File size: 3,222 Bytes
02641fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49a616a
044be66
4f9fe62
044be66
02641fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c0ce31
147243d
b526e16
1464a2a
ed79965
bb43682
9409e79
ef86d02
3c00210
bc7adc9
072fb1c
89be7b0
acb764b
95408cf
8d1dce4
2cb04b0
49a616a
b0126dd
4f9fe62
a2ec5fe
6560a32
f0cfce2
ca36ff9
044be66
02641fc
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: mit
base_model: indobenchmark/indobert-large-p1
tags:
- generated_from_keras_callback
model-index:
- name: aditnnda/gacoan_reviewer
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# aditnnda/gacoan_reviewer

This model is a fine-tuned version of [indobenchmark/indobert-large-p1](https://huggingface.co/indobenchmark/indobert-large-p1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0001
- Validation Loss: 0.4435
- Train Accuracy: 0.9386
- Epoch: 24

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3550, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.2553     | 0.1732          | 0.9331         | 0     |
| 0.0938     | 0.1571          | 0.9400         | 1     |
| 0.0310     | 0.2345          | 0.9386         | 2     |
| 0.0138     | 0.3288          | 0.9358         | 3     |
| 0.0140     | 0.3345          | 0.9177         | 4     |
| 0.0033     | 0.3502          | 0.9386         | 5     |
| 0.0118     | 0.3387          | 0.9344         | 6     |
| 0.0269     | 0.4487          | 0.9024         | 7     |
| 0.0188     | 0.3228          | 0.9331         | 8     |
| 0.0017     | 0.3581          | 0.9372         | 9     |
| 0.0020     | 0.4125          | 0.9233         | 10    |
| 0.0021     | 0.4143          | 0.9247         | 11    |
| 0.0011     | 0.4353          | 0.9303         | 12    |
| 0.0002     | 0.4285          | 0.9344         | 13    |
| 0.0005     | 0.4350          | 0.9344         | 14    |
| 0.0002     | 0.4340          | 0.9344         | 15    |
| 0.0002     | 0.4026          | 0.9400         | 16    |
| 0.0001     | 0.4123          | 0.9414         | 17    |
| 0.0001     | 0.4228          | 0.9414         | 18    |
| 0.0001     | 0.4294          | 0.9386         | 19    |
| 0.0001     | 0.4385          | 0.9386         | 20    |
| 0.0001     | 0.4411          | 0.9386         | 21    |
| 0.0001     | 0.4423          | 0.9386         | 22    |
| 0.0001     | 0.4431          | 0.9386         | 23    |
| 0.0001     | 0.4435          | 0.9386         | 24    |


### Framework versions

- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.16.0
- Tokenizers 0.15.0