File size: 1,525 Bytes
9691248 cea5efc 9691248 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
from transformers import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class UniFormerWithProjectionHeadConfig(PretrainedConfig):
model_type = 'vit'
def __init__(
self,
projection_size=None,
embed_dim=[64, 128, 320, 512],
image_size=384,
in_chans=3,
depth=[5, 8, 20, 7],
patch_size=[4, 2, 2, 2],
head_dim=64,
mlp_ratio=4,
qkv_bias=True,
num_classes=1000,
qk_scale=None,
representation_size=None,
drop_rate=0.0,
drop_path_rate=0.3,
attn_drop_rate=0.0,
conv_stem=False,
layer_norm_eps=1e-6,
**kwargs,
):
super().__init__(
layer_norm_eps=layer_norm_eps,
image_size=image_size,
qkv_bias=qkv_bias,
**kwargs,
)
self.projection_size = projection_size
self.embed_dim = embed_dim
self.in_chans = in_chans
self.depth = depth
self.patch_size = patch_size
self.head_dim = head_dim
self.mlp_ratio = mlp_ratio
self.num_classes = num_classes
self.qk_scale = qk_scale
self.representation_size = representation_size
self.drop_rate = drop_rate
self.drop_path_rate = drop_path_rate
self.attn_drop_rate = attn_drop_rate
self.conv_stem = conv_stem
|