File size: 66,736 Bytes
9691248
6f7f115
 
9691248
ae934ba
6f7f115
9691248
6f7f115
 
 
9691248
 
6f7f115
 
688909e
6f7f115
 
 
0e5254f
9691248
 
 
6f7f115
beb6c08
6f7f115
9691248
 
 
6f7f115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
688909e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5254f
6f7f115
0e5254f
6f7f115
9691248
6f7f115
 
 
 
 
 
 
 
 
 
 
 
0e5254f
6f7f115
 
 
 
 
6c80c6b
6f7f115
 
 
 
 
 
688909e
 
 
 
 
6f7f115
 
 
 
e1b274e
6f7f115
688909e
6f7f115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9691248
 
 
6f7f115
 
9691248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f7f115
 
 
 
 
 
9691248
 
 
 
 
 
 
6f7f115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5254f
6f7f115
 
 
6c80c6b
 
 
6f7f115
 
 
 
9691248
 
 
6f7f115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9691248
 
 
 
6f7f115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9691248
 
 
 
 
6f7f115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9691248
6f7f115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9691248
6f7f115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9691248
6f7f115
 
 
 
 
 
 
 
 
 
 
 
9691248
6f7f115
 
 
 
 
 
 
 
9691248
 
 
6f7f115
 
9691248
6f7f115
 
 
 
 
9691248
 
 
6f7f115
9691248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f7f115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9691248
6f7f115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9691248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f7f115
 
9691248
6f7f115
 
 
 
 
 
 
 
9691248
6f7f115
9691248
6f7f115
 
9691248
 
 
 
 
 
6f7f115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9691248
6f7f115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beb6c08
6f7f115
 
 
 
 
 
 
 
 
 
 
 
9691248
 
 
 
 
6f7f115
 
 
 
 
 
 
 
 
cea5efc
 
 
 
6f7f115
9691248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
453bf0e
9691248
6f7f115
9691248
 
6f7f115
9691248
 
 
 
 
 
6f7f115
9691248
 
 
6f7f115
9691248
 
 
 
 
6f7f115
9691248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cea5efc
 
 
 
6f7f115
9691248
6f7f115
9691248
6f7f115
9691248
 
 
 
 
 
 
 
453bf0e
9691248
 
 
 
 
 
 
 
6f7f115
9691248
 
3bc68dd
9691248
 
 
 
 
 
3bc68dd
9691248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f7f115
9691248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f7f115
9691248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae934ba
 
 
 
 
9691248
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
import json
import math
import os
import random
from typing import Optional, Tuple, Union

import datasets
import torch
import transformers
from torch.nn import CrossEntropyLoss
from torch.utils.data import Subset
from torchvision.io import decode_image
from transformers import PreTrainedTokenizerFast, VisionEncoderDecoderModel
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_outputs import ModelOutput, Seq2SeqLMOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging

from .configuration_cxrmate_ed import CXRMateEDConfig
from .dataset import PriorsDataset
from .prepare_dataset import prepare_dataset
from .utils import compute_time_delta

logger = logging.get_logger(__name__)      

# Ordered by oblique, lateral, AP, and then PA views so that PA views are closest in position to the generated tokens (and oblique is furtherest).
VIEW_ORDER = [None, 'LPO', 'RAO', 'LAO', 'SWIMMERS', 'XTABLE LATERAL', 'LL', 'LATERAL',  'AP AXIAL', 'AP RLD', 'AP LLD', 'AP', 'PA RLD', 'PA LLD', 'PA']


def create_lookup_table(df, columns, start_idx):
    df = df.groupby(columns).head(1)[columns].sort_values(by=columns)
    indices = range(start_idx, start_idx + len(df))
    df['index'] = indices
    return df, indices[-1]


class FNNEncoder(torch.nn.Module):
    def __init__(self, num_features, intermediate_size, decoder_hidden_size):
        super().__init__()
        self.up_proj = torch.nn.Linear(num_features, intermediate_size, bias=False)
        self.down_proj = torch.nn.Linear(intermediate_size, decoder_hidden_size, bias=False)
        self.act_fn = torch.nn.SiLU()

    def forward(self, x):
        return self.down_proj(self.act_fn(self.up_proj(x)))


class ProjectionHead(torch.nn.Module):

    def __init__(self, input_size, hidden_size) -> None:
        super().__init__()

        # Layer normalisation before projection:
        self.layer_norm = torch.nn.LayerNorm(input_size, eps=1e-6)

        # No bias as following layer normalisation with bias:
        self.projection = torch.nn.Linear(input_size, hidden_size, bias=False)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.layer_norm(x)
        x = self.projection(x)
        return x


class CXRStudyImagesEncoder(torch.nn.Module):
    def __init__(self, encoder, decoder_config):
        super().__init__()

        self.encoder = encoder
        self.config = encoder.config
        self.adapter = ProjectionHead(self.config.embed_dim[-1], decoder_config.hidden_size)

    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, ModelOutput]:

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # Flatten the batch and study_id dimensions:
        assert len(pixel_values.shape) == 5, 'pixel_values must be B, S, C, H, W, where S is the max number of images for a study in the batch.'
        last_hidden_state = self.encoder(pixel_values.view(-1, *pixel_values.shape[2:])).last_hidden_state

        # Flatten h x w:
        last_hidden_state = torch.flatten(last_hidden_state, 2) if last_hidden_state.dim() > 3 else last_hidden_state
        
        # Project the features for each spatial position to the decoder's hidden size using the adapter network:
        last_hidden_state = self.adapter(last_hidden_state)
        
        # Concatenate the features for each chest X-ray:
        last_hidden_state = last_hidden_state.view(pixel_values.shape[0], -1, last_hidden_state.shape[-1])

        # Derive the attention mask from the pixel values:
        mask = (pixel_values[:, :, 0, 0, 0] != 0.0)[:, :, None]
        attention_mask = torch.ones(
            [last_hidden_state.shape[0], pixel_values.shape[1], last_hidden_state.shape[1] // pixel_values.shape[1]], 
            dtype=torch.long,
            device=mask.device,
        )
        attention_mask = attention_mask * mask
        attention_mask = attention_mask.view(attention_mask.shape[0], -1)

        if not return_dict:
            return last_hidden_state

        return ModelOutput(last_hidden_state=last_hidden_state, attention_mask=attention_mask)



class CXRMateEDModel(VisionEncoderDecoderModel):

    config_class = CXRMateEDConfig

    def __init__(
        self,
        config: Optional[PretrainedConfig] = None,
        encoder: Optional[PreTrainedModel] = None,
        decoder: Optional[PreTrainedModel] = None,
    ):

        if decoder:
            assert decoder.config.is_decoder, '"is_decoder" must be True for the given decoder'

        if config is None and (encoder is None or decoder is None):
            raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
        if config is None:
            config = CXRMateEDConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
        else:
            if not isinstance(config, self.config_class):
                raise ValueError(f"Config: {config} has to be of type {self.config_class}")

        config.tie_word_embeddings = False
        config.is_encoder_decoder = False

        # Initialize with config:
        PreTrainedModel.__init__(self, config)

        # Encoder:
        if encoder is None:
            encoder = transformers.AutoModel.from_pretrained(
                'aehrc/uniformer_base_tl_384', 
                config=config.encoder,
                trust_remote_code=True,
            )

        # Decoder:
        if decoder is None:
            assert not config.decoder.add_cross_attention
            decoder = transformers.LlamaForCausalLM(config=config.decoder)

        self.encoder = CXRStudyImagesEncoder(encoder, self.config.decoder)
        self.decoder = decoder

        if self.encoder.config.to_dict() != self.config.encoder.to_dict():
            logger.warning(
                f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
                f" {self.config.encoder}"
            )
        if self.decoder.config.to_dict() != self.config.decoder.to_dict():
            logger.warning(
                f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
                f" {self.config.decoder}"
            )

        self.encoder.config = self.config.encoder
        self.decoder.config = self.config.decoder

        assert config.decoder.is_decoder
        assert not config.decoder.is_encoder_decoder
        assert 'pad_token_id' in self.decoder.config.__dict__
        assert 'time_delta_monotonic_inversion' in self.decoder.config.__dict__
        assert 'add_time_deltas' in self.decoder.config.__dict__
        assert 'history' in self.decoder.config.__dict__
        assert 'tables_filter' in self.decoder.config.__dict__
        assert 'prompt_report_sections_filter' in self.decoder.config.__dict__

        assert isinstance(self.decoder.config.time_delta_monotonic_inversion, bool)

        with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tables.json'), 'r') as f:
            self.tables = json.load(f)
        
        with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'lookup_tables.json'), 'r') as f:
            self.luts = json.load(f)
            
        with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'token_type_ids.json'), 'r') as f:
            self.token_type_to_token_type_id = json.load(f)

        self.tables = {k: self.tables[k] for k in self.decoder.config.tables_filter}
        self.tables['mimic_cxr_sectioned']['text_columns'] = self.decoder.config.prompt_report_sections_filter

        for k in self.tables.keys():  
            if self.luts[k]['total'] > 0:        
                setattr(
                    self, 
                    f'{k}_index_value_encoder', 
                    FNNEncoder(
                        num_features=self.luts[k]['total'], 
                        intermediate_size=self.decoder.config.index_value_encoder_intermediate_size, 
                        decoder_hidden_size=self.decoder.config.hidden_size,
                    ),
                )
                            
        if self.decoder.config.add_time_deltas:
            self.time_delta_encoder = FNNEncoder(
                num_features=1, 
                intermediate_size=self.decoder.config.index_value_encoder_intermediate_size, 
                decoder_hidden_size=self.decoder.config.hidden_size,
            )
            
        self.token_type_embeddings = torch.nn.Embedding(max(self.token_type_to_token_type_id.values()) + 1, self.decoder.config.hidden_size)

        self.time_delta_map = lambda x: 1 / math.sqrt(x + 1)
        self.zero_time_delta_value = self.time_delta_map(0)
        
        self.inf_time_delta_value = self.time_delta_map(float('inf'))

    @classmethod
    def from_encoder_decoder_pretrained(
        cls,
        encoder_pretrained_model_name_or_path: str = None,
        decoder_pretrained_model_name_or_path: str = None,
        *model_args,
        **kwargs,
    ) -> PreTrainedModel:
        r"""
        Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model
        checkpoints.


        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
        the model, you need to first set it back in training mode with `model.train()`.

        Params:
            encoder_pretrained_model_name_or_path (`str`, *optional*):
                Information necessary to initiate the image encoder. Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. An
                      example is `google/vit-base-patch16-224-in21k`.
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
                Information necessary to initiate the text decoder. Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args (remaining positional arguments, *optional*):
                All remaning positional arguments will be passed to the underlying model's `__init__` method.

            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
                `output_attentions=True`).

                - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter.
                - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter.
                - To update the parent model configuration, do not use a prefix for each configuration parameter.

                Behaves differently depending on whether a `config` is provided or automatically loaded.

        Example:

        ```python
        >>> from transformers import VisionEncoderDecoderModel

        >>> # initialize a vit-bert from a pretrained ViT and a pretrained BERT model. Note that the cross-attention layers will be randomly initialized
        >>> model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
        ...     "google/vit-base-patch16-224-in21k", "google-bert/bert-base-uncased"
        ... )
        >>> # saving model after fine-tuning
        >>> model.save_pretrained("./vit-bert")
        >>> # load fine-tuned model
        >>> model = VisionEncoderDecoderModel.from_pretrained("./vit-bert")
        ```"""

        kwargs_encoder = {
            argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_")
        }

        kwargs_decoder = {
            argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
        }

        # remove encoder, decoder kwargs from kwargs
        for key in kwargs_encoder.keys():
            del kwargs["encoder_" + key]
        for key in kwargs_decoder.keys():
            del kwargs["decoder_" + key]

        # Load and initialize the encoder and decoder
        # The distinction between encoder and decoder at the model level is made
        # by the value of the flag `is_decoder` that we need to set correctly.
        encoder = kwargs_encoder.pop("model", None)
        if encoder is None:
            if encoder_pretrained_model_name_or_path is None:
                raise ValueError(
                    "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has "
                    "to be defined."
                )

            if "config" not in kwargs_encoder:
                encoder_config, kwargs_encoder = transformers.AutoConfig.from_pretrained(
                    encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True
                )

                if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
                    logger.info(
                        f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model "
                        "from a decoder model. Cross-attention and casual mask are disabled."
                    )
                    encoder_config.is_decoder = False
                    encoder_config.add_cross_attention = False

                kwargs_encoder["config"] = encoder_config

            encoder = transformers.AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder)

        decoder = kwargs_decoder.pop("model", None)
        if decoder is None:
            if decoder_pretrained_model_name_or_path is None:
                raise ValueError(
                    "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
                    "to be defined."
                )

            if "config" not in kwargs_decoder:
                decoder_config, kwargs_decoder = transformers.AutoConfig.from_pretrained(
                    decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
                )

                if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
                    logger.info(
                        f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
                        f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
                        f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
                    )
                    decoder_config.is_decoder = True
                    decoder_config.add_cross_attention = False

                kwargs_decoder["config"] = decoder_config

            if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
                logger.warning(
                    f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
                    f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
                    "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
                    "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a "
                    "`decoder_config` to `.from_encoder_decoder_pretrained(...)`"
                )

            decoder = transformers.AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)

        # instantiate config with corresponding kwargs
        config = CXRMateEDConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)

        # make sure input & output embeddings is not tied
        config.tie_word_embeddings = False
        
        config.is_encoder_decoder = False

        return cls(encoder=encoder, decoder=decoder, config=config)

    def forward(
        self,
        decoder_position_ids: torch.LongTensor,
        decoder_attention_mask: torch.FloatTensor,
        decoder_token_type_ids: torch.LongTensor,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs,
    ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        kwargs_decoder = {
            argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
        }
  
        assert decoder_attention_mask.dtype == torch.long, f'The dtype for {decoder_attention_mask} was {decoder_attention_mask.dtype}. It should be torch.long'

        if decoder_inputs_embeds is None:
            decoder_inputs_embeds = self.decoder.get_input_embeddings()(decoder_input_ids)
        decoder_inputs_embeds += self.token_type_embeddings(decoder_token_type_ids)

        # Generation:
        decoder_outputs = self.decoder(
            inputs_embeds=decoder_inputs_embeds,
            attention_mask=decoder_attention_mask,
            position_ids=decoder_position_ids,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            use_cache=use_cache,
            past_key_values=past_key_values,
            return_dict=return_dict,
            **kwargs_decoder,
        )

        # Loss:
        loss = None
        if labels is not None:
            logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1))

        if not return_dict:
            if loss is not None:
                return (loss,) + decoder_outputs + encoder_outputs
            else:
                return decoder_outputs + encoder_outputs

        return Seq2SeqLMOutput(
            loss=loss,
            logits=decoder_outputs.logits,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        special_token_ids,
        prompt_attention_mask,
        prompt_position_ids,
        past_key_values=None,
        use_cache=None,
        **kwargs,
    ):
        """
        Modification of: 
            https://github.com/huggingface/transformers/blob/main/src/transformers/models/encoder_decoder/modeling_encoder_decoder.py#L660
        """

        report_attention_mask = (input_ids != self.decoder.config.pad_token_id).long()

        if past_key_values is None:
            
            # 4D attention mask:
            decoder_attention_mask = self.create_4d_attention_mask_mixed_causality(prompt_attention_mask, report_attention_mask)

            # Position identifiers accounting for padding:
            report_position_ids = report_attention_mask.cumsum(-1) + prompt_position_ids.max(dim=1).values[:, None]
            report_position_ids.masked_fill_(report_attention_mask == 0, 1)
            decoder_position_ids = torch.cat([prompt_position_ids, report_position_ids], dim=1)

            # `inputs_embeds` are only to be used in the 1st generation step:
            inputs_embeds = torch.cat([kwargs['decoder_inputs_embeds'], self.decoder.get_input_embeddings()(input_ids)], dim=1)

            decoder_token_type_ids = self.token_ids_to_token_type_ids(
                input_ids, special_token_ids, 
                [self.token_type_to_token_type_id['findings'], self.token_type_to_token_type_id['impression']],
            )
            decoder_token_type_ids = torch.cat(
                [
                    kwargs['decoder_token_type_ids'],
                    decoder_token_type_ids,
                ], 
                dim=1,
            )  # Add image token type identifiers.

            input_dict = {
                'decoder_input_ids': input_ids, 
                'decoder_inputs_embeds': inputs_embeds, 
                'decoder_token_type_ids': decoder_token_type_ids,
            }
        else:
            
            # 4D attention mask:
            decoder_attention_mask = self.create_4d_attention_mask_mixed_causality_past_key_values(prompt_attention_mask, report_attention_mask)

            # Position identifiers accounting for padding:
            decoder_position_ids = report_attention_mask.cumsum(-1) + prompt_position_ids.max(dim=1).values[:, None]
            decoder_position_ids.masked_fill_(report_attention_mask == 0, 1)
            
            # Always place token_ids_to_token_type_ids_past_key_values before input_ids = input_ids[:, remove_prefix_length:]:
            decoder_token_type_ids = self.token_ids_to_token_type_ids_past_key_values(
                input_ids, 
                special_token_ids, 
                [self.token_type_to_token_type_id['findings'], self.token_type_to_token_type_id['impression']],
            )
            decoder_position_ids = decoder_position_ids[:, -1:]

            past_length = past_key_values[0][0].shape[2]

            # Some generation methods only pass the last input ID:
            if input_ids.shape[1] > past_length:
                remove_prefix_length = past_length
            else:
                # Keep only the final ID:
                remove_prefix_length = input_ids.shape[1] - 1

            input_ids = input_ids[:, remove_prefix_length:]

            input_dict = {'decoder_input_ids': input_ids, 'decoder_token_type_ids': decoder_token_type_ids}

        input_dict.update(
            {
                'decoder_attention_mask': decoder_attention_mask,
                'decoder_position_ids': decoder_position_ids,
                'past_key_values': past_key_values,
                'use_cache': use_cache,
            }
        )
        return input_dict
        
    def token_ids_to_token_type_ids(self, token_ids, special_token_ids, token_type_id_sections):
        """
        Extract token type identifiers from the token identifiers.

        Argument/s:
            token_ids - token identifiers.
            special_token_ids - special token identifiers that indicate the separation between sections.
            token_type_id_section - token type identifier for each section.

        Returns:
            token_type_ids - token type identifiers.
        """

        token_type_id_sections = token_type_id_sections if token_type_id_sections is not None else list(range(len(special_token_ids) + 1))

        mbatch_size, seq_len = token_ids.shape
        token_type_ids = torch.full_like(token_ids, token_type_id_sections[0], dtype=torch.long, device=token_ids.device)

        for i, j in enumerate(special_token_ids):
            # Find first occurrence of special tokens that indicate the boundary between sections:
            cols = (token_ids == j).int().argmax(dim=1)
            rows = torch.arange(mbatch_size, device=token_ids.device)

            # https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
            cols += 1

            # Ensure that the column index is not out of bounds. If 0, then token_id not present.
            # This is safe as index 0 is always a special token (now equal to 1 due to +1):
            rows = rows[torch.logical_and(cols != 1, cols < seq_len)]
            cols = cols[torch.logical_and(cols != 1, cols < seq_len)]

            # Indices to that correspond to the second sequence:
            if rows.nelement() != 0:
                ids = torch.stack([
                    torch.stack([x, z]) for (x, y) in zip(rows, cols) for z in torch.arange(
                        y, seq_len, device=token_ids.device,
                    )
                ])

                token_type_ids[ids[:, 0], ids[:, 1]] = token_type_id_sections[i + 1]

        return token_type_ids

    def token_ids_to_token_type_ids_past_key_values(self, token_ids, special_token_ids, token_type_id_sections):
        """
        Extract token type identifiers from the token identifiers if past != None. Make sure to input all the
        token_ids (e.g., do not input input_ids = input_ids[:, remove_prefix_length:] from prepare_inputs_for_generation).

        Argument/s:
            token_ids - token identifiers.
            special_token_ids - special token identifiers that indicate the separation between sections.

        Returns:
            token_type_ids - token type identifiers.
        """

        token_type_id_sections = token_type_id_sections if token_type_id_sections is not None else list(range(len(special_token_ids) + 1))
        token_type_ids = torch.full([token_ids.shape[0], 1], token_type_id_sections[0], dtype=torch.long, device=token_ids.device)

        # https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
        token_ids = token_ids[:, :-1]

        for i, j in enumerate(special_token_ids):

            # Find first occurrence of special token, which indicates the boundary between sections:
            exists = torch.any(token_ids == j, dim=1, keepdim=True)
            token_type_ids[exists] = token_type_id_sections[i + 1]

        return token_type_ids
    
    def tokenize_report_teacher_forcing(self, findings: str, impression: str, tokenizer: PreTrainedTokenizerFast, max_len: int):
        """
        Tokenize the reports and creates the inputs and targets for teacher forcing.

        Argument/s:
            findings - findings sections.
            impression - impression sections.
            return_token_type_ids - return the token type identifiers.
            tokenizer - Hugging Face tokenizer.
            max_len - maximum number of tokens.

        Returns:
            decoder_input_ids - the token identifiers for the input of the decoder.
            decoder_attention_mask - the attention mask for the decoder_input_ids.
            label_ids - the label token identifiers for the decoder.
        """

        # Prepare the sections for the tokenizer by placing special tokens between each section:
        reports = [f'{tokenizer.bos_token}{i}{tokenizer.sep_token}{j}{tokenizer.eos_token}' for i, j in
                  zip(findings, impression)]

        # Tokenize the report:
        tokenized = tokenizer(
            reports,
            padding='longest',
            truncation=True,
            max_length=max_len + 1,  # +1 to account for the bias between input and target.
            return_tensors='pt',
            return_token_type_ids=False,
            add_special_tokens=False,
        ).to(self.device)

        # Modify for language modelling:
        batch_dict = {

            # Labels for the decoder (shifted right by one for autoregression):
            'label_ids': tokenized['input_ids'][:, 1:].detach().clone(),

            # Remove last token identifier to match the sequence length of the labels:
            'decoder_input_ids': tokenized['input_ids'][:, :-1],

            # Attention mask for the decoder_input_ids (remove first token so that the eos_token_id is not considered):
            'decoder_attention_mask': tokenized['attention_mask'][:, 1:],
        }

        return batch_dict

    def tokenize_report_teacher_forcing_rev_a(self, tokenizer: PreTrainedTokenizerFast, max_len: int, findings: Optional[str] = None, impression: Optional[str] = None, reports: Optional[str] = None):
        """
        Tokenize the reports and creates the inputs and targets for teacher forcing.

        Argument/s:
            tokenizer - Hugging Face tokenizer.
            max_len - maximum number of tokens.
            findings - findings sections.
            impression - impression sections.
            reports - prepared reports, with special tokens and report sections.

        Returns:
            decoder_input_ids - the token identifiers for the input of the decoder.
            decoder_attention_mask - the attention mask for the decoder_input_ids.
            label_ids - the label token identifiers for the decoder.
        """

        # Prepare the sections for the tokenizer by placing special tokens between each section:
        if reports is None:
            assert findings and impression, "If 'reports' is not defined, 'findings' and 'impression' need to be defined." 
            reports = [f'{tokenizer.bos_token}{i}{tokenizer.sep_token}{j}{tokenizer.eos_token}' for i, j in
                    zip(findings, impression)]

        # Tokenize the report:
        tokenized = tokenizer(
            reports,
            padding='longest',
            truncation=True,
            max_length=max_len + 1,  # +1 to account for the bias between input and target.
            return_tensors='pt',
            return_token_type_ids=False,
            add_special_tokens=False,
        ).to(self.device)

        # Modify for language modelling:
        batch_dict = {

            # Labels for the decoder (shifted right by one for autoregression):
            'label_ids': tokenized['input_ids'][:, 1:].detach().clone(),

            # Remove last token identifier to match the sequence length of the labels:
            'decoder_input_ids': tokenized['input_ids'][:, :-1],

            # Attention mask for the decoder_input_ids (remove first token so that the eos_token_id is not considered):
            'decoder_attention_mask': tokenized['attention_mask'][:, 1:],
        }

        return batch_dict

    def split_and_decode_sections(self, token_ids, special_token_ids, tokenizer: PreTrainedTokenizerFast):
        """
        Split the token identifiers into sections, then convert the token identifiers into strings.

        Argument/s:
            token_ids - token identifiers.
            special_token_ids - special token identifiers that indicate the end of each section.
            tokenizer - Hugging Face tokenizer.

        Returns:
            token_type_ids - token type identifiers.
        """

        _, seq_len = token_ids.shape

        # The number of sections is the same as the number of special_token_ids:
        num_sections = len(special_token_ids)

        sections = {k: [] for k in range(num_sections)}

        for i in token_ids:
            prev_col = 0
            for j, k in enumerate(special_token_ids):

                # The maximum sequence length was exceeded, thus no more tokens:
                if prev_col >= seq_len:
                    sections[j].append('')
                    continue

                # Find first occurrence of special tokens that indicate the boundary between sections:
                col = (i == k).int().argmax().item()

                # If equal to 0, token was not found, set the column to the sequence length (as the decoder exceeded
                # the maximum sequence length):
                if col == 0:
                    col = seq_len

                # Extract section token identifiers:
                section_token_ids = i[prev_col:col]
                prev_col = col
                section_string = tokenizer.decode(section_token_ids, skip_special_tokens=True)

                sections[j].append(section_string)

        return tuple(sections.values())
    
    def tokenize_text_prompt(self, tokenizer: PreTrainedTokenizerFast, **kwargs):
        """
        Tokenize the text columns from MIMIC-IV ED and MIMIC-CXR (excluding the findings and impression sections).
        Time deltas for the input_ids are also prepared here.

        Argument/s:
            tokenizer - Hugging Face tokenizer.

        Returns:
            ed - dictionary containing the input_ids, token_type_ids, attention_mask and time_deltas for the ED module columns.
            cxr - dictionary containing the input_ids, token_type_ids, and attention_mask for MIMIC-CXR columns.
        """

        batch_size = len(kwargs['study_id'])

        tokenized = {
            'input_ids': {i: [] for i in range(batch_size)},
            'token_type_ids': {i: [] for i in range(batch_size)},
            'time_delta': {i: [] for i in range(batch_size)},
            'attention_mask': torch.empty(batch_size, 0, 1, device=self.device),
        }
        
        prompt_text_columns = [f'{k}_{j}' if k != 'mimic_cxr_sectioned' else j for k, v in self.tables.items() if 'text_columns' in v for j in (v['text_columns'] if isinstance(v['text_columns'], list) else [v['text_columns']])] + ['prior_findings', 'prior_impression']
        
        for i in prompt_text_columns: 
            if i in kwargs:
                if f'{i}_time_delta' not in kwargs:
                    kwargs[f'{i}_time_delta'] = [[self.zero_time_delta_value for _ in j] if j is not None else None for j in kwargs[i]]
                for x, (y, z) in enumerate(zip(kwargs[i], kwargs[f'{i}_time_delta'])):
                    if y is not None:
                        assert isinstance(y, list)
                        assert isinstance(z, list)
                        for text, time_delta in zip(y, z):
                            if text is not None:
                                tokenized['input_ids'][x].append(
                                    tokenizer(text, add_special_tokens=False, return_tensors='pt')['input_ids'].to(device=self.device)
                                )
                                tokenized['token_type_ids'][x].append(
                                    torch.full(
                                        (1, tokenized['input_ids'][x][-1].shape[-1]), 
                                        self.token_type_to_token_type_id[i], 
                                        dtype=torch.long,
                                        device=self.device,
                                    )
                                )
                                tokenized['time_delta'][x].append(
                                    torch.full(
                                        (1, tokenized['input_ids'][x][-1].shape[-1]), 
                                        time_delta, 
                                        dtype=torch.float32,
                                        device=self.device,
                                    )
                                )

        tokenized['input_ids'] = [torch.cat(j, dim=1).T if j else torch.empty(0, 1, dtype=torch.long, device=self.device) for j in tokenized['input_ids'].values()]
        tokenized['token_type_ids'] = [torch.cat(j, dim=1).T if j else torch.empty(0, 1, dtype=torch.long, device=self.device) for j in tokenized['token_type_ids'].values()]
        tokenized['time_delta'] = [torch.cat(j, dim=1).T if j else torch.empty(0, 1, device=self.device) for j in tokenized['time_delta'].values()]

        tokenized['input_ids'] = torch.nn.utils.rnn.pad_sequence(
            tokenized['input_ids'], batch_first=True, padding_value=tokenizer.pad_token_id
        )[:, :, 0]
        tokenized['token_type_ids'] = torch.nn.utils.rnn.pad_sequence(
            tokenized['token_type_ids'], batch_first=True, padding_value=0,
        )[:, :, 0]

        tokenized['attention_mask'] = (tokenized['input_ids'] != tokenizer.pad_token_id).int()
        
        tokenized['time_delta'] = torch.nn.utils.rnn.pad_sequence(
            tokenized['time_delta'], batch_first=True, padding_value=0,
        )

        return tokenized
    
    def prepare_inputs(
        self, 
        images, 
        tokenizer: PreTrainedTokenizerFast, 
        tokenized_report=None, 
        sep_token_id=None, 
        **batch,
    ):
        """
        Tokenize the text columns from MIMIC-IV ED and MIMIC-CXR (excluding the findings and impression sections).

        Argument/s:
            images - images.
            tokenizer - Hugging Face tokenizer.
            tokenized_report - if training/teacher forcing, input the tokenized_report dict to include it in the prepared inputs.
            separator_token_id - separator token identifier.
            
        Returns:
            inputs_embeds - input embeddings.
            attention_mask - attention mask.
            token_type_ids - token type identifiers.
            position_ids - position identifiers.
            bos_token_ids - bos_token_ids for generation.
        """

        input_ids = []
        inputs_embeds = []
        token_type_ids = []
        attention_mask = []
        time_delta = []
        position_ids = None
        bos_token_ids = None

        # Index and value columns:
        batch_size = images.shape[0]
        for k, v in self.tables.items():
            if 'index_columns' in v or 'value_columns' in v:
                if f'{k}_index_value_feats' not in batch:
                    batch[f'{k}_index_value_feats'] = torch.empty(batch_size, 0, self.luts[k]['total'], device=self.device)
                inputs_embeds.append(
                    getattr(self, f'{k}_index_value_encoder')(batch[f'{k}_index_value_feats'])
                )
                token_type_ids.append(batch[f'{k}_index_value_token_type_ids'] if f'{k}_index_value_token_type_ids' in batch else torch.empty(batch_size, 0, dtype=torch.long, device=self.device))
                attention_mask.append(batch[f'{k}_index_value_mask'] if f'{k}_index_value_mask' in batch else torch.empty(batch_size, 0, dtype=torch.long, device=self.device))
                if f'{k}_index_value_time_delta' in batch:
                    time_delta.append(batch[f'{k}_index_value_time_delta'])
                else:
                    time_delta_index_value = torch.zeros(*batch[f'{k}_index_value_mask'].shape, 1, device=self.device) if f'{k}_index_value_mask' in batch else torch.empty(batch_size, 0, 1, device=self.device)
                    time_delta.append(time_delta_index_value)    

        # Tokenize text columns for prompt:
        tokenized = self.tokenize_text_prompt(tokenizer, **batch)
        input_ids.append(tokenized['input_ids'])
        token_type_ids.append(tokenized['token_type_ids'])
        attention_mask.append(tokenized['attention_mask'])
        time_delta.append(tokenized['time_delta'])

        # Image encoder:
        encoder_outputs = self.encoder(images)  
        inputs_embeds.append(encoder_outputs[0])
        
        inputs_per_image = encoder_outputs[0].shape[-2] // images.shape[1]
        time_delta_image_features = torch.tensor(batch['image_time_deltas'], device=self.device).repeat_interleave(inputs_per_image, dim=1)
        token_type_ids.append(
            torch.where(
                torch.logical_or(
                    time_delta_image_features == self.zero_time_delta_value, 
                    time_delta_image_features == self.inf_time_delta_value,
                ),
                self.token_type_to_token_type_id['image'],
                self.token_type_to_token_type_id['prior_image'],
            ),
        )
        attention_mask.append(encoder_outputs[1])
        time_delta.append(time_delta_image_features[:, :, None])

        # Compute embeddings from token identifiers:
        input_ids = torch.cat(input_ids, dim=1)
        inputs_embeds.append(self.decoder.get_input_embeddings()(input_ids))
        
        # Concatentate time deltas and input embeddings before adding time delta embedding to prompt:
        time_delta = torch.cat(time_delta, dim=1)
        inputs_embeds = torch.cat(inputs_embeds, dim=1)

        # Add time delta embeddings to prompt:
        if time_delta.shape[1] > 0 and self.decoder.config.add_time_deltas:
            time_delta = time_delta.to(dtype=inputs_embeds.dtype)
            inputs_embeds += self.time_delta_encoder(time_delta)
            
        # Concatentate the attention mask:
        attention_mask = torch.cat(attention_mask, dim=1)
        
        # Position identifiers:   
        position_ids = self.position_ids_from_time_deltas_and_attention_mask(time_delta, attention_mask)
    
        # Tokenize report:
        if tokenized_report is not None:
            inputs_embeds = torch.cat([inputs_embeds, self.decoder.get_input_embeddings()(tokenized_report['decoder_input_ids'])], dim=1)
            
            report_token_type_ids = self.token_ids_to_token_type_ids(
                token_ids=tokenized_report['decoder_input_ids'], 
                special_token_ids=[sep_token_id],
                token_type_id_sections=[self.token_type_to_token_type_id['findings'], self.token_type_to_token_type_id['impression']],
            )
            token_type_ids.append(report_token_type_ids)
           
            # Position identifiers accounting for padding:
            report_position_ids = tokenized_report['decoder_attention_mask'].cumsum(-1) + position_ids.max(dim=1).values[:, None]
            report_position_ids.masked_fill_(tokenized_report['decoder_attention_mask'] == 0, 1)
            position_ids = torch.cat([position_ids, report_position_ids], dim=1)
            
            # 4D attention mask:
            attention_mask = self.create_4d_attention_mask_mixed_causality(attention_mask, tokenized_report['decoder_attention_mask'])
            # attention_mask_diagonal = torch.diagonal(attention_mask[:, 0], dim1=1, dim2=2)

        else:
            
            # BOS token identifiers for inference/generation:
            bos_token_ids = torch.full((encoder_outputs[0].shape[0], 1), tokenizer.bos_token_id, dtype=torch.long, device=self.device) 
            
        # Concatentate the token type identifiers:
        token_type_ids = torch.cat(token_type_ids, dim=1)

        assert inputs_embeds.shape[1] == attention_mask.shape[-1]
        assert inputs_embeds.shape[1] == token_type_ids.shape[1]

        return inputs_embeds, attention_mask, token_type_ids, position_ids, bos_token_ids
    
    @staticmethod
    def create_4d_attention_mask_mixed_causality(non_causal_2d_attention_mask, causal_2d_attention_mask):
    
        prompt_seq_len = non_causal_2d_attention_mask.shape[-1] 
        report_seq_len = causal_2d_attention_mask.shape[-1]
        
        non_causal_2d_attention_mask = non_causal_2d_attention_mask[:, None, None, :]
        causal_2d_attention_mask = causal_2d_attention_mask[:, None, None, :]
    
        # Upper left of attention matrix:
        upper_left = non_causal_2d_attention_mask.expand(-1, -1, prompt_seq_len, -1)
        upper_left = upper_left * non_causal_2d_attention_mask
        upper_left = upper_left * non_causal_2d_attention_mask.permute(0, 1, 3, 2)
        
        causal_mask = torch.tril(
            torch.ones(
                (
                    report_seq_len, 
                    report_seq_len,
                ), 
                dtype=torch.long, 
                device=causal_2d_attention_mask.device,
            ),
        )   
        
        # Lower right of attention matrix:
        lower_right = causal_2d_attention_mask.expand(-1, -1, report_seq_len, -1)
        lower_right = lower_right * causal_2d_attention_mask.permute(0, 1, 3, 2)
        lower_right = lower_right * causal_mask
        
        # Upper right of attention matrix:
        upper_right = torch.zeros(
            causal_2d_attention_mask.shape[0], 
            1, 
            prompt_seq_len, 
            report_seq_len, 
            dtype=torch.long, 
            device=causal_2d_attention_mask.device,
        )
        
        # Lower left of attention matrix:
        lower_left = non_causal_2d_attention_mask.expand(-1, -1, report_seq_len, -1)
        lower_left = lower_left * causal_2d_attention_mask.permute(0, 1, 3, 2)
            
        left = torch.cat((upper_left, lower_left), dim=2)
        right = torch.cat((upper_right, lower_right), dim=2)

        mixed_causality_4d_attention_mask = torch.cat((left, right), dim=-1)
        
        return mixed_causality_4d_attention_mask
    
    @staticmethod
    def create_4d_attention_mask_mixed_causality_past_key_values(non_causal_2d_attention_mask, causal_2d_attention_mask):
    
        non_causal_2d_attention_mask = non_causal_2d_attention_mask[:, None, None, :]
        causal_2d_attention_mask = causal_2d_attention_mask[:, None, None, :]

        mixed_causality_4d_attention_mask = torch.cat((non_causal_2d_attention_mask, causal_2d_attention_mask), dim=-1)
        return mixed_causality_4d_attention_mask
    
    def position_ids_from_time_deltas_and_attention_mask(self, time_deltas, attention_mask):
        mask_value = torch.finfo(time_deltas.dtype).max if self.decoder.config.time_delta_monotonic_inversion else torch.finfo(time_deltas.dtype).min
        
        masked_time_deltas = torch.where(attention_mask == 1, time_deltas[:, :, 0], mask_value)
        _, col_indices = torch.sort(masked_time_deltas, descending=not self.decoder.config.time_delta_monotonic_inversion)
        
        num_rows, num_cols, _ = time_deltas.shape

        row_indices = torch.arange(num_rows, device=time_deltas.device).view(-1, 1).repeat(1, num_cols).view(-1)
        position_ids = torch.zeros_like(col_indices, device=time_deltas.device)
        position_ids[row_indices, col_indices.flatten()] = torch.arange(num_cols, device=time_deltas.device)[None, :].expand(num_rows, -1).flatten()
        position_ids.masked_fill_(attention_mask == 0, 1)  # Following: https://github.com/huggingface/transformers/blob/c5f0288bc7d76f65996586f79f69fba8867a0e67/src/transformers/models/llama/modeling_llama.py#L1285
        
        return position_ids
    
    def get_dataset(self, dataset_path, train_transforms=None, test_transforms=None, max_train_images_per_study=None, study_id_split='mimic_iv_ed_mimic_cxr_jpg', test_set_only=False):
        
        assert max_train_images_per_study is not None, 'max_train_images_per_study must be defined.'
        assert test_transforms is not None, 'test_transforms must be defined.'
        
        def train_set_transform(batch):
            
            # Randomly select max_train_images_per_study if the number of images for a study exceeds max_train_images_per_study.
            keys = ['images', 'dicom_id'] 
            keys = keys + self.tables['mimic_cxr_2_0_0_metadata']['index_columns'] if 'mimic_cxr_2_0_0_metadata' in self.tables else keys
            for i in range(len(batch['images'])):
                if len(batch['images'][i]) > max_train_images_per_study:
                    paired = list(zip(*(batch[key][i] for key in keys)))
                    sampled_pairs = random.sample(paired, max_train_images_per_study)
                    unzipped_samples = zip(*sampled_pairs)
                    for key, values in zip(keys, unzipped_samples):
                        batch[key][i] = list(values)
            
            batch['images'] = [[decode_image(torch.frombuffer(bytearray(j), dtype=torch.uint8)) for j in i] for i in batch['images']]
            
            # Sort based on ViewPosition:
            batch['images'] = [list(zip(*sorted(zip(i, v), key=lambda x: VIEW_ORDER.index(x[1]))))[0] for i, v in zip(batch['images'], batch['ViewPosition'])]
            batch['images'] = [torch.stack([train_transforms(j) for j in i]) for i in batch['images']]
            max_size = max(i.shape[0] for i in batch['images'])
            
            batch['image_time_deltas'] = [[self.zero_time_delta_value if j < i.shape[0] else self.inf_time_delta_value for j in range(max_size)] for i in batch['images']]
            batch['images'] = torch.nn.utils.rnn.pad_sequence(batch['images'], batch_first=True, padding_value=0.0)
            
            for k, v in self.tables.items():
                if 'index_columns' in v or 'value_columns' in v:
                    batch[f'{k}_index_value_feats'],  batch[f'{k}_index_value_token_type_ids'], batch[f'{k}_index_value_time_delta'], batch[f'{k}_index_value_mask'] = self.prepare_index_value_feats(k, batch)
            
            for k, v in self.tables.items():
                if 'text_columns' in v:
                    for i in v['text_columns']:
                        key = f'{k}_{i}' if not k == 'mimic_cxr_sectioned' else i
                        batch[key], batch[f'{key}_time_delta'] = self.prepare_text_prompt(k, i, batch)

            return batch

        def test_set_transform(batch):
            batch['images'] = [[decode_image(torch.frombuffer(bytearray(j), dtype=torch.uint8)) for j in i] for i in batch['images']]
            
            # Sort based on ViewPosition:
            batch['images'] = [list(zip(*sorted(zip(i, v), key=lambda x: VIEW_ORDER.index(x[1]))))[0] for i, v in zip(batch['images'], batch['ViewPosition'])]
            batch['images'] = [torch.stack([test_transforms(j) for j in i]) for i in batch['images']]
            max_size = max(i.shape[0] for i in batch['images'])
            batch['image_time_deltas'] = [[self.zero_time_delta_value if j < i.shape[0] else self.inf_time_delta_value for j in range(max_size)] for i in batch['images']]
            batch['images'] = torch.nn.utils.rnn.pad_sequence(batch['images'], batch_first=True, padding_value=0.0)
            
            for k, v in self.tables.items():
                if 'index_columns' in v or 'value_columns' in v:
                    batch[f'{k}_index_value_feats'],  batch[f'{k}_index_value_token_type_ids'], batch[f'{k}_index_value_time_delta'], batch[f'{k}_index_value_mask'] = self.prepare_index_value_feats(k, batch)
            
            for k, v in self.tables.items():
                if 'text_columns' in v:
                    for i in v['text_columns']:
                        key = f'{k}_{i}' if not k == 'mimic_cxr_sectioned' else i
                        batch[key], batch[f'{key}_time_delta'] = self.prepare_text_prompt(k, i, batch)
            
            return batch

        dataset = datasets.load_from_disk(dataset_path)

        # Train set:
        if not test_set_only:
            with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), f'{study_id_split}_train_study_ids.json'), 'r') as f:
                study_ids = json.load(f)
            train_set = dataset['train']
            train_set_study_ids = train_set['study_id']
            index_map = {study_id: idx for idx, study_id in enumerate(train_set_study_ids)}
            indices = [index_map[study_id] for study_id in study_ids if study_id in index_map]
            indices.sort()        
            train_set = PriorsDataset(train_set, self.decoder.config.history, self.time_delta_map)
            train_set.set_transform(train_set_transform)
            train_set = Subset(train_set, indices)
        else:
            train_set = None

        # Validation set:
        if not test_set_only:
            with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), f'{study_id_split}_validate_study_ids.json'), 'r') as f:
                study_ids = json.load(f)
            val_set = dataset['validate']
            val_set_study_ids = val_set['study_id']
            index_map = {study_id: idx for idx, study_id in enumerate(val_set_study_ids)}
            indices = [index_map[study_id] for study_id in study_ids if study_id in index_map]
            indices.sort()    
            val_set = PriorsDataset(val_set, self.decoder.config.history, self.time_delta_map)    
            val_set.set_transform(test_set_transform)
            val_set = Subset(val_set, indices)
        else:
            val_set = None

        # Test set:
        with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), f'{study_id_split}_test_study_ids.json'), 'r') as f:
            study_ids = json.load(f)
        test_set = dataset['test']
        test_set_study_ids = test_set['study_id']
        index_map = {study_id: idx for idx, study_id in enumerate(test_set_study_ids)}
        indices = [index_map[study_id] for study_id in study_ids if study_id in index_map]
        indices.sort()        
        test_set = PriorsDataset(test_set, self.decoder.config.history, self.time_delta_map)    
        test_set.set_transform(test_set_transform)
        test_set = Subset(test_set, indices)
        
        if not test_set_only:
            return train_set, val_set, test_set
        else:
            return test_set
    
    def get_stage_1_dataset(self, dataset_path, train_transforms, test_transforms, max_train_images_per_study):
        
        def train_set_transform(batch):
            
            # Randomly select max_train_images_per_study if the number of images for a study exceeds max_train_images_per_study.
            for i in range(len(batch['images'])):
                if len(batch['images'][i]) > max_train_images_per_study:
                    paired = list(zip(batch['images'][i], batch['ViewPosition'][i]))
                    sampled_pairs = random.sample(paired, max_train_images_per_study)
                    batch['images'][i], batch['ViewPosition'][i] = zip(*sampled_pairs)

            batch['images'] = [[decode_image(torch.frombuffer(bytearray(j), dtype=torch.uint8)) for j in i] for i in batch['images']]
            
            # Sort based on ViewPosition:
            batch['images'] = [list(zip(*sorted(zip(i, v), key=lambda x: VIEW_ORDER.index(x[1]))))[0] for i, v in zip(batch['images'], batch['ViewPosition'])]           
            batch['images'] = [torch.stack([train_transforms(j) for j in i]) for i in batch['images']]
            max_size = max(i.shape[0] for i in batch['images'])
            batch['image_time_deltas'] = [[self.zero_time_delta_value if j < i.shape[0] else self.inf_time_delta_value for j in range(max_size)] for i in batch['images']]
            batch['images'] = torch.nn.utils.rnn.pad_sequence(batch['images'], batch_first=True, padding_value=0.0)
            
            return batch

        def test_set_transform(batch):
            batch['images'] = [[decode_image(torch.frombuffer(bytearray(j), dtype=torch.uint8)) for j in i] for i in batch['images']]
            
            # Sort based on ViewPosition:
            batch['images'] = [list(zip(*sorted(zip(i, v), key=lambda x: VIEW_ORDER.index(x[1]))))[0] for i, v in zip(batch['images'], batch['ViewPosition'])]
            batch['images'] = [torch.stack([test_transforms(j) for j in i]) for i in batch['images']]
            max_size = max(i.shape[0] for i in batch['images'])
            batch['image_time_deltas'] = [[self.zero_time_delta_value if j < i.shape[0] else self.inf_time_delta_value for j in range(max_size)] for i in batch['images']]
            batch['images'] = torch.nn.utils.rnn.pad_sequence(batch['images'], batch_first=True, padding_value=0.0)
            
            return batch

        dataset = datasets.load_from_disk(dataset_path)

        # Train set:
        with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), f'mimic_cxr_jpg_train_study_ids.json'), 'r') as f:
            study_ids = json.load(f)
        train_set = dataset['train']
        train_set_study_ids = train_set['study_id']
        index_map = {study_id: idx for idx, study_id in enumerate(train_set_study_ids)}
        indices = [index_map[study_id] for study_id in study_ids if study_id in index_map]
        indices.sort()        
        train_set = PriorsDataset(train_set, self.decoder.config.history, self.time_delta_map)
        train_set.set_transform(train_set_transform)
        train_set = Subset(train_set, indices)

        # Validation set:
        with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), f'mimic_cxr_jpg_validate_study_ids.json'), 'r') as f:
            study_ids = json.load(f)
        val_set = dataset['validate']
        val_set_study_ids = val_set['study_id']
        index_map = {study_id: idx for idx, study_id in enumerate(val_set_study_ids)}
        indices = [index_map[study_id] for study_id in study_ids if study_id in index_map]
        indices.sort()        
        val_set = PriorsDataset(val_set, self.decoder.config.history, self.time_delta_map)    
        val_set.set_transform(test_set_transform)
        val_set = Subset(val_set, indices)

        # Test set:
        with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), f'mimic_cxr_jpg_test_study_ids.json'), 'r') as f:
            study_ids = json.load(f)
        test_set = dataset['test']
        test_set_study_ids = test_set['study_id']
        index_map = {study_id: idx for idx, study_id in enumerate(test_set_study_ids)}
        indices = [index_map[study_id] for study_id in study_ids if study_id in index_map]
        indices.sort()        
        test_set = PriorsDataset(test_set, self.decoder.config.history, self.time_delta_map)    
        test_set.set_transform(test_set_transform)
        test_set = Subset(test_set, indices)
        
        return train_set, val_set, test_set
    
    def prepare_index_value_feats(self, table, batch):
               
        index_value_columns = (self.tables[table].get('index_columns', []) + self.tables[table].get('value_columns', []))
        index_value_columns = [f'{table}_{i}' for i in index_value_columns] if table != 'mimic_cxr_2_0_0_metadata' else index_value_columns
        
        # Map to indices with lookup table:
        if 'index_columns' in self.tables[table]:
            for i in self.tables[table]['index_columns']:
                k = f'{table}_{i}' if not table == 'mimic_cxr_2_0_0_metadata' else i
                batch[k] = [
                    [self.luts[table][i][str(k)] if k is not None else None for k in j] if j is not None else None for j in batch[k]
                ]
        
        batch_index_value_feats_list = []
        batch_token_type_ids_list = []
        batch_time_deltas_list = []
        
        for batch_idx in range(len(batch['study_id'])):
        
            if any([batch[k][batch_idx] for k in index_value_columns]):

                num_rows = [len(batch[i][batch_idx]) for i in index_value_columns]
                assert all(x == num_rows[0] for x in num_rows)
                num_rows = num_rows[0]

                # The y-index and the datetime for each group:
                if isinstance(batch[self.tables[table]['groupby']][batch_idx], list):            
                    y_indices = [d.setdefault(x, len(d)) for d in [{}] for x in batch[self.tables[table]['groupby']][batch_idx]]
                    datetime = [j for i, j in enumerate(batch[self.tables[table]['time_column']][batch_idx]) if j not in batch[self.tables[table]['time_column']][batch_idx][:i]]
                    assert len(set(y_indices)) == len(datetime)
                else:
                    y_indices = [0] * num_rows
                    datetime = batch[self.tables[table]['time_column']][batch_idx] if 'time_column' in self.tables[table] else [batch['latest_study_datetime'][batch_idx]]
                    
                time_deltas = torch.tensor([compute_time_delta(i, batch['latest_study_datetime'][batch_idx], self.time_delta_map, to_tensor=False) for i in datetime])[:, None]
                                                    
                tensor = torch.zeros(max(y_indices) + 1, self.luts[table]['total'])
                
                # Index columns to feats:
                if 'index_columns' in self.tables[table]:

                    for i in self.tables[table]['index_columns']:
                        k = f'{table}_{i}' if not table == 'mimic_cxr_2_0_0_metadata' else i
                        y_indices_column = [y_idx for y_idx, x_idx in zip(y_indices, batch[k][batch_idx]) if x_idx is not None]
                        x_indices_column = [x_idx for x_idx in batch[k][batch_idx] if x_idx is not None]

                        tensor[y_indices_column, x_indices_column] = 1.0
                        
                if 'value_columns' in self.tables[table]:
                    for i in self.tables[table]['value_columns']:
                        
                        k = f'{table}_{i}' if not table == 'mimic_cxr_2_0_0_metadata' else i
                        y_indices_column = [y_idx for y_idx, value in zip(y_indices, batch[k][batch_idx]) if value is not None]
                        x_indices_column = [self.luts[table][i] for value in batch[k][batch_idx] if value is not None]
                        values = [value for value in batch[k][batch_idx] if value is not None]

                        tensor[y_indices_column, x_indices_column] = torch.tensor(values, dtype=tensor.dtype)
                        assert not torch.isnan(tensor).any()
            else:
                tensor = torch.empty(0, self.luts[table]['total'])
                time_deltas = torch.empty(0, 1)
                
            batch_index_value_feats_list.append(tensor)
            batch_token_type_ids_list.append(torch.full(
                    [tensor.shape[0]], 
                    self.token_type_to_token_type_id[table], 
                    dtype=torch.long, 
                )
            )
            batch_time_deltas_list.append(time_deltas)
            
            assert tensor.shape[0] == batch_token_type_ids_list[-1].shape[0]
            assert tensor.shape[0] == time_deltas.shape[0]
            
        batch_index_value_feats = torch.nn.utils.rnn.pad_sequence(batch_index_value_feats_list, batch_first=True, padding_value=-1)  # Pad value of -1 is not ideal. Need to use something else.
        batch_token_type_ids = torch.nn.utils.rnn.pad_sequence(batch_token_type_ids_list, batch_first=True, padding_value=0)
        batch_time_deltas = torch.nn.utils.rnn.pad_sequence(batch_time_deltas_list, batch_first=True, padding_value=0)

        batch_mask = (batch_index_value_feats != -1).any(dim=-1).int()
                
        return batch_index_value_feats, batch_token_type_ids, batch_time_deltas, batch_mask

    def prepare_text_prompt(self, table, column, batch):

        key = f'{table}_{column}' if not table == 'mimic_cxr_sectioned' else column

        batch_text_list = []
        batch_time_deltas_list = []

        for batch_idx in range(len(batch['study_id'])):
            if batch[key][batch_idx]:

                num_rows = len(batch[key][batch_idx])

                # The y-index and the datetime for each group:
                if isinstance(batch[self.tables[table]['groupby']][batch_idx], list):            
                    y_indices = [d.setdefault(x, len(d)) for d in [{}] for x in batch[self.tables[table]['groupby']][batch_idx]]
                    datetime = [j for i, j in enumerate(batch[self.tables[table]['time_column']][batch_idx]) if j not in batch[self.tables[table]['time_column']][batch_idx][:i]]
                    assert len(set(y_indices)) == len(datetime)
                else:
                    y_indices = [0] * num_rows
                    datetime = batch[self.tables[table]['time_column']][batch_idx] if 'time_column' in self.tables[table] else [batch['latest_study_datetime'][batch_idx]]
                    
                # Remove None values:  
                text_rows = batch[key][batch_idx] if isinstance(batch[key][batch_idx], list) else [batch[key][batch_idx]]                                                         
                y_indices = [i for i, j in zip(y_indices, text_rows) if j is not None]
                text_rows = [i for i in text_rows if i is not None]
                datetime = [datetime[i] for i in set(y_indices)]
                if text_rows:
                                                                   
                    # Those in the same group (or those with the same y-index) get joined as the same string:                
                    batch_text_list.append([', '.join([text_rows[j] for j in range(len(y_indices)) if y_indices[j] == k]) + '.' for k in set(y_indices)])
                    batch_time_deltas_list.append([compute_time_delta(i, batch['latest_study_datetime'][batch_idx], self.time_delta_map, to_tensor=False) for i in datetime])
            
                    assert len(batch_time_deltas_list[-1]) == len(batch_text_list[-1])
                else:
                    batch_text_list.append([])
                    batch_time_deltas_list.append([])
            else:
                batch_text_list.append([])
                batch_time_deltas_list.append([])

        return batch_text_list, batch_time_deltas_list

    @staticmethod
    def collate_fn(batch):
        keys = set().union(*(d.keys() for d in batch))
        batch = {j: [i.setdefault(j, None) for i in batch] for j in keys}
        batch = {k: torch.stack(v) if isinstance(v[0], torch.Tensor) else v for k, v in batch.items()}
        return batch
    
    @staticmethod
    def prepare_dataset(physionet_dir: str, database_dir: str):
        prepare_dataset(physionet_dir=physionet_dir, database_dir=database_dir)