--- language: de license: mit metrics: - accuracy base_model: deepset/gbert-large model-index: - name: GePaBERT results: [] --- # GePaBERT This model is a fine-tuned version of [deepset/gbert-large](https://huggingface.co/deepset/gbert-large) on a corpus of parliamentary speeches held in the German Bundestag. It was specifically designed for the KONVENS 2023 shared task on speaker attribution. It achieves the following results on the evaluation set: - Loss: 0.7997 - Accuracy: 0.8020 ## Training and evaluation data The corpus of parliamentary speeches covers speeches held in the German Bundestag during the 9th-20th legislative period, from 1980 to April 2023. (757 MB) The speeches were automatically prepared from the publicly available [plenary protocols](https://www.bundestag.de/services/opendata), using the extraction pipeline [Open Discourse](https://opendiscourse.de) ([GitHub code](https://github.com/open-discourse/open-discourse)). Evaluation was done on a randomly-sampled 5% held-out dataset. ### Training hyperparameters The following hyperparameters were used during training: - `learning_rate`: 2e-05 - `train_batch_size`: 8 - `optimizer`: Adam with `betas=(0.9,0.999)` and `epsilon=1e-08` - `lr_scheduler_type`: linear - `num_epochs`: 5 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:------:|:--------:|:---------------:| | 1.0697 | 0.1 | 3489 | 0.7697 | 0.9802 | | 1.0339 | 0.2 | 6978 | 0.7727 | 0.9562 | | 1.0203 | 0.3 | 10467 | 0.7739 | 0.9463 | | 1.0215 | 0.4 | 13956 | 0.7743 | 0.9477 | | 1.0046 | 0.5 | 17445 | 0.7779 | 0.9299 | | 1.0036 | 0.6 | 20934 | 0.7764 | 0.9372 | | 1.2439 | 0.7 | 24423 | 0.7352 | 1.2473 | | 1.4382 | 0.8 | 27912 | 0.6947 | 1.5782 | | 1.1744 | 0.9 | 31401 | 0.7764 | 0.9360 | | 0.9718 | 1.0 | 34890 | 0.7799 | 0.9179 | | 0.9557 | 1.1 | 38379 | 0.7824 | 0.9038 | | 0.947 | 1.2 | 41868 | 0.7830 | 0.9000 | | 0.9487 | 1.3 | 45357 | 0.7833 | 0.8982 | | 0.9457 | 1.4 | 48846 | 0.7851 | 0.8862 | | 0.9442 | 1.5 | 52335 | 0.7863 | 0.8839 | | 0.9473 | 1.6 | 55824 | 0.7850 | 0.8855 | | 0.9388 | 1.7 | 59313 | 0.7865 | 0.8771 | | 0.9293 | 1.8 | 62802 | 0.7868 | 0.8805 | | 0.9242 | 1.9 | 66291 | 0.7873 | 0.8738 | | 0.9241 | 2.0 | 69780 | 0.7872 | 0.8757 | | 0.9127 | 2.1 | 73269 | 0.7896 | 0.8641 | | 0.9114 | 2.2 | 76758 | 0.7900 | 0.8627 | | 0.9095 | 2.3 | 80247 | 0.7913 | 0.8540 | | 0.9042 | 2.4 | 83736 | 0.7920 | 0.8518 | | 0.8999 | 2.5 | 87225 | 0.7919 | 0.8514 | | 0.899 | 2.6 | 90714 | 0.7918 | 0.8543 | | 0.8945 | 2.7 | 94203 | 0.7935 | 0.8418 | | 0.8867 | 2.8 | 97692 | 0.7934 | 0.8437 | | 0.893 | 2.9 | 101181 | 0.7938 | 0.8414 | | 0.8798 | 3.0 | 104670 | 0.7951 | 0.8359 | | 0.868 | 3.1 | 108159 | 0.7943 | 0.8375 | | 0.8736 | 3.2 | 111648 | 0.7956 | 0.8323 | | 0.8756 | 3.3 | 115137 | 0.7959 | 0.8315 | | 0.8681 | 3.4 | 118626 | 0.7964 | 0.8258 | | 0.8726 | 3.5 | 122115 | 0.7966 | 0.8266 | | 0.8594 | 3.6 | 125604 | 0.7967 | 0.8246 | | 0.8515 | 3.7 | 129093 | 0.7973 | 0.8227 | | 0.8568 | 3.8 | 132582 | 0.7979 | 0.8195 | | 0.8626 | 3.9 | 136071 | 0.7983 | 0.8173 | | 0.8585 | 4.0 | 139560 | 0.7978 | 0.8190 | | 0.8497 | 4.1 | 143049 | 0.7991 | 0.8127 | | 0.8383 | 4.2 | 146538 | 0.7992 | 0.8154 | | 0.8457 | 4.3 | 150027 | 0.8002 | 0.8080 | | 0.8353 | 4.4 | 153516 | 0.8005 | 0.8077 | | 0.8393 | 4.5 | 157005 | 0.8009 | 0.8027 | | 0.8417 | 4.6 | 160494 | 0.8050 | 0.8007 | | 0.836 | 4.7 | 163983 | 0.8004 | 0.8017 | | 0.8317 | 4.8 | 167472 | 0.7993 | 0.8021 | | 0.832 | 4.9 | 170961 | 0.8011 | 0.8013 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3