lm-v2 / README.md
tahomatx's picture
Update README.md
f6cc9cf
|
raw
history blame
3.79 kB
metadata
datasets:
  - snow_simplified_japanese_corpus
  - mkqa
  - llm-book/aio_v2
  - paws
  - lmqg/qg_jaquad
  - SkelterLabsInc/JaQuAD
  - karakuri-ai/dolly-15k-ja
  - MBZUAI/Bactrian-X
  - GEM/wiki_lingua
  - csebuetnlp/xlsum
language:
  - ja

Aerner LM-v2

事前学習から全部日本語で学習させたモデルのバージョン2です。 LLaMAベースで、24GBのVRAMで事前学習できる規模に小さなモデルです。

Flash Attentionが使用されているOpenLLaMAを使用しています。 Wikipediaのデータが中心なので、回答はWikipediaっぽい感じになります。

V1に比べると、モノや場所などの概念を持っているようないないような。 データセットはV1と同じですが、学習ステップ数が76,000と延長。

学習記録はこちら https://wandb.ai/tahomatx/huggingface/runs/xyy19rbx

Instruction-Answer例 ※ モデルは、Instructionの後に、Answerを追記します。入力は、Instruction部分までを入力します。

### Instruction:
東京駅について説明してください。

### Context:



### Answer:
東急東横線・神楽坂駅から徒歩約10分のところに位置している。改札口は1ヶ所のみで、乗車券は駅前ロータリーに設置されており、自動券売機等の設備はない。出入口は1番から4番までの合計6ヵ所あり、それぞれのホームには駐輪場が設けられている(2019年3月現在)。 ⁇ 無人駅である。 ⁇ 簡易委託駅であったが、2018年3月31日をもって廃止され、有人駅時代の駅舎は取り壊されてしまった。
JR東日本ステーションサービスによる業務
### Instruction:
ドラえもんについて説明してください。


### Context:



### Answer:
2007年10月1日から2008年3月31日まで放送された約5分の短編ドラマ。主演は声優の山口智充、脚本・演出は鈴木亜美子。原作とは異なるストーリーが展開されており、登場人物の設定もそれに合わせて変更され ている。

サンプルコードです。

from transformers import OpenLlamaForCausalLM, LlamaTokenizer, GenerationConfig, TextStreamer, AutoModelForCausalLM
import torch
import random
import numpy as np
import time


#
# Fix seed
#

seed = 42

random.seed(seed)
# Numpy
np.random.seed(seed)
# Pytorch
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.use_deterministic_algorithms = True

torch.set_default_dtype(torch.bfloat16)


model_id = "aerner/lm-v2"

text = """### Instruction:
東京駅について説明してください。

### Context:



### Answer:
"""

with torch.no_grad():
    tokenizer = LlamaTokenizer.from_pretrained(model_id)
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        device_map="auto",
        torch_dtype=torch.bfloat16,
        # load_in_8bit=True,
    )

    generation_config = GenerationConfig(
        max_new_tokens=256,
        min_new_tokens=1,
        early_stopping=True,

        do_sample=True,
        num_beams=8,

        temperature=1.0,
        top_p=0.6,

        penalty_alpha=0.4,
        no_repeat_ngram_size=4,
        repetition_penalty=1.4,

        remove_invalid_values=True,
        num_return_sequences=1,
    )

    start = time.time()

    tokenized_input = tokenizer(text, return_tensors="pt").to('cuda')
    generation_output = model.generate(
        input_ids=tokenized_input['input_ids'],
        generation_config=generation_config,
        return_dict_in_generate=True,
        output_scores=True,
    )
    for s in generation_output.sequences:
        output = tokenizer.decode(s)
        print(output)

    print(time.time() - start)