BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/sitges2608")
# Run inference
sentences = [
'El termini per a la presentació de les sol·licituds de modificació del projecte o activitat subvencionat és de 15 dies naturals abans de la finalització del projecte o activitat.',
'Quin és el termini per a la presentació de les sol·licituds de modificació del projecte o activitat subvencionat?',
"Quin és el registre on es troben les dades d'inscripció?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0625 |
cosine_accuracy@3 | 0.1164 |
cosine_accuracy@5 | 0.181 |
cosine_accuracy@10 | 0.3556 |
cosine_precision@1 | 0.0625 |
cosine_precision@3 | 0.0388 |
cosine_precision@5 | 0.0362 |
cosine_precision@10 | 0.0356 |
cosine_recall@1 | 0.0625 |
cosine_recall@3 | 0.1164 |
cosine_recall@5 | 0.181 |
cosine_recall@10 | 0.3556 |
cosine_ndcg@10 | 0.1755 |
cosine_mrr@10 | 0.1225 |
cosine_map@100 | 0.1488 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0625 |
cosine_accuracy@3 | 0.1099 |
cosine_accuracy@5 | 0.1703 |
cosine_accuracy@10 | 0.3556 |
cosine_precision@1 | 0.0625 |
cosine_precision@3 | 0.0366 |
cosine_precision@5 | 0.0341 |
cosine_precision@10 | 0.0356 |
cosine_recall@1 | 0.0625 |
cosine_recall@3 | 0.1099 |
cosine_recall@5 | 0.1703 |
cosine_recall@10 | 0.3556 |
cosine_ndcg@10 | 0.1728 |
cosine_mrr@10 | 0.1193 |
cosine_map@100 | 0.1455 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.056 |
cosine_accuracy@3 | 0.1228 |
cosine_accuracy@5 | 0.1724 |
cosine_accuracy@10 | 0.3405 |
cosine_precision@1 | 0.056 |
cosine_precision@3 | 0.0409 |
cosine_precision@5 | 0.0345 |
cosine_precision@10 | 0.0341 |
cosine_recall@1 | 0.056 |
cosine_recall@3 | 0.1228 |
cosine_recall@5 | 0.1724 |
cosine_recall@10 | 0.3405 |
cosine_ndcg@10 | 0.168 |
cosine_mrr@10 | 0.1168 |
cosine_map@100 | 0.1431 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0517 |
cosine_accuracy@3 | 0.1142 |
cosine_accuracy@5 | 0.1832 |
cosine_accuracy@10 | 0.319 |
cosine_precision@1 | 0.0517 |
cosine_precision@3 | 0.0381 |
cosine_precision@5 | 0.0366 |
cosine_precision@10 | 0.0319 |
cosine_recall@1 | 0.0517 |
cosine_recall@3 | 0.1142 |
cosine_recall@5 | 0.1832 |
cosine_recall@10 | 0.319 |
cosine_ndcg@10 | 0.1589 |
cosine_mrr@10 | 0.1112 |
cosine_map@100 | 0.1376 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0453 |
cosine_accuracy@3 | 0.1056 |
cosine_accuracy@5 | 0.1659 |
cosine_accuracy@10 | 0.306 |
cosine_precision@1 | 0.0453 |
cosine_precision@3 | 0.0352 |
cosine_precision@5 | 0.0332 |
cosine_precision@10 | 0.0306 |
cosine_recall@1 | 0.0453 |
cosine_recall@3 | 0.1056 |
cosine_recall@5 | 0.1659 |
cosine_recall@10 | 0.306 |
cosine_ndcg@10 | 0.149 |
cosine_mrr@10 | 0.1024 |
cosine_map@100 | 0.1259 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 4,173 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 8 tokens
- mean: 66.25 tokens
- max: 165 tokens
- min: 12 tokens
- mean: 28.12 tokens
- max: 62 tokens
- Samples:
positive anchor La persona titular d'una llicència de vehicle lleuger per al servei públic (auto-taxi), en produïr-se un canvi de vehicle, ha de notificar a l'Ajuntament les dades del nou vehicle.
Quin és el propòsit de la notificació de les dades del nou vehicle?
S'entén per garantia l'ingrés a la Tresoreria de l'Ajuntament d'una quantitat econòmica que garanteix el compliment d'una obligació adquirida amb aquest (garanties de concursos o licitacions, fraccionaments de tributs en via executiva, reposició de paviments per obres, etc.).
Què s'entén per garantia a l'Ajuntament de Sitges?
L'ús d'espais del Centre Cultural Miramar per a la realització d'exposicions.
Quin és el centre cultural on es poden realitzar les exposicions d'art?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.9771 | 8 | - | 0.1210 | 0.1384 | 0.1341 | 0.1002 | 0.1376 |
1.2137 | 10 | 7.5469 | - | - | - | - | - |
1.9466 | 16 | - | 0.136 | 0.1404 | 0.1443 | 0.1249 | 0.1414 |
2.4275 | 20 | 4.0024 | - | - | - | - | - |
2.9160 | 24 | - | 0.1388 | 0.1460 | 0.1446 | 0.1278 | 0.1436 |
3.6412 | 30 | 3.2149 | - | - | - | - | - |
3.8855 | 32 | - | 0.1376 | 0.1431 | 0.1455 | 0.1259 | 0.1488 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.34.0.dev0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for adriansanz/sitges2608
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.063
- Cosine Accuracy@3 on dim 768self-reported0.116
- Cosine Accuracy@5 on dim 768self-reported0.181
- Cosine Accuracy@10 on dim 768self-reported0.356
- Cosine Precision@1 on dim 768self-reported0.063
- Cosine Precision@3 on dim 768self-reported0.039
- Cosine Precision@5 on dim 768self-reported0.036
- Cosine Precision@10 on dim 768self-reported0.036
- Cosine Recall@1 on dim 768self-reported0.063
- Cosine Recall@3 on dim 768self-reported0.116