--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: intent_analysis results: [] --- # intent_analysis This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0133 - Accuracy: 0.9986 - Precision: 0.9982 - Recall: 0.9983 - F1: 0.9982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.1768 | 1.0 | 729 | 0.0408 | 0.9914 | 0.9939 | 0.9896 | 0.9917 | | 0.0575 | 2.0 | 1458 | 0.0392 | 0.99 | 0.9885 | 0.9879 | 0.9880 | | 0.0258 | 3.0 | 2187 | 0.0133 | 0.9986 | 0.9982 | 0.9983 | 0.9982 | | 0.01 | 4.0 | 2916 | 0.0151 | 0.9986 | 0.9982 | 0.9983 | 0.9982 | | 0.0044 | 5.0 | 3645 | 0.0133 | 0.9986 | 0.9982 | 0.9983 | 0.9982 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3