File size: 21,473 Bytes
9691248
 
 
 
 
 
 
 
 
 
 
 
3adf8a5
9691248
0f14a5b
 
9691248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3adf8a5
9691248
 
 
 
 
cf33838
9691248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3adf8a5
 
 
 
9691248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cea5efc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9691248
cea5efc
 
9691248
cea5efc
9691248
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
import json
import multiprocessing
import os
import re
import shutil
from glob import glob
from pathlib import Path

import datasets
import duckdb
import numpy as np
import pandas as pd
from huggingface_hub import hf_hub_download

from .create_section_files import create_section_files


def mimic_cxr_image_path(dir, subject_id, study_id, dicom_id, ext='dcm'):
    return os.path.join(dir, 'p' + str(subject_id)[:2], 'p' + str(subject_id),
                        's' + str(study_id), str(dicom_id) + '.' + ext)
    
    
def format(text):
    # Remove newline, tab, repeated whitespaces, and leading and trailing whitespaces:
    def remove(text):
        text = re.sub(r'\n|\t', ' ', text)
        text = re.sub(r'\s+', ' ', text)
        return text.strip()
    
    if isinstance(text, np.ndarray) or isinstance(text, list):
        return [remove(t) if not pd.isna(t) else t for t in text]
    else:
        if pd.isna(text):
            return text
        return remove(text)
    

def create_lookup_table(df, columns, start_idx):
    df = df.groupby(columns).head(1)[columns].sort_values(by=columns)
    indices = range(start_idx, start_idx + len(df))
    df['index'] = indices
    return df, indices[-1]


def lookup_tables(con, tables):
    luts_dict = {}
    for k, v in tables.items():
        luts_dict[k] = {}
        start_idx = 0
        if 'index_columns' in v:
            for i in v['index_columns']:
                lut, end_idx = create_lookup_table(con.sql(f"SELECT {i} FROM {k}").df(), [i], start_idx)
                start_idx = end_idx + 1
                luts_dict[k][i] = {str(row[i]): int(row['index']) for _, row in lut.iterrows()}
        if 'value_columns' in v:
            for i in v['value_columns']:
                luts_dict[k][i] = start_idx
                start_idx += 1
                
        luts_dict[k]['total'] = start_idx

    with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'lookup_tables.json'), 'w') as file:
        json.dump(luts_dict, file)


def prepare_dataset(physionet_dir, database_dir, num_workers=None):
    
    num_workers = num_workers if num_workers is not None else multiprocessing.cpu_count() // 4
    
    Path(database_dir).mkdir(parents=True, exist_ok=True)

    sectioned_dir = os.path.join(database_dir, 'mimic_cxr_sectioned')
    mimic_cxr_sectioned_path = os.path.join(sectioned_dir, 'mimic_cxr_sectioned.csv')
    if not os.path.exists(mimic_cxr_sectioned_path):
        print(f'{mimic_cxr_sectioned_path} does not exist, creating...')
        
        # Check if reports exist. Reports for the first and last patients are checked only for speed, this comprimises comprehensiveness for speed:
        report_paths = [
            os.path.join(physionet_dir, 'mimic-cxr/2.0.0/files/p10/p10000032/s50414267.txt'),
            os.path.join(physionet_dir, 'mimic-cxr/2.0.0/files/p10/p10000032/s53189527.txt'),
            os.path.join(physionet_dir, 'mimic-cxr/2.0.0/files/p10/p10000032/s53911762.txt'),
            os.path.join(physionet_dir, 'mimic-cxr/2.0.0/files/p10/p10000032/s56699142.txt'),
            os.path.join(physionet_dir, 'mimic-cxr/2.0.0/files/p19/p19999987/s55368167.txt'),
            os.path.join(physionet_dir, 'mimic-cxr/2.0.0/files/p19/p19999987/s58621812.txt'),
            os.path.join(physionet_dir, 'mimic-cxr/2.0.0/files/p19/p19999987/s58971208.txt'),
        ]
        assert all([os.path.isfile(i) for i in report_paths]), f"""The reports do not exist with the following regex: {os.path.join(physionet_dir, 'mimic-cxr/2.0.0/files/p1*/p1*/s*.txt')}.
        "Please download them using wget -r -N -c -np --reject dcm --user <username> --ask-password https://physionet.org/files/mimic-cxr/2.0.0/"""

        print('Extracting sections from reports...')        
        create_section_files(
            reports_path=os.path.join(physionet_dir, 'mimic-cxr', '2.0.0', 'files'),
            output_path=sectioned_dir,
            no_split=True,
        )
                
    csv_paths = []         
    csv_paths.append(glob(os.path.join(physionet_dir, 'mimic-iv-ed', '*', 'ed', 'edstays.csv.gz'))[0])
    csv_paths.append(glob(os.path.join(physionet_dir, 'mimic-iv-ed', '*', 'ed', 'medrecon.csv.gz'))[0])
    csv_paths.append(glob(os.path.join(physionet_dir, 'mimic-iv-ed', '*', 'ed', 'pyxis.csv.gz'))[0])
    csv_paths.append(glob(os.path.join(physionet_dir, 'mimic-iv-ed', '*', 'ed', 'triage.csv.gz'))[0])
    csv_paths.append(glob(os.path.join(physionet_dir, 'mimic-iv-ed', '*', 'ed', 'vitalsign.csv.gz'))[0])
    
    base_names = [os.path.basename(i) for i in csv_paths]

    for i in ['edstays.csv.gz', 'medrecon.csv.gz', 'pyxis.csv.gz', 'triage.csv.gz', 'vitalsign.csv.gz']:
        assert i in base_names, f"""Table {i} is missing from MIMIC-IV-ED.
            Please download the tables from https://physionet.org/content/mimic-iv-ed. Do not decompress them."""
                
    csv_paths.append(glob(os.path.join(physionet_dir, 'mimic-cxr-jpg', '*', 'mimic-cxr-2.0.0-metadata.csv.gz'))[0])
    csv_paths.append(glob(os.path.join(physionet_dir, 'mimic-cxr-jpg', '*', 'mimic-cxr-2.0.0-chexpert.csv.gz'))[0])
    csv_paths.append(glob(os.path.join(physionet_dir, 'mimic-cxr-jpg', '*', 'mimic-cxr-2.0.0-split.csv.gz'))[0])

    base_names = [os.path.basename(i) for i in csv_paths[-3:]]

    for i in ['mimic-cxr-2.0.0-metadata.csv.gz', 'mimic-cxr-2.0.0-chexpert.csv.gz', 'mimic-cxr-2.0.0-split.csv.gz']:
        assert i in base_names, f"""CSV file {i} is missing from MIMIC-CXR-JPG.
            Please download the tables from https://physionet.org/content/mimic-cxr-jpg. Do not decompress them."""
            
    con = duckdb.connect(':memory:')
    for i in csv_paths:
        name = Path(i).stem.replace('.csv', '').replace('.gz', '').replace('-', '_').replace('.', '_')
        print(f'Copying {name} into database...')  
        con.sql(f"CREATE OR REPLACE TABLE {name} AS FROM '{i}';")         

    # DuckDB has trouble reading the sectioned .csv file, read with pandas instead:
    sections = pd.read_csv(mimic_cxr_sectioned_path)

    # Remove the first character from the study column and rename it to study_id:
    con.sql(
        """
        CREATE OR REPLACE TABLE mimic_cxr_sectioned AS 
        SELECT *, CAST(SUBSTR(study, 2) AS INT32) AS study_id 
        FROM sections;
        """
    )

    # Combine StudyDate and StudyTime into a single column and create the studies table:
    con.sql(
        """
        CREATE OR REPLACE TABLE studies AS 
        SELECT *, 
            strptime(
                CAST(StudyDate AS VARCHAR) || ' ' || lpad(split_part(CAST(StudyTime AS VARCHAR), '.', 1), 6, '0'), 
                '%Y%m%d %H%M%S'
            ) AS study_datetime
        FROM mimic_cxr_2_0_0_metadata;
        """
    )
    
    # Load the table configuration:
    path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tables.json')
    path = path if os.path.exists(path) else hf_hub_download(repo_id='aehrc/cxrmate-ed', filename='tables.json')
    with open(path, 'r') as f:
        tables = json.load(f)
            
    # Create lookup tables:
    lookup_tables(con, tables)
        
    # Collapse to one row per study, aggregate each studies columns as a list: 
    con.sql(
        """
        CREATE OR REPLACE TABLE studies AS
        SELECT 
            LIST(dicom_id) AS dicom_id, 
            FIRST(subject_id) AS subject_id, 
            study_id,    
            LIST(PerformedProcedureStepDescription) AS PerformedProcedureStepDescription, 
            LIST(ViewPosition) AS ViewPosition, 
            LIST(Rows) AS Rows, 
            LIST(Columns) AS Columns,
            LIST(StudyDate) AS StudyDate, 
            LIST(StudyTime) AS StudyTime, 
            LIST(ProcedureCodeSequence_CodeMeaning) AS ProcedureCodeSequence_CodeMeaning,
            LIST(ViewCodeSequence_CodeMeaning) AS ViewCodeSequence_CodeMeaning,
            LIST(PatientOrientationCodeSequence_CodeMeaning) AS PatientOrientationCodeSequence_CodeMeaning,
            LIST(study_datetime) AS study_datetime,
            MAX(study_datetime) AS latest_study_datetime,
        FROM studies
        GROUP BY study_id;
        """
    )

    # Join and filter the studies that overlap with ED stays:
    con.sql(
        """
        CREATE OR REPLACE TABLE studies AS
        SELECT 
            s.*, 
            e.hadm_id, 
            e.stay_id, 
            e.intime,
            e.outtime,
        FROM studies s
        LEFT JOIN edstays e
        ON s.subject_id = e.subject_id
        AND e.intime < s.latest_study_datetime 
        AND e.outtime > s.latest_study_datetime
        AND s.study_id != 59128861;
        """
    )  # Don't join study 59128861 as it overlaps with two ED stays
    
    
    # Aggregate and add the edstays table:
    con.sql(
        """
        CREATE OR REPLACE TABLE edstays_aggregated AS
        SELECT 
            FIRST(subject_id) AS subject_id, 
            stay_id,    
            LIST(intime) AS intime, 
            LIST(outtime) AS outtime, 
            LIST(gender) AS gender, 
            LIST(race) AS race, 
            LIST(arrival_transport) AS arrival_transport,
            LIST(disposition) AS disposition,
        FROM edstays
        GROUP BY stay_id;
        """
    )
    con.sql(
        """
        CREATE OR REPLACE TABLE studies AS
        SELECT 
            s.*, 
            e.intime AS edstays_intime,
            e.outtime AS edstays_outtime,
            e.gender AS edstays_gender,
            e.race AS edstays_race,
            e.arrival_transport AS edstays_arrival_transport,
            e.disposition AS edstays_disposition,
        FROM studies s
        LEFT JOIN edstays_aggregated e
        ON s.stay_id = e.stay_id;
        """
    )

    # Aggregate and add the triage table:
    con.sql(
        """
        CREATE OR REPLACE TABLE triage_aggregated AS
        SELECT 
            FIRST(subject_id) AS subject_id, 
            stay_id,    
            LIST(temperature) as temperature, 
            LIST(heartrate) AS heartrate, 
            LIST(resprate) AS resprate,
            LIST(o2sat) AS o2sat,
            LIST(sbp) AS sbp,
            LIST(dbp) AS dbp,
            LIST(pain) AS pain,
            LIST(acuity) AS acuity,
            LIST(chiefcomplaint) AS chiefcomplaint,
        FROM triage
        GROUP BY stay_id;
        """
    )
    con.sql(
        """
        CREATE OR REPLACE TABLE studies AS
        SELECT 
            s.*, 
            t.temperature AS triage_temperature,
            t.heartrate AS triage_heartrate,
            t.resprate AS triage_resprate,
            t.o2sat AS triage_o2sat,
            t.sbp AS triage_sbp,
            t.dbp AS triage_dbp,
            t.pain AS triage_pain,
            t.acuity AS triage_acuity,
            t.chiefcomplaint AS triage_chiefcomplaint,
        FROM studies s
        LEFT JOIN triage_aggregated t
        ON s.stay_id = t.stay_id;
        """
    )
    
    # Aggregate and then add the vitalsign table (ensuring no rows with a charttime after the latest study_datetime):
    con.sql(
        """
        CREATE OR REPLACE TABLE vitalsign_causal AS
        SELECT v.*, s.latest_study_datetime, s.study_id,
        FROM vitalsign v
        JOIN studies s ON v.stay_id = s.stay_id
        WHERE v.charttime < s.latest_study_datetime;
        """
    )  # This duplicates the rows for stay_ids that cover multiple study_ids. Hence, the following joins must be on study_id, not stay_id.
    con.sql(
        """
        CREATE OR REPLACE TABLE vitalsign_aggregated AS
        SELECT 
            study_id,
            FIRST(subject_id) AS subject_id, 
            FIRST(stay_id) as stay_id,    
            LIST(charttime) AS charttime, 
            LIST(temperature) as temperature, 
            LIST(heartrate) AS heartrate, 
            LIST(resprate) AS resprate,
            LIST(o2sat) AS o2sat,
            LIST(sbp) AS sbp,
            LIST(dbp) AS dbp,
            LIST(rhythm) AS rhythm,
            LIST(pain) AS pain,
        FROM vitalsign_causal
        GROUP BY study_id;
        """
    )
    con.sql(
        """
        CREATE OR REPLACE TABLE studies AS
        SELECT 
            s.*, 
            v.charttime AS vitalsign_charttime,
            v.temperature AS vitalsign_temperature,
            v.heartrate AS vitalsign_heartrate,
            v.resprate AS vitalsign_resprate,
            v.o2sat AS vitalsign_o2sat,
            v.sbp AS vitalsign_sbp,
            v.dbp AS vitalsign_dbp,
            v.rhythm AS vitalsign_rhythm,
            v.pain AS vitalsign_pain,
        FROM studies s
        LEFT JOIN vitalsign_aggregated v
        ON s.study_id = v.study_id;
        """
    )
    
    # Aggregate and then add the medrecon table:
    con.sql(
        """
        CREATE OR REPLACE TABLE medrecon_aggregated AS
        SELECT 
            FIRST(subject_id) AS subject_id, 
            stay_id,    
            LIST(charttime) AS charttime, 
            LIST(name) as name, 
            LIST(gsn) AS gsn, 
            LIST(ndc) AS ndc,
            LIST(etc_rn) AS etc_rn,
            LIST(etccode) AS etccode,
            LIST(etcdescription) AS etcdescription,
        FROM medrecon
        GROUP BY stay_id;
        """
    )
    con.sql(
        """
        CREATE OR REPLACE TABLE studies AS
        SELECT 
            s.*, 
            m.charttime AS medrecon_charttime,
            m.name AS medrecon_name,
            m.gsn AS medrecon_gsn,
            m.ndc AS medrecon_ndc,
            m.etc_rn AS medrecon_etc_rn,
            m.etccode AS medrecon_etccode,
            m.etcdescription AS medrecon_etcdescription,
        FROM studies s
        LEFT JOIN medrecon_aggregated m
        ON s.stay_id = m.stay_id;
        """
    )
    
    # Aggregate and then add the pyxis table (ensuring no rows with a charttime after the latest study_datetime):
    con.sql(
        """
        CREATE OR REPLACE TABLE pyxis_causal AS
        SELECT p.*, s.latest_study_datetime, s.study_id,
        FROM pyxis p
        JOIN studies s ON p.stay_id = s.stay_id
        WHERE p.charttime < s.latest_study_datetime;
        """
    ) # This duplicates the rows for stay_ids that cover multiple study_ids. Hence, the following joins must be on study_id, not stay_id.
    con.sql(
        """
        CREATE OR REPLACE TABLE pyxis_aggregated AS
        SELECT 
            study_id,
            FIRST(subject_id) AS subject_id, 
            FIRST(stay_id) as stay_id,    
            LIST(charttime) AS charttime, 
            LIST(med_rn) as med_rn, 
            LIST(name) as name, 
            LIST(gsn_rn) AS gsn_rn, 
            LIST(gsn) AS gsn, 
        FROM pyxis_causal
        GROUP BY study_id;
        """
    )
    con.sql(
        """
        CREATE OR REPLACE TABLE studies AS
        SELECT 
            s.*, 
            p.charttime AS pyxis_charttime,
            p.med_rn AS pyxis_med_rn,
            p.name AS pyxis_name,
            p.gsn_rn AS pyxis_gsn_rn,
            p.gsn AS pyxis_gsn,
        FROM studies s
        LEFT JOIN pyxis_aggregated p
        ON s.study_id = p.study_id;
        """
    )
      
    # Add the reports:
    con.sql(
        """
        CREATE OR REPLACE TABLE studies AS
        SELECT s.*, r.findings, r.impression, r.indication, r.history, r.comparison, r.last_paragraph, r.technique,
        FROM studies s
        LEFT JOIN mimic_cxr_sectioned r
        ON s.study_id = r.study_id
        """
    )
      
    # Aggregate and then add the splits:
    con.sql(
        """
        CREATE OR REPLACE TABLE split_aggregated AS
        SELECT 
            study_id,    
            FIRST(split) AS split,  
        FROM mimic_cxr_2_0_0_split
        GROUP BY study_id;
        """
    )
    con.sql(
        """
        CREATE OR REPLACE TABLE studies AS
        SELECT s.*, x.split,
        FROM studies s
        JOIN split_aggregated x
        ON s.study_id = x.study_id;
        """
    )
    
    # Prior studies column:
    con.sql(
        """
        CREATE OR REPLACE TABLE prior_studies AS
        WITH sorted AS (
            SELECT *,
                ROW_NUMBER() OVER (PARTITION BY subject_id ORDER BY latest_study_datetime) AS rn
            FROM studies
        ),
        aggregated AS (
            SELECT subject_id,
                study_id,
                latest_study_datetime,
                ARRAY_AGG(study_id) OVER (PARTITION BY subject_id ORDER BY rn ROWS BETWEEN UNBOUNDED PRECEDING AND 1 PRECEDING) AS prior_study_ids,
                ARRAY_AGG(latest_study_datetime) OVER (PARTITION BY subject_id ORDER BY rn ROWS BETWEEN UNBOUNDED PRECEDING AND 1 PRECEDING) AS prior_study_datetimes
            FROM sorted
        )
        SELECT * 
        FROM aggregated;
        """
    )
    con.sql(
        """
        CREATE OR REPLACE TABLE studies AS
        SELECT s.*, p.prior_study_ids, p.prior_study_datetimes,
        FROM studies s
        LEFT JOIN prior_studies p
        ON s.study_id = p.study_id
        ORDER BY s.subject_id, s.study_datetime DESC;
        """
    )
    
    # Text columns:
    text_columns = [f'{k}_{j}' if k != 'mimic_cxr_sectioned' else j for k, v in tables.items() if 'text_columns' in v for j in (v['text_columns'] if isinstance(v['text_columns'], list) else [v['text_columns']])] + ['findings', 'impression']
        
    pattern = os.path.join(physionet_dir, 'mimic-cxr-jpg', '*', 'files')
    mimic_cxr_jpg_dir = glob(pattern)
    assert len(mimic_cxr_jpg_dir), f'Multiple directories matched the pattern {pattern}: {mimic_cxr_jpg_dir}. Only one is required.'
    mimic_cxr_jpg_dir = mimic_cxr_jpg_dir[0]
    
    def load_image(row):
        images = []
        for dicom_ids, study_id, subject_id in zip(row['dicom_id'], row['study_id'], row['subject_id']):
            study_images = []
            for dicom_id in dicom_ids: 
                image_path = mimic_cxr_image_path(mimic_cxr_jpg_dir, subject_id, study_id, dicom_id, 'jpg')
                with open(image_path, 'rb') as f:
                    image = f.read()
                study_images.append(image)
            images.append(study_images)
        row['images'] = images
        return row
    
    dataset_dict = {}
    for split in ['test', 'validate', 'train']:
        df = con.sql(f"FROM studies WHERE split = '{split}'").df()
        
        # Format text columns:
        for i in text_columns:
            df[i] = df[i].apply(format)
            
        # Save indices for each split:        
        df[df['findings'].notna() & df['impression'].notna()]['study_id'].to_json(
            os.path.join(os.path.dirname(os.path.abspath(__file__)), f'mimic_cxr_jpg_{split}_study_ids.json'),
            orient='records',
            lines=False,
        )
        df_stay_id = df[df['findings'].notna() & df['impression'].notna() & df['stay_id'].notna()][['study_id', 'stay_id']]
        df_stay_id['stay_id'] = df_stay_id['stay_id'].astype(int)
        df_stay_id['study_id'].to_json(
            os.path.join(os.path.dirname(os.path.abspath(__file__)), f'mimic_iv_ed_mimic_cxr_jpg_{split}_study_ids.json'),
            orient='records',
            lines=False,
        )
        
        if split == 'test':
            pyxis_columns = [col for col in df.columns if col.startswith('pyxis_')]
            df_pyxis = df[df['findings'].notna() & df['impression'].notna() & df['stay_id'].notna()]
            df_pyxis = df_pyxis[~df_pyxis[pyxis_columns].isna().all(axis=1)]    
            df_pyxis['study_id'].to_json(
                os.path.join(os.path.dirname(os.path.abspath(__file__)), f'mimic_iv_ed_mimic_cxr_jpg_pyxis_{split}_study_ids.json'),
                orient='records',
                lines=False,
            )
            
            vitalsign_columns = [col for col in df.columns if col.startswith('vitalsign_')]
            df_vitalsign = df[df['findings'].notna() & df['impression'].notna() & df['stay_id'].notna()]
            df_vitalsign = df_vitalsign[~df_vitalsign[vitalsign_columns].isna().all(axis=1)]    
            df_vitalsign['study_id'].to_json(
                os.path.join(os.path.dirname(os.path.abspath(__file__)), f'mimic_iv_ed_mimic_cxr_jpg_vitalsign_{split}_study_ids.json'),
                orient='records',
                lines=False,
            )
        
        dataset_dict[split] = datasets.Dataset.from_pandas(df)
        cache_dir = os.path.join(database_dir, '.cache')
        Path(cache_dir).mkdir(parents=True, exist_ok=True)
        dataset_dict[split] = dataset_dict[split].map(
            load_image,
            num_proc=num_workers,
            writer_batch_size=8,
            batched=True,
            batch_size=8,
            keep_in_memory=False,
            cache_file_name=os.path.join(cache_dir, f'.{split}'),
            load_from_cache_file=False,
        )
        dataset_dict[split].cleanup_cache_files()
        shutil.rmtree(cache_dir)
        
    dataset = datasets.DatasetDict(dataset_dict)
    dataset.save_to_disk(os.path.join(database_dir, 'mimic_iv_ed_mimic_cxr_jpg_dataset'))
    
    con.close()
    

if __name__ == "__main__":
    physionet_dir = '/datasets/work/hb-mlaifsp-mm/work/archive/physionet.org/files'  # Where MIMIC-CXR, MIMIC-CXR-JPG, and MIMIC-IV-ED are stored.
    database_dir = '/scratch3/nic261/database/cxrmate_ed'  # Where the resultant database will be stored.

    prepare_dataset(physionet_dir=physionet_dir, database_dir=database_dir)