--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: fresh-2-layer-qasc2000-distill-of-fresh-2-layer-gpqa_EVAL_gpqa results: [] --- # fresh-2-layer-qasc2000-distill-of-fresh-2-layer-gpqa_EVAL_gpqa This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 14.9062 - Accuracy: 0.4192 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 321 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.59 | 100 | 14.0964 | 0.2980 | | No log | 3.17 | 200 | 15.9598 | 0.3788 | | No log | 4.76 | 300 | 14.9387 | 0.4091 | | No log | 6.35 | 400 | 14.1750 | 0.4091 | | 1.6819 | 7.94 | 500 | 16.7634 | 0.4091 | | 1.6819 | 9.52 | 600 | 14.9062 | 0.4192 | | 1.6819 | 11.11 | 700 | 13.9546 | 0.4091 | | 1.6819 | 12.7 | 800 | 14.2041 | 0.4091 | | 1.6819 | 14.29 | 900 | 15.2506 | 0.4040 | | 0.2306 | 15.87 | 1000 | 14.9041 | 0.4091 | | 0.2306 | 17.46 | 1100 | 14.9118 | 0.4141 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.14.0