File size: 1,958 Bytes
e9b132b
fa5cbd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9b132b
 
fa5cbd9
 
e9b132b
fa5cbd9
e9b132b
fa5cbd9
 
 
 
e9b132b
fa5cbd9
e9b132b
fa5cbd9
e9b132b
fa5cbd9
e9b132b
fa5cbd9
e9b132b
fa5cbd9
e9b132b
fa5cbd9
e9b132b
fa5cbd9
e9b132b
fa5cbd9
e9b132b
fa5cbd9
 
 
 
 
 
 
 
 
e9b132b
fa5cbd9
e9b132b
fa5cbd9
 
 
 
 
 
 
e9b132b
 
fa5cbd9
e9b132b
fa5cbd9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: mit
base_model: microsoft/MiniLM-L12-H384-uncased
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- f1
model-index:
- name: minilm_finetuned_emotions
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: emotion
      type: emotion
      config: split
      split: validation
      args: split
    metrics:
    - name: F1
      type: f1
      value: 0.9103389601463553
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# minilm_finetuned_emotions

This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4118
- F1: 0.9103

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.3758        | 1.0   | 250  | 1.0211          | 0.5910 |
| 0.885         | 2.0   | 500  | 0.7133          | 0.7977 |
| 0.6248        | 3.0   | 750  | 0.5321          | 0.8840 |
| 0.4874        | 4.0   | 1000 | 0.4416          | 0.9013 |
| 0.4193        | 5.0   | 1250 | 0.4118          | 0.9103 |


### Framework versions

- Transformers 4.38.1
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2