adeshkin commited on
Commit
0f0c488
1 Parent(s): e197a93

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 768, "out_features": 768, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9abc0a6370dc227eaead95fd3213ff12a316ee6c4fb2b0243c49123941c592fd
3
+ size 2362528
README.md ADDED
@@ -0,0 +1,406 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/LaBSE
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:81836
11
+ - loss:MultipleNegativesRankingLoss
12
+ widget:
13
+ - source_sentence: ( аның ӱчӱн мындағылар андағ мӧңіс паза чочыстығ полтырлар ).
14
+ sentences:
15
+ - так как он не пришел , младший брат идет сам . когда младший брат пришел , один
16
+ старик привязал обоих братьев , а сам прислонился к огню , грея спину свою .
17
+ - шлёпать по грязи
18
+ - ( именно это и привело все общество в мрачное и тревожное настроение ).
19
+ - source_sentence: пір чӧптіг
20
+ sentences:
21
+ - его болезнь осложняется .
22
+ - единомышленники
23
+ - ощутить озноб , дрожь .
24
+ - source_sentence: анаң вторник кӱн уже килтір .
25
+ sentences:
26
+ - фашистский концлагерь .
27
+ - быть сплочёнными и единодушными .
28
+ - во вторник уже приехал .
29
+ - source_sentence: батальон командирі
30
+ sentences:
31
+ - 'и говорит ему иисус : истинно говорю тебе , что ты ныне , в эту ночь , прежде
32
+ нежели дважды пропоёт петух , трижды отречёшься от меня .'
33
+ - батальонный командир
34
+ - в это время мальчик , как суслик , выскочивший из норы , потеряв дар речи , умывался
35
+ опрокинутым на него молоком .
36
+ - source_sentence: прай сынынҷа андағ .
37
+ sentences:
38
+ - 'иисус говорит ей : не прикасайся ко мне , ибо я ещё не восшел к отцу моему ;
39
+ а иди к братьям моим и скажи им : восхожу к отцу моему и отцу вашему , и к богу
40
+ моему и богу вашему .'
41
+ - эх , не поверит !
42
+ - по всей высоте такая .
43
+ ---
44
+
45
+ # SentenceTransformer based on sentence-transformers/LaBSE
46
+
47
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
48
+
49
+ ## Model Details
50
+
51
+ ### Model Description
52
+ - **Model Type:** Sentence Transformer
53
+ - **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) <!-- at revision e34fab64a3011d2176c99545a93d5cbddc9a91b7 -->
54
+ - **Maximum Sequence Length:** 256 tokens
55
+ - **Output Dimensionality:** 768 tokens
56
+ - **Similarity Function:** Cosine Similarity
57
+ <!-- - **Training Dataset:** Unknown -->
58
+ <!-- - **Language:** Unknown -->
59
+ <!-- - **License:** Unknown -->
60
+
61
+ ### Model Sources
62
+
63
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
64
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
65
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
66
+
67
+ ### Full Model Architecture
68
+
69
+ ```
70
+ SentenceTransformer(
71
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
72
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
73
+ (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
74
+ (3): Normalize()
75
+ )
76
+ ```
77
+
78
+ ## Usage
79
+
80
+ ### Direct Usage (Sentence Transformers)
81
+
82
+ First install the Sentence Transformers library:
83
+
84
+ ```bash
85
+ pip install -U sentence-transformers
86
+ ```
87
+
88
+ Then you can load this model and run inference.
89
+ ```python
90
+ from sentence_transformers import SentenceTransformer
91
+
92
+ # Download from the 🤗 Hub
93
+ model = SentenceTransformer("sentence_transformers_model_id")
94
+ # Run inference
95
+ sentences = [
96
+ 'прай сынынҷа андағ .',
97
+ 'по всей высоте такая .',
98
+ 'эх , не поверит !',
99
+ ]
100
+ embeddings = model.encode(sentences)
101
+ print(embeddings.shape)
102
+ # [3, 768]
103
+
104
+ # Get the similarity scores for the embeddings
105
+ similarities = model.similarity(embeddings, embeddings)
106
+ print(similarities.shape)
107
+ # [3, 3]
108
+ ```
109
+
110
+ <!--
111
+ ### Direct Usage (Transformers)
112
+
113
+ <details><summary>Click to see the direct usage in Transformers</summary>
114
+
115
+ </details>
116
+ -->
117
+
118
+ <!--
119
+ ### Downstream Usage (Sentence Transformers)
120
+
121
+ You can finetune this model on your own dataset.
122
+
123
+ <details><summary>Click to expand</summary>
124
+
125
+ </details>
126
+ -->
127
+
128
+ <!--
129
+ ### Out-of-Scope Use
130
+
131
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
132
+ -->
133
+
134
+ <!--
135
+ ## Bias, Risks and Limitations
136
+
137
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
138
+ -->
139
+
140
+ <!--
141
+ ### Recommendations
142
+
143
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
144
+ -->
145
+
146
+ ## Training Details
147
+
148
+ ### Training Dataset
149
+
150
+ #### Unnamed Dataset
151
+
152
+
153
+ * Size: 81,836 training samples
154
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
155
+ * Approximate statistics based on the first 1000 samples:
156
+ | | sentence_0 | sentence_1 | label |
157
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
158
+ | type | string | string | float |
159
+ | details | <ul><li>min: 4 tokens</li><li>mean: 18.67 tokens</li><li>max: 114 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 13.81 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
160
+ * Samples:
161
+ | sentence_0 | sentence_1 | label |
162
+ |:------------------------------------------------------------------------------------|:----------------------------------------------------------------|:-----------------|
163
+ | <code>– че , чоохтазаар анаң , исчем .</code> | <code>– ну , говорите же , слушаю .</code> | <code>1.0</code> |
164
+ | <code>чииттер агитбригадазы</code> | <code>молодёжная агитбригада .</code> | <code>1.0</code> |
165
+ | <code>че ипчі алчатхан оол орайлатчатханда , прайзы , сабыхсып , узубысхан .</code> | <code>и как жених замедлил , то задремали все и уснули .</code> | <code>1.0</code> |
166
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
167
+ ```json
168
+ {
169
+ "scale": 20.0,
170
+ "similarity_fct": "cos_sim"
171
+ }
172
+ ```
173
+
174
+ ### Training Hyperparameters
175
+ #### Non-Default Hyperparameters
176
+
177
+ - `eval_strategy`: steps
178
+ - `num_train_epochs`: 1
179
+ - `fp16`: True
180
+ - `multi_dataset_batch_sampler`: round_robin
181
+
182
+ #### All Hyperparameters
183
+ <details><summary>Click to expand</summary>
184
+
185
+ - `overwrite_output_dir`: False
186
+ - `do_predict`: False
187
+ - `eval_strategy`: steps
188
+ - `prediction_loss_only`: True
189
+ - `per_device_train_batch_size`: 8
190
+ - `per_device_eval_batch_size`: 8
191
+ - `per_gpu_train_batch_size`: None
192
+ - `per_gpu_eval_batch_size`: None
193
+ - `gradient_accumulation_steps`: 1
194
+ - `eval_accumulation_steps`: None
195
+ - `torch_empty_cache_steps`: None
196
+ - `learning_rate`: 5e-05
197
+ - `weight_decay`: 0.0
198
+ - `adam_beta1`: 0.9
199
+ - `adam_beta2`: 0.999
200
+ - `adam_epsilon`: 1e-08
201
+ - `max_grad_norm`: 1
202
+ - `num_train_epochs`: 1
203
+ - `max_steps`: -1
204
+ - `lr_scheduler_type`: linear
205
+ - `lr_scheduler_kwargs`: {}
206
+ - `warmup_ratio`: 0.0
207
+ - `warmup_steps`: 0
208
+ - `log_level`: passive
209
+ - `log_level_replica`: warning
210
+ - `log_on_each_node`: True
211
+ - `logging_nan_inf_filter`: True
212
+ - `save_safetensors`: True
213
+ - `save_on_each_node`: False
214
+ - `save_only_model`: False
215
+ - `restore_callback_states_from_checkpoint`: False
216
+ - `no_cuda`: False
217
+ - `use_cpu`: False
218
+ - `use_mps_device`: False
219
+ - `seed`: 42
220
+ - `data_seed`: None
221
+ - `jit_mode_eval`: False
222
+ - `use_ipex`: False
223
+ - `bf16`: False
224
+ - `fp16`: True
225
+ - `fp16_opt_level`: O1
226
+ - `half_precision_backend`: auto
227
+ - `bf16_full_eval`: False
228
+ - `fp16_full_eval`: False
229
+ - `tf32`: None
230
+ - `local_rank`: 0
231
+ - `ddp_backend`: None
232
+ - `tpu_num_cores`: None
233
+ - `tpu_metrics_debug`: False
234
+ - `debug`: []
235
+ - `dataloader_drop_last`: False
236
+ - `dataloader_num_workers`: 0
237
+ - `dataloader_prefetch_factor`: None
238
+ - `past_index`: -1
239
+ - `disable_tqdm`: False
240
+ - `remove_unused_columns`: True
241
+ - `label_names`: None
242
+ - `load_best_model_at_end`: False
243
+ - `ignore_data_skip`: False
244
+ - `fsdp`: []
245
+ - `fsdp_min_num_params`: 0
246
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
247
+ - `fsdp_transformer_layer_cls_to_wrap`: None
248
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
249
+ - `deepspeed`: None
250
+ - `label_smoothing_factor`: 0.0
251
+ - `optim`: adamw_torch
252
+ - `optim_args`: None
253
+ - `adafactor`: False
254
+ - `group_by_length`: False
255
+ - `length_column_name`: length
256
+ - `ddp_find_unused_parameters`: None
257
+ - `ddp_bucket_cap_mb`: None
258
+ - `ddp_broadcast_buffers`: False
259
+ - `dataloader_pin_memory`: True
260
+ - `dataloader_persistent_workers`: False
261
+ - `skip_memory_metrics`: True
262
+ - `use_legacy_prediction_loop`: False
263
+ - `push_to_hub`: False
264
+ - `resume_from_checkpoint`: None
265
+ - `hub_model_id`: None
266
+ - `hub_strategy`: every_save
267
+ - `hub_private_repo`: False
268
+ - `hub_always_push`: False
269
+ - `gradient_checkpointing`: False
270
+ - `gradient_checkpointing_kwargs`: None
271
+ - `include_inputs_for_metrics`: False
272
+ - `eval_do_concat_batches`: True
273
+ - `fp16_backend`: auto
274
+ - `push_to_hub_model_id`: None
275
+ - `push_to_hub_organization`: None
276
+ - `mp_parameters`:
277
+ - `auto_find_batch_size`: False
278
+ - `full_determinism`: False
279
+ - `torchdynamo`: None
280
+ - `ray_scope`: last
281
+ - `ddp_timeout`: 1800
282
+ - `torch_compile`: False
283
+ - `torch_compile_backend`: None
284
+ - `torch_compile_mode`: None
285
+ - `dispatch_batches`: None
286
+ - `split_batches`: None
287
+ - `include_tokens_per_second`: False
288
+ - `include_num_input_tokens_seen`: False
289
+ - `neftune_noise_alpha`: None
290
+ - `optim_target_modules`: None
291
+ - `batch_eval_metrics`: False
292
+ - `eval_on_start`: False
293
+ - `eval_use_gather_object`: False
294
+ - `batch_sampler`: batch_sampler
295
+ - `multi_dataset_batch_sampler`: round_robin
296
+
297
+ </details>
298
+
299
+ ### Training Logs
300
+ | Epoch | Step | Training Loss |
301
+ |:------:|:----:|:-------------:|
302
+ | 0.0098 | 100 | - |
303
+ | 0.0196 | 200 | - |
304
+ | 0.0293 | 300 | - |
305
+ | 0.0391 | 400 | - |
306
+ | 0.0489 | 500 | 0.5082 |
307
+ | 0.0587 | 600 | - |
308
+ | 0.0684 | 700 | - |
309
+ | 0.0782 | 800 | - |
310
+ | 0.0880 | 900 | - |
311
+ | 0.0978 | 1000 | 0.2939 |
312
+ | 0.1075 | 1100 | - |
313
+ | 0.1173 | 1200 | - |
314
+ | 0.1271 | 1300 | - |
315
+ | 0.1369 | 1400 | - |
316
+ | 0.1466 | 1500 | 0.272 |
317
+ | 0.1564 | 1600 | - |
318
+ | 0.1662 | 1700 | - |
319
+ | 0.1760 | 1800 | - |
320
+ | 0.1857 | 1900 | - |
321
+ | 0.1955 | 2000 | 0.2019 |
322
+ | 0.2053 | 2100 | - |
323
+ | 0.2151 | 2200 | - |
324
+ | 0.2248 | 2300 | - |
325
+ | 0.2346 | 2400 | - |
326
+ | 0.2444 | 2500 | 0.1543 |
327
+ | 0.2542 | 2600 | - |
328
+ | 0.2639 | 2700 | - |
329
+ | 0.2737 | 2800 | - |
330
+ | 0.2835 | 2900 | - |
331
+ | 0.2933 | 3000 | 0.1632 |
332
+ | 0.3030 | 3100 | - |
333
+ | 0.3128 | 3200 | - |
334
+ | 0.3226 | 3300 | - |
335
+ | 0.3324 | 3400 | - |
336
+ | 0.3421 | 3500 | 0.1483 |
337
+ | 0.3519 | 3600 | - |
338
+ | 0.3617 | 3700 | - |
339
+ | 0.3715 | 3800 | - |
340
+ | 0.3812 | 3900 | - |
341
+ | 0.3910 | 4000 | 0.136 |
342
+ | 0.4008 | 4100 | - |
343
+ | 0.4106 | 4200 | - |
344
+ | 0.4203 | 4300 | - |
345
+ | 0.4301 | 4400 | - |
346
+ | 0.4399 | 4500 | 0.1341 |
347
+ | 0.4497 | 4600 | - |
348
+ | 0.4594 | 4700 | - |
349
+ | 0.4692 | 4800 | - |
350
+
351
+
352
+ ### Framework Versions
353
+ - Python: 3.10.12
354
+ - Sentence Transformers: 3.1.1
355
+ - Transformers: 4.44.2
356
+ - PyTorch: 2.4.1+cu121
357
+ - Accelerate: 0.34.2
358
+ - Datasets: 3.0.1
359
+ - Tokenizers: 0.19.1
360
+
361
+ ## Citation
362
+
363
+ ### BibTeX
364
+
365
+ #### Sentence Transformers
366
+ ```bibtex
367
+ @inproceedings{reimers-2019-sentence-bert,
368
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
369
+ author = "Reimers, Nils and Gurevych, Iryna",
370
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
371
+ month = "11",
372
+ year = "2019",
373
+ publisher = "Association for Computational Linguistics",
374
+ url = "https://arxiv.org/abs/1908.10084",
375
+ }
376
+ ```
377
+
378
+ #### MultipleNegativesRankingLoss
379
+ ```bibtex
380
+ @misc{henderson2017efficient,
381
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
382
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
383
+ year={2017},
384
+ eprint={1705.00652},
385
+ archivePrefix={arXiv},
386
+ primaryClass={cs.CL}
387
+ }
388
+ ```
389
+
390
+ <!--
391
+ ## Glossary
392
+
393
+ *Clearly define terms in order to be accessible across audiences.*
394
+ -->
395
+
396
+ <!--
397
+ ## Model Card Authors
398
+
399
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
400
+ -->
401
+
402
+ <!--
403
+ ## Model Card Contact
404
+
405
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
406
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/LaBSE",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-12,
16
+ "max_position_embeddings": 512,
17
+ "model_type": "bert",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "pad_token_id": 0,
21
+ "pooler_fc_size": 768,
22
+ "pooler_num_attention_heads": 12,
23
+ "pooler_num_fc_layers": 3,
24
+ "pooler_size_per_head": 128,
25
+ "pooler_type": "first_token_transform",
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 501153
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a05c88f6545a90ac03ce51bcab42a17006d85ed54e945cd1ed634403dbb6cee3
3
+ size 1883730160
modules.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ },
20
+ {
21
+ "idx": 3,
22
+ "name": "3",
23
+ "path": "3_Normalize",
24
+ "type": "sentence_transformers.models.Normalize"
25
+ }
26
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92262b29204f8fdc169a63f9005a0e311a16262cef4d96ecfe2a7ed638662ed3
3
+ size 13632172
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "full_tokenizer_file": null,
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff