--- base_model: projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Esteu tots millor callats, no us puc ni veure! - text: Puc canviar el meu idioma preferit? - text: No serveixes per res, és un sistema de merda! - text: Com va tot, com estàs? Quin és l'objecte de la convocatòria de subvencions de l'Ajuntament de Sant Boi de Llobregat? - text: Quin és el millor lloc per comprar un regal? inference: true --- # SetFit with projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | | | 2 | | | 0 | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("adriansanz/gret6") # Run inference preds = model("Puc canviar el meu idioma preferit?") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 1 | 9.3443 | 36 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 70 | | 1 | 71 | | 2 | 71 | ### Training Hyperparameters - batch_size: (64, 64) - num_epochs: (3, 3) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - evaluation_strategy: epoch - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0021 | 1 | 0.1891 | - | | 0.1066 | 50 | 0.1719 | - | | 0.2132 | 100 | 0.0455 | - | | 0.3198 | 150 | 0.0013 | - | | 0.4264 | 200 | 0.0004 | - | | 0.5330 | 250 | 0.0002 | - | | 0.6397 | 300 | 0.0002 | - | | 0.7463 | 350 | 0.0001 | - | | 0.8529 | 400 | 0.0001 | - | | 0.9595 | 450 | 0.0001 | - | | 1.0 | 469 | - | 0.0062 | | 1.0661 | 500 | 0.0001 | - | | 1.1727 | 550 | 0.0001 | - | | 1.2793 | 600 | 0.0001 | - | | 1.3859 | 650 | 0.0001 | - | | 1.4925 | 700 | 0.0001 | - | | 1.5991 | 750 | 0.0001 | - | | 1.7058 | 800 | 0.0001 | - | | 1.8124 | 850 | 0.0001 | - | | 1.9190 | 900 | 0.0001 | - | | 2.0 | 938 | - | 0.0042 | | 2.0256 | 950 | 0.0 | - | | 2.1322 | 1000 | 0.0 | - | | 2.2388 | 1050 | 0.0 | - | | 2.3454 | 1100 | 0.0 | - | | 2.4520 | 1150 | 0.0 | - | | 2.5586 | 1200 | 0.0 | - | | 2.6652 | 1250 | 0.0 | - | | 2.7719 | 1300 | 0.0 | - | | 2.8785 | 1350 | 0.0 | - | | 2.9851 | 1400 | 0.0 | - | | 3.0 | 1407 | - | 0.0034 | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.2.1 - Transformers: 4.42.2 - PyTorch: 2.5.0+cu121 - Datasets: 3.1.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```