize_embeddings": false,
8
+ "span_context": 0
9
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:947da8f96e9edc224fbcb0883f438a3f98ea24a935838fbf2bd804d869d9e9b3
3
+ size 133462128
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:899afc98857573ad7370f9ceda7c13f31e1b1300c35286c0d833fc4f511cace3
3
+ size 3919
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff