afrideva commited on
Commit
fb3569a
1 Parent(s): ec655d7

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +2716 -0
README.md ADDED
@@ -0,0 +1,2716 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: avsolatorio/GIST-all-MiniLM-L6-v2
3
+ inference: true
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: mit
8
+ model-index:
9
+ - name: GIST-all-MiniLM-L6-v2
10
+ results:
11
+ - dataset:
12
+ config: en
13
+ name: MTEB AmazonCounterfactualClassification (en)
14
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
15
+ split: test
16
+ type: mteb/amazon_counterfactual
17
+ metrics:
18
+ - type: accuracy
19
+ value: 72.8955223880597
20
+ - type: ap
21
+ value: 35.447605103320775
22
+ - type: f1
23
+ value: 66.82951715365854
24
+ task:
25
+ type: Classification
26
+ - dataset:
27
+ config: default
28
+ name: MTEB AmazonPolarityClassification
29
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
30
+ split: test
31
+ type: mteb/amazon_polarity
32
+ metrics:
33
+ - type: accuracy
34
+ value: 87.19474999999998
35
+ - type: ap
36
+ value: 83.09577890808514
37
+ - type: f1
38
+ value: 87.13833121762009
39
+ task:
40
+ type: Classification
41
+ - dataset:
42
+ config: en
43
+ name: MTEB AmazonReviewsClassification (en)
44
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
45
+ split: test
46
+ type: mteb/amazon_reviews_multi
47
+ metrics:
48
+ - type: accuracy
49
+ value: 42.556000000000004
50
+ - type: f1
51
+ value: 42.236256693772276
52
+ task:
53
+ type: Classification
54
+ - dataset:
55
+ config: default
56
+ name: MTEB ArguAna
57
+ revision: None
58
+ split: test
59
+ type: arguana
60
+ metrics:
61
+ - type: map_at_1
62
+ value: 26.884999999999998
63
+ - type: map_at_10
64
+ value: 42.364000000000004
65
+ - type: map_at_100
66
+ value: 43.382
67
+ - type: map_at_1000
68
+ value: 43.391000000000005
69
+ - type: map_at_3
70
+ value: 37.162
71
+ - type: map_at_5
72
+ value: 40.139
73
+ - type: mrr_at_1
74
+ value: 26.884999999999998
75
+ - type: mrr_at_10
76
+ value: 42.193999999999996
77
+ - type: mrr_at_100
78
+ value: 43.211
79
+ - type: mrr_at_1000
80
+ value: 43.221
81
+ - type: mrr_at_3
82
+ value: 36.949
83
+ - type: mrr_at_5
84
+ value: 40.004
85
+ - type: ndcg_at_1
86
+ value: 26.884999999999998
87
+ - type: ndcg_at_10
88
+ value: 51.254999999999995
89
+ - type: ndcg_at_100
90
+ value: 55.481
91
+ - type: ndcg_at_1000
92
+ value: 55.68300000000001
93
+ - type: ndcg_at_3
94
+ value: 40.565
95
+ - type: ndcg_at_5
96
+ value: 45.882
97
+ - type: precision_at_1
98
+ value: 26.884999999999998
99
+ - type: precision_at_10
100
+ value: 7.9799999999999995
101
+ - type: precision_at_100
102
+ value: 0.98
103
+ - type: precision_at_1000
104
+ value: 0.1
105
+ - type: precision_at_3
106
+ value: 16.808999999999997
107
+ - type: precision_at_5
108
+ value: 12.645999999999999
109
+ - type: recall_at_1
110
+ value: 26.884999999999998
111
+ - type: recall_at_10
112
+ value: 79.801
113
+ - type: recall_at_100
114
+ value: 98.009
115
+ - type: recall_at_1000
116
+ value: 99.502
117
+ - type: recall_at_3
118
+ value: 50.427
119
+ - type: recall_at_5
120
+ value: 63.229
121
+ task:
122
+ type: Retrieval
123
+ - dataset:
124
+ config: default
125
+ name: MTEB ArxivClusteringP2P
126
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
127
+ split: test
128
+ type: mteb/arxiv-clustering-p2p
129
+ metrics:
130
+ - type: v_measure
131
+ value: 45.31044837358167
132
+ task:
133
+ type: Clustering
134
+ - dataset:
135
+ config: default
136
+ name: MTEB ArxivClusteringS2S
137
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
138
+ split: test
139
+ type: mteb/arxiv-clustering-s2s
140
+ metrics:
141
+ - type: v_measure
142
+ value: 35.44751738734691
143
+ task:
144
+ type: Clustering
145
+ - dataset:
146
+ config: default
147
+ name: MTEB AskUbuntuDupQuestions
148
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
149
+ split: test
150
+ type: mteb/askubuntudupquestions-reranking
151
+ metrics:
152
+ - type: map
153
+ value: 62.96517580629869
154
+ - type: mrr
155
+ value: 76.30051004704744
156
+ task:
157
+ type: Reranking
158
+ - dataset:
159
+ config: default
160
+ name: MTEB BIOSSES
161
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
162
+ split: test
163
+ type: mteb/biosses-sts
164
+ metrics:
165
+ - type: cos_sim_pearson
166
+ value: 83.97262600499639
167
+ - type: cos_sim_spearman
168
+ value: 81.25787561220484
169
+ - type: euclidean_pearson
170
+ value: 64.96260261677082
171
+ - type: euclidean_spearman
172
+ value: 64.17616109254686
173
+ - type: manhattan_pearson
174
+ value: 65.05620628102835
175
+ - type: manhattan_spearman
176
+ value: 64.71171546419122
177
+ task:
178
+ type: STS
179
+ - dataset:
180
+ config: default
181
+ name: MTEB Banking77Classification
182
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
183
+ split: test
184
+ type: mteb/banking77
185
+ metrics:
186
+ - type: accuracy
187
+ value: 84.2435064935065
188
+ - type: f1
189
+ value: 84.2334859253828
190
+ task:
191
+ type: Classification
192
+ - dataset:
193
+ config: default
194
+ name: MTEB BiorxivClusteringP2P
195
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
196
+ split: test
197
+ type: mteb/biorxiv-clustering-p2p
198
+ metrics:
199
+ - type: v_measure
200
+ value: 38.38358435972693
201
+ task:
202
+ type: Clustering
203
+ - dataset:
204
+ config: default
205
+ name: MTEB BiorxivClusteringS2S
206
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
207
+ split: test
208
+ type: mteb/biorxiv-clustering-s2s
209
+ metrics:
210
+ - type: v_measure
211
+ value: 31.093619653843124
212
+ task:
213
+ type: Clustering
214
+ - dataset:
215
+ config: default
216
+ name: MTEB CQADupstackAndroidRetrieval
217
+ revision: None
218
+ split: test
219
+ type: BeIR/cqadupstack
220
+ metrics:
221
+ - type: map_at_1
222
+ value: 35.016999999999996
223
+ - type: map_at_10
224
+ value: 47.019
225
+ - type: map_at_100
226
+ value: 48.634
227
+ - type: map_at_1000
228
+ value: 48.757
229
+ - type: map_at_3
230
+ value: 43.372
231
+ - type: map_at_5
232
+ value: 45.314
233
+ - type: mrr_at_1
234
+ value: 43.491
235
+ - type: mrr_at_10
236
+ value: 53.284
237
+ - type: mrr_at_100
238
+ value: 54.038
239
+ - type: mrr_at_1000
240
+ value: 54.071000000000005
241
+ - type: mrr_at_3
242
+ value: 51.001
243
+ - type: mrr_at_5
244
+ value: 52.282
245
+ - type: ndcg_at_1
246
+ value: 43.491
247
+ - type: ndcg_at_10
248
+ value: 53.498999999999995
249
+ - type: ndcg_at_100
250
+ value: 58.733999999999995
251
+ - type: ndcg_at_1000
252
+ value: 60.307
253
+ - type: ndcg_at_3
254
+ value: 48.841
255
+ - type: ndcg_at_5
256
+ value: 50.76199999999999
257
+ - type: precision_at_1
258
+ value: 43.491
259
+ - type: precision_at_10
260
+ value: 10.315000000000001
261
+ - type: precision_at_100
262
+ value: 1.6209999999999998
263
+ - type: precision_at_1000
264
+ value: 0.20500000000000002
265
+ - type: precision_at_3
266
+ value: 23.462
267
+ - type: precision_at_5
268
+ value: 16.652
269
+ - type: recall_at_1
270
+ value: 35.016999999999996
271
+ - type: recall_at_10
272
+ value: 64.92
273
+ - type: recall_at_100
274
+ value: 86.605
275
+ - type: recall_at_1000
276
+ value: 96.174
277
+ - type: recall_at_3
278
+ value: 50.99
279
+ - type: recall_at_5
280
+ value: 56.93
281
+ task:
282
+ type: Retrieval
283
+ - dataset:
284
+ config: default
285
+ name: MTEB CQADupstackEnglishRetrieval
286
+ revision: None
287
+ split: test
288
+ type: BeIR/cqadupstack
289
+ metrics:
290
+ - type: map_at_1
291
+ value: 29.866
292
+ - type: map_at_10
293
+ value: 40.438
294
+ - type: map_at_100
295
+ value: 41.77
296
+ - type: map_at_1000
297
+ value: 41.913
298
+ - type: map_at_3
299
+ value: 37.634
300
+ - type: map_at_5
301
+ value: 39.226
302
+ - type: mrr_at_1
303
+ value: 37.834
304
+ - type: mrr_at_10
305
+ value: 46.765
306
+ - type: mrr_at_100
307
+ value: 47.410000000000004
308
+ - type: mrr_at_1000
309
+ value: 47.461
310
+ - type: mrr_at_3
311
+ value: 44.735
312
+ - type: mrr_at_5
313
+ value: 46.028000000000006
314
+ - type: ndcg_at_1
315
+ value: 37.834
316
+ - type: ndcg_at_10
317
+ value: 46.303
318
+ - type: ndcg_at_100
319
+ value: 50.879
320
+ - type: ndcg_at_1000
321
+ value: 53.112
322
+ - type: ndcg_at_3
323
+ value: 42.601
324
+ - type: ndcg_at_5
325
+ value: 44.384
326
+ - type: precision_at_1
327
+ value: 37.834
328
+ - type: precision_at_10
329
+ value: 8.898
330
+ - type: precision_at_100
331
+ value: 1.4409999999999998
332
+ - type: precision_at_1000
333
+ value: 0.19499999999999998
334
+ - type: precision_at_3
335
+ value: 20.977
336
+ - type: precision_at_5
337
+ value: 14.841
338
+ - type: recall_at_1
339
+ value: 29.866
340
+ - type: recall_at_10
341
+ value: 56.06100000000001
342
+ - type: recall_at_100
343
+ value: 75.809
344
+ - type: recall_at_1000
345
+ value: 89.875
346
+ - type: recall_at_3
347
+ value: 44.707
348
+ - type: recall_at_5
349
+ value: 49.846000000000004
350
+ task:
351
+ type: Retrieval
352
+ - dataset:
353
+ config: default
354
+ name: MTEB CQADupstackGamingRetrieval
355
+ revision: None
356
+ split: test
357
+ type: BeIR/cqadupstack
358
+ metrics:
359
+ - type: map_at_1
360
+ value: 38.985
361
+ - type: map_at_10
362
+ value: 51.165000000000006
363
+ - type: map_at_100
364
+ value: 52.17
365
+ - type: map_at_1000
366
+ value: 52.229000000000006
367
+ - type: map_at_3
368
+ value: 48.089999999999996
369
+ - type: map_at_5
370
+ value: 49.762
371
+ - type: mrr_at_1
372
+ value: 44.577
373
+ - type: mrr_at_10
374
+ value: 54.493
375
+ - type: mrr_at_100
376
+ value: 55.137
377
+ - type: mrr_at_1000
378
+ value: 55.167
379
+ - type: mrr_at_3
380
+ value: 52.079
381
+ - type: mrr_at_5
382
+ value: 53.518
383
+ - type: ndcg_at_1
384
+ value: 44.577
385
+ - type: ndcg_at_10
386
+ value: 56.825
387
+ - type: ndcg_at_100
388
+ value: 60.842
389
+ - type: ndcg_at_1000
390
+ value: 62.015
391
+ - type: ndcg_at_3
392
+ value: 51.699
393
+ - type: ndcg_at_5
394
+ value: 54.11
395
+ - type: precision_at_1
396
+ value: 44.577
397
+ - type: precision_at_10
398
+ value: 9.11
399
+ - type: precision_at_100
400
+ value: 1.206
401
+ - type: precision_at_1000
402
+ value: 0.135
403
+ - type: precision_at_3
404
+ value: 23.156
405
+ - type: precision_at_5
406
+ value: 15.737000000000002
407
+ - type: recall_at_1
408
+ value: 38.985
409
+ - type: recall_at_10
410
+ value: 70.164
411
+ - type: recall_at_100
412
+ value: 87.708
413
+ - type: recall_at_1000
414
+ value: 95.979
415
+ - type: recall_at_3
416
+ value: 56.285
417
+ - type: recall_at_5
418
+ value: 62.303
419
+ task:
420
+ type: Retrieval
421
+ - dataset:
422
+ config: default
423
+ name: MTEB CQADupstackGisRetrieval
424
+ revision: None
425
+ split: test
426
+ type: BeIR/cqadupstack
427
+ metrics:
428
+ - type: map_at_1
429
+ value: 28.137
430
+ - type: map_at_10
431
+ value: 36.729
432
+ - type: map_at_100
433
+ value: 37.851
434
+ - type: map_at_1000
435
+ value: 37.932
436
+ - type: map_at_3
437
+ value: 34.074
438
+ - type: map_at_5
439
+ value: 35.398
440
+ - type: mrr_at_1
441
+ value: 30.621
442
+ - type: mrr_at_10
443
+ value: 39.007
444
+ - type: mrr_at_100
445
+ value: 39.961
446
+ - type: mrr_at_1000
447
+ value: 40.02
448
+ - type: mrr_at_3
449
+ value: 36.591
450
+ - type: mrr_at_5
451
+ value: 37.806
452
+ - type: ndcg_at_1
453
+ value: 30.621
454
+ - type: ndcg_at_10
455
+ value: 41.772
456
+ - type: ndcg_at_100
457
+ value: 47.181
458
+ - type: ndcg_at_1000
459
+ value: 49.053999999999995
460
+ - type: ndcg_at_3
461
+ value: 36.577
462
+ - type: ndcg_at_5
463
+ value: 38.777
464
+ - type: precision_at_1
465
+ value: 30.621
466
+ - type: precision_at_10
467
+ value: 6.372999999999999
468
+ - type: precision_at_100
469
+ value: 0.955
470
+ - type: precision_at_1000
471
+ value: 0.11499999999999999
472
+ - type: precision_at_3
473
+ value: 15.367
474
+ - type: precision_at_5
475
+ value: 10.531
476
+ - type: recall_at_1
477
+ value: 28.137
478
+ - type: recall_at_10
479
+ value: 55.162
480
+ - type: recall_at_100
481
+ value: 79.931
482
+ - type: recall_at_1000
483
+ value: 93.67
484
+ - type: recall_at_3
485
+ value: 41.057
486
+ - type: recall_at_5
487
+ value: 46.327
488
+ task:
489
+ type: Retrieval
490
+ - dataset:
491
+ config: default
492
+ name: MTEB CQADupstackMathematicaRetrieval
493
+ revision: None
494
+ split: test
495
+ type: BeIR/cqadupstack
496
+ metrics:
497
+ - type: map_at_1
498
+ value: 16.798
499
+ - type: map_at_10
500
+ value: 25.267
501
+ - type: map_at_100
502
+ value: 26.579000000000004
503
+ - type: map_at_1000
504
+ value: 26.697
505
+ - type: map_at_3
506
+ value: 22.456
507
+ - type: map_at_5
508
+ value: 23.912
509
+ - type: mrr_at_1
510
+ value: 20.771
511
+ - type: mrr_at_10
512
+ value: 29.843999999999998
513
+ - type: mrr_at_100
514
+ value: 30.849
515
+ - type: mrr_at_1000
516
+ value: 30.916
517
+ - type: mrr_at_3
518
+ value: 27.156000000000002
519
+ - type: mrr_at_5
520
+ value: 28.518
521
+ - type: ndcg_at_1
522
+ value: 20.771
523
+ - type: ndcg_at_10
524
+ value: 30.792
525
+ - type: ndcg_at_100
526
+ value: 36.945
527
+ - type: ndcg_at_1000
528
+ value: 39.619
529
+ - type: ndcg_at_3
530
+ value: 25.52
531
+ - type: ndcg_at_5
532
+ value: 27.776
533
+ - type: precision_at_1
534
+ value: 20.771
535
+ - type: precision_at_10
536
+ value: 5.734
537
+ - type: precision_at_100
538
+ value: 1.031
539
+ - type: precision_at_1000
540
+ value: 0.13899999999999998
541
+ - type: precision_at_3
542
+ value: 12.148
543
+ - type: precision_at_5
544
+ value: 9.055
545
+ - type: recall_at_1
546
+ value: 16.798
547
+ - type: recall_at_10
548
+ value: 43.332
549
+ - type: recall_at_100
550
+ value: 70.016
551
+ - type: recall_at_1000
552
+ value: 88.90400000000001
553
+ - type: recall_at_3
554
+ value: 28.842000000000002
555
+ - type: recall_at_5
556
+ value: 34.37
557
+ task:
558
+ type: Retrieval
559
+ - dataset:
560
+ config: default
561
+ name: MTEB CQADupstackPhysicsRetrieval
562
+ revision: None
563
+ split: test
564
+ type: BeIR/cqadupstack
565
+ metrics:
566
+ - type: map_at_1
567
+ value: 31.180000000000003
568
+ - type: map_at_10
569
+ value: 41.78
570
+ - type: map_at_100
571
+ value: 43.102000000000004
572
+ - type: map_at_1000
573
+ value: 43.222
574
+ - type: map_at_3
575
+ value: 38.505
576
+ - type: map_at_5
577
+ value: 40.443
578
+ - type: mrr_at_1
579
+ value: 37.824999999999996
580
+ - type: mrr_at_10
581
+ value: 47.481
582
+ - type: mrr_at_100
583
+ value: 48.268
584
+ - type: mrr_at_1000
585
+ value: 48.313
586
+ - type: mrr_at_3
587
+ value: 44.946999999999996
588
+ - type: mrr_at_5
589
+ value: 46.492
590
+ - type: ndcg_at_1
591
+ value: 37.824999999999996
592
+ - type: ndcg_at_10
593
+ value: 47.827
594
+ - type: ndcg_at_100
595
+ value: 53.407000000000004
596
+ - type: ndcg_at_1000
597
+ value: 55.321
598
+ - type: ndcg_at_3
599
+ value: 42.815
600
+ - type: ndcg_at_5
601
+ value: 45.363
602
+ - type: precision_at_1
603
+ value: 37.824999999999996
604
+ - type: precision_at_10
605
+ value: 8.652999999999999
606
+ - type: precision_at_100
607
+ value: 1.354
608
+ - type: precision_at_1000
609
+ value: 0.172
610
+ - type: precision_at_3
611
+ value: 20.372
612
+ - type: precision_at_5
613
+ value: 14.591000000000001
614
+ - type: recall_at_1
615
+ value: 31.180000000000003
616
+ - type: recall_at_10
617
+ value: 59.894000000000005
618
+ - type: recall_at_100
619
+ value: 83.722
620
+ - type: recall_at_1000
621
+ value: 95.705
622
+ - type: recall_at_3
623
+ value: 45.824
624
+ - type: recall_at_5
625
+ value: 52.349999999999994
626
+ task:
627
+ type: Retrieval
628
+ - dataset:
629
+ config: default
630
+ name: MTEB CQADupstackProgrammersRetrieval
631
+ revision: None
632
+ split: test
633
+ type: BeIR/cqadupstack
634
+ metrics:
635
+ - type: map_at_1
636
+ value: 24.66
637
+ - type: map_at_10
638
+ value: 34.141
639
+ - type: map_at_100
640
+ value: 35.478
641
+ - type: map_at_1000
642
+ value: 35.594
643
+ - type: map_at_3
644
+ value: 30.446
645
+ - type: map_at_5
646
+ value: 32.583
647
+ - type: mrr_at_1
648
+ value: 29.909000000000002
649
+ - type: mrr_at_10
650
+ value: 38.949
651
+ - type: mrr_at_100
652
+ value: 39.803
653
+ - type: mrr_at_1000
654
+ value: 39.867999999999995
655
+ - type: mrr_at_3
656
+ value: 35.921
657
+ - type: mrr_at_5
658
+ value: 37.753
659
+ - type: ndcg_at_1
660
+ value: 29.909000000000002
661
+ - type: ndcg_at_10
662
+ value: 40.012
663
+ - type: ndcg_at_100
664
+ value: 45.707
665
+ - type: ndcg_at_1000
666
+ value: 48.15
667
+ - type: ndcg_at_3
668
+ value: 34.015
669
+ - type: ndcg_at_5
670
+ value: 37.002
671
+ - type: precision_at_1
672
+ value: 29.909000000000002
673
+ - type: precision_at_10
674
+ value: 7.693999999999999
675
+ - type: precision_at_100
676
+ value: 1.2229999999999999
677
+ - type: precision_at_1000
678
+ value: 0.16
679
+ - type: precision_at_3
680
+ value: 16.323999999999998
681
+ - type: precision_at_5
682
+ value: 12.306000000000001
683
+ - type: recall_at_1
684
+ value: 24.66
685
+ - type: recall_at_10
686
+ value: 52.478
687
+ - type: recall_at_100
688
+ value: 77.051
689
+ - type: recall_at_1000
690
+ value: 93.872
691
+ - type: recall_at_3
692
+ value: 36.382999999999996
693
+ - type: recall_at_5
694
+ value: 43.903999999999996
695
+ task:
696
+ type: Retrieval
697
+ - dataset:
698
+ config: default
699
+ name: MTEB CQADupstackRetrieval
700
+ revision: None
701
+ split: test
702
+ type: BeIR/cqadupstack
703
+ metrics:
704
+ - type: map_at_1
705
+ value: 26.768416666666667
706
+ - type: map_at_10
707
+ value: 36.2485
708
+ - type: map_at_100
709
+ value: 37.520833333333336
710
+ - type: map_at_1000
711
+ value: 37.64033333333334
712
+ - type: map_at_3
713
+ value: 33.25791666666667
714
+ - type: map_at_5
715
+ value: 34.877250000000004
716
+ - type: mrr_at_1
717
+ value: 31.65408333333334
718
+ - type: mrr_at_10
719
+ value: 40.43866666666667
720
+ - type: mrr_at_100
721
+ value: 41.301249999999996
722
+ - type: mrr_at_1000
723
+ value: 41.357499999999995
724
+ - type: mrr_at_3
725
+ value: 37.938916666666664
726
+ - type: mrr_at_5
727
+ value: 39.35183333333334
728
+ - type: ndcg_at_1
729
+ value: 31.65408333333334
730
+ - type: ndcg_at_10
731
+ value: 41.76983333333334
732
+ - type: ndcg_at_100
733
+ value: 47.138
734
+ - type: ndcg_at_1000
735
+ value: 49.33816666666667
736
+ - type: ndcg_at_3
737
+ value: 36.76683333333333
738
+ - type: ndcg_at_5
739
+ value: 39.04441666666666
740
+ - type: precision_at_1
741
+ value: 31.65408333333334
742
+ - type: precision_at_10
743
+ value: 7.396249999999998
744
+ - type: precision_at_100
745
+ value: 1.1974166666666666
746
+ - type: precision_at_1000
747
+ value: 0.15791666666666668
748
+ - type: precision_at_3
749
+ value: 16.955583333333333
750
+ - type: precision_at_5
751
+ value: 12.09925
752
+ - type: recall_at_1
753
+ value: 26.768416666666667
754
+ - type: recall_at_10
755
+ value: 53.82366666666667
756
+ - type: recall_at_100
757
+ value: 77.39600000000002
758
+ - type: recall_at_1000
759
+ value: 92.46300000000001
760
+ - type: recall_at_3
761
+ value: 39.90166666666667
762
+ - type: recall_at_5
763
+ value: 45.754000000000005
764
+ task:
765
+ type: Retrieval
766
+ - dataset:
767
+ config: default
768
+ name: MTEB CQADupstackStatsRetrieval
769
+ revision: None
770
+ split: test
771
+ type: BeIR/cqadupstack
772
+ metrics:
773
+ - type: map_at_1
774
+ value: 24.369
775
+ - type: map_at_10
776
+ value: 32.025
777
+ - type: map_at_100
778
+ value: 33.08
779
+ - type: map_at_1000
780
+ value: 33.169
781
+ - type: map_at_3
782
+ value: 29.589
783
+ - type: map_at_5
784
+ value: 30.894
785
+ - type: mrr_at_1
786
+ value: 27.301
787
+ - type: mrr_at_10
788
+ value: 34.64
789
+ - type: mrr_at_100
790
+ value: 35.556
791
+ - type: mrr_at_1000
792
+ value: 35.616
793
+ - type: mrr_at_3
794
+ value: 32.515
795
+ - type: mrr_at_5
796
+ value: 33.666000000000004
797
+ - type: ndcg_at_1
798
+ value: 27.301
799
+ - type: ndcg_at_10
800
+ value: 36.386
801
+ - type: ndcg_at_100
802
+ value: 41.598
803
+ - type: ndcg_at_1000
804
+ value: 43.864999999999995
805
+ - type: ndcg_at_3
806
+ value: 32.07
807
+ - type: ndcg_at_5
808
+ value: 34.028999999999996
809
+ - type: precision_at_1
810
+ value: 27.301
811
+ - type: precision_at_10
812
+ value: 5.782
813
+ - type: precision_at_100
814
+ value: 0.923
815
+ - type: precision_at_1000
816
+ value: 0.11900000000000001
817
+ - type: precision_at_3
818
+ value: 13.804
819
+ - type: precision_at_5
820
+ value: 9.693
821
+ - type: recall_at_1
822
+ value: 24.369
823
+ - type: recall_at_10
824
+ value: 47.026
825
+ - type: recall_at_100
826
+ value: 70.76400000000001
827
+ - type: recall_at_1000
828
+ value: 87.705
829
+ - type: recall_at_3
830
+ value: 35.366
831
+ - type: recall_at_5
832
+ value: 40.077
833
+ task:
834
+ type: Retrieval
835
+ - dataset:
836
+ config: default
837
+ name: MTEB CQADupstackTexRetrieval
838
+ revision: None
839
+ split: test
840
+ type: BeIR/cqadupstack
841
+ metrics:
842
+ - type: map_at_1
843
+ value: 17.878
844
+ - type: map_at_10
845
+ value: 25.582
846
+ - type: map_at_100
847
+ value: 26.848
848
+ - type: map_at_1000
849
+ value: 26.985
850
+ - type: map_at_3
851
+ value: 22.997
852
+ - type: map_at_5
853
+ value: 24.487000000000002
854
+ - type: mrr_at_1
855
+ value: 22.023
856
+ - type: mrr_at_10
857
+ value: 29.615000000000002
858
+ - type: mrr_at_100
859
+ value: 30.656
860
+ - type: mrr_at_1000
861
+ value: 30.737
862
+ - type: mrr_at_3
863
+ value: 27.322999999999997
864
+ - type: mrr_at_5
865
+ value: 28.665000000000003
866
+ - type: ndcg_at_1
867
+ value: 22.023
868
+ - type: ndcg_at_10
869
+ value: 30.476999999999997
870
+ - type: ndcg_at_100
871
+ value: 36.258
872
+ - type: ndcg_at_1000
873
+ value: 39.287
874
+ - type: ndcg_at_3
875
+ value: 25.995
876
+ - type: ndcg_at_5
877
+ value: 28.174
878
+ - type: precision_at_1
879
+ value: 22.023
880
+ - type: precision_at_10
881
+ value: 5.657
882
+ - type: precision_at_100
883
+ value: 1.01
884
+ - type: precision_at_1000
885
+ value: 0.145
886
+ - type: precision_at_3
887
+ value: 12.491
888
+ - type: precision_at_5
889
+ value: 9.112
890
+ - type: recall_at_1
891
+ value: 17.878
892
+ - type: recall_at_10
893
+ value: 41.155
894
+ - type: recall_at_100
895
+ value: 66.62599999999999
896
+ - type: recall_at_1000
897
+ value: 88.08200000000001
898
+ - type: recall_at_3
899
+ value: 28.505000000000003
900
+ - type: recall_at_5
901
+ value: 34.284
902
+ task:
903
+ type: Retrieval
904
+ - dataset:
905
+ config: default
906
+ name: MTEB CQADupstackUnixRetrieval
907
+ revision: None
908
+ split: test
909
+ type: BeIR/cqadupstack
910
+ metrics:
911
+ - type: map_at_1
912
+ value: 26.369999999999997
913
+ - type: map_at_10
914
+ value: 36.115
915
+ - type: map_at_100
916
+ value: 37.346000000000004
917
+ - type: map_at_1000
918
+ value: 37.449
919
+ - type: map_at_3
920
+ value: 32.976
921
+ - type: map_at_5
922
+ value: 34.782000000000004
923
+ - type: mrr_at_1
924
+ value: 30.784
925
+ - type: mrr_at_10
926
+ value: 40.014
927
+ - type: mrr_at_100
928
+ value: 40.913
929
+ - type: mrr_at_1000
930
+ value: 40.967999999999996
931
+ - type: mrr_at_3
932
+ value: 37.205
933
+ - type: mrr_at_5
934
+ value: 38.995999999999995
935
+ - type: ndcg_at_1
936
+ value: 30.784
937
+ - type: ndcg_at_10
938
+ value: 41.797000000000004
939
+ - type: ndcg_at_100
940
+ value: 47.355000000000004
941
+ - type: ndcg_at_1000
942
+ value: 49.535000000000004
943
+ - type: ndcg_at_3
944
+ value: 36.29
945
+ - type: ndcg_at_5
946
+ value: 39.051
947
+ - type: precision_at_1
948
+ value: 30.784
949
+ - type: precision_at_10
950
+ value: 7.164
951
+ - type: precision_at_100
952
+ value: 1.122
953
+ - type: precision_at_1000
954
+ value: 0.14200000000000002
955
+ - type: precision_at_3
956
+ value: 16.636
957
+ - type: precision_at_5
958
+ value: 11.996
959
+ - type: recall_at_1
960
+ value: 26.369999999999997
961
+ - type: recall_at_10
962
+ value: 55.010000000000005
963
+ - type: recall_at_100
964
+ value: 79.105
965
+ - type: recall_at_1000
966
+ value: 94.053
967
+ - type: recall_at_3
968
+ value: 40.139
969
+ - type: recall_at_5
970
+ value: 47.089
971
+ task:
972
+ type: Retrieval
973
+ - dataset:
974
+ config: default
975
+ name: MTEB CQADupstackWebmastersRetrieval
976
+ revision: None
977
+ split: test
978
+ type: BeIR/cqadupstack
979
+ metrics:
980
+ - type: map_at_1
981
+ value: 26.421
982
+ - type: map_at_10
983
+ value: 35.253
984
+ - type: map_at_100
985
+ value: 36.97
986
+ - type: map_at_1000
987
+ value: 37.195
988
+ - type: map_at_3
989
+ value: 32.068000000000005
990
+ - type: map_at_5
991
+ value: 33.763
992
+ - type: mrr_at_1
993
+ value: 31.423000000000002
994
+ - type: mrr_at_10
995
+ value: 39.995999999999995
996
+ - type: mrr_at_100
997
+ value: 40.977999999999994
998
+ - type: mrr_at_1000
999
+ value: 41.024
1000
+ - type: mrr_at_3
1001
+ value: 36.989
1002
+ - type: mrr_at_5
1003
+ value: 38.629999999999995
1004
+ - type: ndcg_at_1
1005
+ value: 31.423000000000002
1006
+ - type: ndcg_at_10
1007
+ value: 41.382000000000005
1008
+ - type: ndcg_at_100
1009
+ value: 47.532000000000004
1010
+ - type: ndcg_at_1000
1011
+ value: 49.829
1012
+ - type: ndcg_at_3
1013
+ value: 35.809000000000005
1014
+ - type: ndcg_at_5
1015
+ value: 38.308
1016
+ - type: precision_at_1
1017
+ value: 31.423000000000002
1018
+ - type: precision_at_10
1019
+ value: 7.885000000000001
1020
+ - type: precision_at_100
1021
+ value: 1.609
1022
+ - type: precision_at_1000
1023
+ value: 0.246
1024
+ - type: precision_at_3
1025
+ value: 16.469
1026
+ - type: precision_at_5
1027
+ value: 12.174
1028
+ - type: recall_at_1
1029
+ value: 26.421
1030
+ - type: recall_at_10
1031
+ value: 53.618
1032
+ - type: recall_at_100
1033
+ value: 80.456
1034
+ - type: recall_at_1000
1035
+ value: 94.505
1036
+ - type: recall_at_3
1037
+ value: 37.894
1038
+ - type: recall_at_5
1039
+ value: 44.352999999999994
1040
+ task:
1041
+ type: Retrieval
1042
+ - dataset:
1043
+ config: default
1044
+ name: MTEB CQADupstackWordpressRetrieval
1045
+ revision: None
1046
+ split: test
1047
+ type: BeIR/cqadupstack
1048
+ metrics:
1049
+ - type: map_at_1
1050
+ value: 21.54
1051
+ - type: map_at_10
1052
+ value: 29.468
1053
+ - type: map_at_100
1054
+ value: 30.422
1055
+ - type: map_at_1000
1056
+ value: 30.542
1057
+ - type: map_at_3
1058
+ value: 26.888
1059
+ - type: map_at_5
1060
+ value: 27.962999999999997
1061
+ - type: mrr_at_1
1062
+ value: 23.29
1063
+ - type: mrr_at_10
1064
+ value: 31.176
1065
+ - type: mrr_at_100
1066
+ value: 32.046
1067
+ - type: mrr_at_1000
1068
+ value: 32.129000000000005
1069
+ - type: mrr_at_3
1070
+ value: 28.804999999999996
1071
+ - type: mrr_at_5
1072
+ value: 29.868
1073
+ - type: ndcg_at_1
1074
+ value: 23.29
1075
+ - type: ndcg_at_10
1076
+ value: 34.166000000000004
1077
+ - type: ndcg_at_100
1078
+ value: 39.217999999999996
1079
+ - type: ndcg_at_1000
1080
+ value: 41.964
1081
+ - type: ndcg_at_3
1082
+ value: 28.970000000000002
1083
+ - type: ndcg_at_5
1084
+ value: 30.797
1085
+ - type: precision_at_1
1086
+ value: 23.29
1087
+ - type: precision_at_10
1088
+ value: 5.489999999999999
1089
+ - type: precision_at_100
1090
+ value: 0.874
1091
+ - type: precision_at_1000
1092
+ value: 0.122
1093
+ - type: precision_at_3
1094
+ value: 12.261
1095
+ - type: precision_at_5
1096
+ value: 8.503
1097
+ - type: recall_at_1
1098
+ value: 21.54
1099
+ - type: recall_at_10
1100
+ value: 47.064
1101
+ - type: recall_at_100
1102
+ value: 70.959
1103
+ - type: recall_at_1000
1104
+ value: 91.032
1105
+ - type: recall_at_3
1106
+ value: 32.828
1107
+ - type: recall_at_5
1108
+ value: 37.214999999999996
1109
+ task:
1110
+ type: Retrieval
1111
+ - dataset:
1112
+ config: default
1113
+ name: MTEB ClimateFEVER
1114
+ revision: None
1115
+ split: test
1116
+ type: climate-fever
1117
+ metrics:
1118
+ - type: map_at_1
1119
+ value: 10.102
1120
+ - type: map_at_10
1121
+ value: 17.469
1122
+ - type: map_at_100
1123
+ value: 19.244
1124
+ - type: map_at_1000
1125
+ value: 19.435
1126
+ - type: map_at_3
1127
+ value: 14.257
1128
+ - type: map_at_5
1129
+ value: 16.028000000000002
1130
+ - type: mrr_at_1
1131
+ value: 22.866
1132
+ - type: mrr_at_10
1133
+ value: 33.535
1134
+ - type: mrr_at_100
1135
+ value: 34.583999999999996
1136
+ - type: mrr_at_1000
1137
+ value: 34.622
1138
+ - type: mrr_at_3
1139
+ value: 29.946
1140
+ - type: mrr_at_5
1141
+ value: 32.157000000000004
1142
+ - type: ndcg_at_1
1143
+ value: 22.866
1144
+ - type: ndcg_at_10
1145
+ value: 25.16
1146
+ - type: ndcg_at_100
1147
+ value: 32.347
1148
+ - type: ndcg_at_1000
1149
+ value: 35.821
1150
+ - type: ndcg_at_3
1151
+ value: 19.816
1152
+ - type: ndcg_at_5
1153
+ value: 22.026
1154
+ - type: precision_at_1
1155
+ value: 22.866
1156
+ - type: precision_at_10
1157
+ value: 8.072
1158
+ - type: precision_at_100
1159
+ value: 1.5709999999999997
1160
+ - type: precision_at_1000
1161
+ value: 0.22200000000000003
1162
+ - type: precision_at_3
1163
+ value: 14.701
1164
+ - type: precision_at_5
1165
+ value: 11.960999999999999
1166
+ - type: recall_at_1
1167
+ value: 10.102
1168
+ - type: recall_at_10
1169
+ value: 31.086000000000002
1170
+ - type: recall_at_100
1171
+ value: 55.896
1172
+ - type: recall_at_1000
1173
+ value: 75.375
1174
+ - type: recall_at_3
1175
+ value: 18.343999999999998
1176
+ - type: recall_at_5
1177
+ value: 24.102
1178
+ task:
1179
+ type: Retrieval
1180
+ - dataset:
1181
+ config: default
1182
+ name: MTEB DBPedia
1183
+ revision: None
1184
+ split: test
1185
+ type: dbpedia-entity
1186
+ metrics:
1187
+ - type: map_at_1
1188
+ value: 7.961
1189
+ - type: map_at_10
1190
+ value: 16.058
1191
+ - type: map_at_100
1192
+ value: 21.878
1193
+ - type: map_at_1000
1194
+ value: 23.156
1195
+ - type: map_at_3
1196
+ value: 12.206999999999999
1197
+ - type: map_at_5
1198
+ value: 13.747000000000002
1199
+ - type: mrr_at_1
1200
+ value: 60.5
1201
+ - type: mrr_at_10
1202
+ value: 68.488
1203
+ - type: mrr_at_100
1204
+ value: 69.02199999999999
1205
+ - type: mrr_at_1000
1206
+ value: 69.03200000000001
1207
+ - type: mrr_at_3
1208
+ value: 66.792
1209
+ - type: mrr_at_5
1210
+ value: 67.62899999999999
1211
+ - type: ndcg_at_1
1212
+ value: 49.125
1213
+ - type: ndcg_at_10
1214
+ value: 34.827999999999996
1215
+ - type: ndcg_at_100
1216
+ value: 38.723
1217
+ - type: ndcg_at_1000
1218
+ value: 45.988
1219
+ - type: ndcg_at_3
1220
+ value: 40.302
1221
+ - type: ndcg_at_5
1222
+ value: 36.781000000000006
1223
+ - type: precision_at_1
1224
+ value: 60.5
1225
+ - type: precision_at_10
1226
+ value: 26.825
1227
+ - type: precision_at_100
1228
+ value: 8.445
1229
+ - type: precision_at_1000
1230
+ value: 1.7000000000000002
1231
+ - type: precision_at_3
1232
+ value: 43.25
1233
+ - type: precision_at_5
1234
+ value: 34.5
1235
+ - type: recall_at_1
1236
+ value: 7.961
1237
+ - type: recall_at_10
1238
+ value: 20.843
1239
+ - type: recall_at_100
1240
+ value: 43.839
1241
+ - type: recall_at_1000
1242
+ value: 67.33
1243
+ - type: recall_at_3
1244
+ value: 13.516
1245
+ - type: recall_at_5
1246
+ value: 15.956000000000001
1247
+ task:
1248
+ type: Retrieval
1249
+ - dataset:
1250
+ config: default
1251
+ name: MTEB EmotionClassification
1252
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1253
+ split: test
1254
+ type: mteb/emotion
1255
+ metrics:
1256
+ - type: accuracy
1257
+ value: 52.06000000000001
1258
+ - type: f1
1259
+ value: 47.21494728335567
1260
+ task:
1261
+ type: Classification
1262
+ - dataset:
1263
+ config: default
1264
+ name: MTEB FEVER
1265
+ revision: None
1266
+ split: test
1267
+ type: fever
1268
+ metrics:
1269
+ - type: map_at_1
1270
+ value: 56.798
1271
+ - type: map_at_10
1272
+ value: 67.644
1273
+ - type: map_at_100
1274
+ value: 68.01700000000001
1275
+ - type: map_at_1000
1276
+ value: 68.038
1277
+ - type: map_at_3
1278
+ value: 65.539
1279
+ - type: map_at_5
1280
+ value: 66.912
1281
+ - type: mrr_at_1
1282
+ value: 61.221000000000004
1283
+ - type: mrr_at_10
1284
+ value: 71.97099999999999
1285
+ - type: mrr_at_100
1286
+ value: 72.262
1287
+ - type: mrr_at_1000
1288
+ value: 72.27
1289
+ - type: mrr_at_3
1290
+ value: 70.052
1291
+ - type: mrr_at_5
1292
+ value: 71.324
1293
+ - type: ndcg_at_1
1294
+ value: 61.221000000000004
1295
+ - type: ndcg_at_10
1296
+ value: 73.173
1297
+ - type: ndcg_at_100
1298
+ value: 74.779
1299
+ - type: ndcg_at_1000
1300
+ value: 75.229
1301
+ - type: ndcg_at_3
1302
+ value: 69.291
1303
+ - type: ndcg_at_5
1304
+ value: 71.552
1305
+ - type: precision_at_1
1306
+ value: 61.221000000000004
1307
+ - type: precision_at_10
1308
+ value: 9.449
1309
+ - type: precision_at_100
1310
+ value: 1.0370000000000001
1311
+ - type: precision_at_1000
1312
+ value: 0.109
1313
+ - type: precision_at_3
1314
+ value: 27.467999999999996
1315
+ - type: precision_at_5
1316
+ value: 17.744
1317
+ - type: recall_at_1
1318
+ value: 56.798
1319
+ - type: recall_at_10
1320
+ value: 85.991
1321
+ - type: recall_at_100
1322
+ value: 92.973
1323
+ - type: recall_at_1000
1324
+ value: 96.089
1325
+ - type: recall_at_3
1326
+ value: 75.576
1327
+ - type: recall_at_5
1328
+ value: 81.12
1329
+ task:
1330
+ type: Retrieval
1331
+ - dataset:
1332
+ config: default
1333
+ name: MTEB FiQA2018
1334
+ revision: None
1335
+ split: test
1336
+ type: fiqa
1337
+ metrics:
1338
+ - type: map_at_1
1339
+ value: 18.323
1340
+ - type: map_at_10
1341
+ value: 30.279
1342
+ - type: map_at_100
1343
+ value: 32.153999999999996
1344
+ - type: map_at_1000
1345
+ value: 32.339
1346
+ - type: map_at_3
1347
+ value: 26.336
1348
+ - type: map_at_5
1349
+ value: 28.311999999999998
1350
+ - type: mrr_at_1
1351
+ value: 35.339999999999996
1352
+ - type: mrr_at_10
1353
+ value: 44.931
1354
+ - type: mrr_at_100
1355
+ value: 45.818999999999996
1356
+ - type: mrr_at_1000
1357
+ value: 45.864
1358
+ - type: mrr_at_3
1359
+ value: 42.618
1360
+ - type: mrr_at_5
1361
+ value: 43.736999999999995
1362
+ - type: ndcg_at_1
1363
+ value: 35.339999999999996
1364
+ - type: ndcg_at_10
1365
+ value: 37.852999999999994
1366
+ - type: ndcg_at_100
1367
+ value: 44.888
1368
+ - type: ndcg_at_1000
1369
+ value: 48.069
1370
+ - type: ndcg_at_3
1371
+ value: 34.127
1372
+ - type: ndcg_at_5
1373
+ value: 35.026
1374
+ - type: precision_at_1
1375
+ value: 35.339999999999996
1376
+ - type: precision_at_10
1377
+ value: 10.617
1378
+ - type: precision_at_100
1379
+ value: 1.7930000000000001
1380
+ - type: precision_at_1000
1381
+ value: 0.23600000000000002
1382
+ - type: precision_at_3
1383
+ value: 22.582
1384
+ - type: precision_at_5
1385
+ value: 16.605
1386
+ - type: recall_at_1
1387
+ value: 18.323
1388
+ - type: recall_at_10
1389
+ value: 44.948
1390
+ - type: recall_at_100
1391
+ value: 71.11800000000001
1392
+ - type: recall_at_1000
1393
+ value: 90.104
1394
+ - type: recall_at_3
1395
+ value: 31.661
1396
+ - type: recall_at_5
1397
+ value: 36.498000000000005
1398
+ task:
1399
+ type: Retrieval
1400
+ - dataset:
1401
+ config: default
1402
+ name: MTEB HotpotQA
1403
+ revision: None
1404
+ split: test
1405
+ type: hotpotqa
1406
+ metrics:
1407
+ - type: map_at_1
1408
+ value: 30.668
1409
+ - type: map_at_10
1410
+ value: 43.669999999999995
1411
+ - type: map_at_100
1412
+ value: 44.646
1413
+ - type: map_at_1000
1414
+ value: 44.731
1415
+ - type: map_at_3
1416
+ value: 40.897
1417
+ - type: map_at_5
1418
+ value: 42.559999999999995
1419
+ - type: mrr_at_1
1420
+ value: 61.336999999999996
1421
+ - type: mrr_at_10
1422
+ value: 68.496
1423
+ - type: mrr_at_100
1424
+ value: 68.916
1425
+ - type: mrr_at_1000
1426
+ value: 68.938
1427
+ - type: mrr_at_3
1428
+ value: 66.90700000000001
1429
+ - type: mrr_at_5
1430
+ value: 67.91199999999999
1431
+ - type: ndcg_at_1
1432
+ value: 61.336999999999996
1433
+ - type: ndcg_at_10
1434
+ value: 52.588
1435
+ - type: ndcg_at_100
1436
+ value: 56.389
1437
+ - type: ndcg_at_1000
1438
+ value: 58.187999999999995
1439
+ - type: ndcg_at_3
1440
+ value: 48.109
1441
+ - type: ndcg_at_5
1442
+ value: 50.498
1443
+ - type: precision_at_1
1444
+ value: 61.336999999999996
1445
+ - type: precision_at_10
1446
+ value: 11.033
1447
+ - type: precision_at_100
1448
+ value: 1.403
1449
+ - type: precision_at_1000
1450
+ value: 0.164
1451
+ - type: precision_at_3
1452
+ value: 30.105999999999998
1453
+ - type: precision_at_5
1454
+ value: 19.954
1455
+ - type: recall_at_1
1456
+ value: 30.668
1457
+ - type: recall_at_10
1458
+ value: 55.165
1459
+ - type: recall_at_100
1460
+ value: 70.169
1461
+ - type: recall_at_1000
1462
+ value: 82.12
1463
+ - type: recall_at_3
1464
+ value: 45.159
1465
+ - type: recall_at_5
1466
+ value: 49.885000000000005
1467
+ task:
1468
+ type: Retrieval
1469
+ - dataset:
1470
+ config: default
1471
+ name: MTEB ImdbClassification
1472
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1473
+ split: test
1474
+ type: mteb/imdb
1475
+ metrics:
1476
+ - type: accuracy
1477
+ value: 78.542
1478
+ - type: ap
1479
+ value: 72.50692137216646
1480
+ - type: f1
1481
+ value: 78.40630687221642
1482
+ task:
1483
+ type: Classification
1484
+ - dataset:
1485
+ config: default
1486
+ name: MTEB MSMARCO
1487
+ revision: None
1488
+ split: dev
1489
+ type: msmarco
1490
+ metrics:
1491
+ - type: map_at_1
1492
+ value: 18.613
1493
+ - type: map_at_10
1494
+ value: 29.98
1495
+ - type: map_at_100
1496
+ value: 31.136999999999997
1497
+ - type: map_at_1000
1498
+ value: 31.196
1499
+ - type: map_at_3
1500
+ value: 26.339000000000002
1501
+ - type: map_at_5
1502
+ value: 28.351
1503
+ - type: mrr_at_1
1504
+ value: 19.054
1505
+ - type: mrr_at_10
1506
+ value: 30.476
1507
+ - type: mrr_at_100
1508
+ value: 31.588
1509
+ - type: mrr_at_1000
1510
+ value: 31.641000000000002
1511
+ - type: mrr_at_3
1512
+ value: 26.834000000000003
1513
+ - type: mrr_at_5
1514
+ value: 28.849000000000004
1515
+ - type: ndcg_at_1
1516
+ value: 19.083
1517
+ - type: ndcg_at_10
1518
+ value: 36.541000000000004
1519
+ - type: ndcg_at_100
1520
+ value: 42.35
1521
+ - type: ndcg_at_1000
1522
+ value: 43.9
1523
+ - type: ndcg_at_3
1524
+ value: 29.015
1525
+ - type: ndcg_at_5
1526
+ value: 32.622
1527
+ - type: precision_at_1
1528
+ value: 19.083
1529
+ - type: precision_at_10
1530
+ value: 5.914
1531
+ - type: precision_at_100
1532
+ value: 0.889
1533
+ - type: precision_at_1000
1534
+ value: 0.10200000000000001
1535
+ - type: precision_at_3
1536
+ value: 12.483
1537
+ - type: precision_at_5
1538
+ value: 9.315
1539
+ - type: recall_at_1
1540
+ value: 18.613
1541
+ - type: recall_at_10
1542
+ value: 56.88999999999999
1543
+ - type: recall_at_100
1544
+ value: 84.207
1545
+ - type: recall_at_1000
1546
+ value: 96.20100000000001
1547
+ - type: recall_at_3
1548
+ value: 36.262
1549
+ - type: recall_at_5
1550
+ value: 44.925
1551
+ task:
1552
+ type: Retrieval
1553
+ - dataset:
1554
+ config: en
1555
+ name: MTEB MTOPDomainClassification (en)
1556
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1557
+ split: test
1558
+ type: mteb/mtop_domain
1559
+ metrics:
1560
+ - type: accuracy
1561
+ value: 94.77656178750571
1562
+ - type: f1
1563
+ value: 94.37966073742972
1564
+ task:
1565
+ type: Classification
1566
+ - dataset:
1567
+ config: en
1568
+ name: MTEB MTOPIntentClassification (en)
1569
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1570
+ split: test
1571
+ type: mteb/mtop_intent
1572
+ metrics:
1573
+ - type: accuracy
1574
+ value: 77.72457820337438
1575
+ - type: f1
1576
+ value: 59.11327646329634
1577
+ task:
1578
+ type: Classification
1579
+ - dataset:
1580
+ config: en
1581
+ name: MTEB MassiveIntentClassification (en)
1582
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1583
+ split: test
1584
+ type: mteb/amazon_massive_intent
1585
+ metrics:
1586
+ - type: accuracy
1587
+ value: 73.17753866846
1588
+ - type: f1
1589
+ value: 71.22604635414544
1590
+ task:
1591
+ type: Classification
1592
+ - dataset:
1593
+ config: en
1594
+ name: MTEB MassiveScenarioClassification (en)
1595
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1596
+ split: test
1597
+ type: mteb/amazon_massive_scenario
1598
+ metrics:
1599
+ - type: accuracy
1600
+ value: 76.67787491593813
1601
+ - type: f1
1602
+ value: 76.87653151298177
1603
+ task:
1604
+ type: Classification
1605
+ - dataset:
1606
+ config: default
1607
+ name: MTEB MedrxivClusteringP2P
1608
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1609
+ split: test
1610
+ type: mteb/medrxiv-clustering-p2p
1611
+ metrics:
1612
+ - type: v_measure
1613
+ value: 33.3485843514749
1614
+ task:
1615
+ type: Clustering
1616
+ - dataset:
1617
+ config: default
1618
+ name: MTEB MedrxivClusteringS2S
1619
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1620
+ split: test
1621
+ type: mteb/medrxiv-clustering-s2s
1622
+ metrics:
1623
+ - type: v_measure
1624
+ value: 29.792796913883617
1625
+ task:
1626
+ type: Clustering
1627
+ - dataset:
1628
+ config: default
1629
+ name: MTEB MindSmallReranking
1630
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1631
+ split: test
1632
+ type: mteb/mind_small
1633
+ metrics:
1634
+ - type: map
1635
+ value: 31.310305659169963
1636
+ - type: mrr
1637
+ value: 32.38286775798406
1638
+ task:
1639
+ type: Reranking
1640
+ - dataset:
1641
+ config: default
1642
+ name: MTEB NFCorpus
1643
+ revision: None
1644
+ split: test
1645
+ type: nfcorpus
1646
+ metrics:
1647
+ - type: map_at_1
1648
+ value: 4.968
1649
+ - type: map_at_10
1650
+ value: 11.379
1651
+ - type: map_at_100
1652
+ value: 14.618999999999998
1653
+ - type: map_at_1000
1654
+ value: 16.055
1655
+ - type: map_at_3
1656
+ value: 8.34
1657
+ - type: map_at_5
1658
+ value: 9.690999999999999
1659
+ - type: mrr_at_1
1660
+ value: 43.034
1661
+ - type: mrr_at_10
1662
+ value: 51.019999999999996
1663
+ - type: mrr_at_100
1664
+ value: 51.63100000000001
1665
+ - type: mrr_at_1000
1666
+ value: 51.681
1667
+ - type: mrr_at_3
1668
+ value: 49.174
1669
+ - type: mrr_at_5
1670
+ value: 50.181
1671
+ - type: ndcg_at_1
1672
+ value: 41.176
1673
+ - type: ndcg_at_10
1674
+ value: 31.341
1675
+ - type: ndcg_at_100
1676
+ value: 29.451
1677
+ - type: ndcg_at_1000
1678
+ value: 38.007000000000005
1679
+ - type: ndcg_at_3
1680
+ value: 36.494
1681
+ - type: ndcg_at_5
1682
+ value: 34.499
1683
+ - type: precision_at_1
1684
+ value: 43.034
1685
+ - type: precision_at_10
1686
+ value: 23.375
1687
+ - type: precision_at_100
1688
+ value: 7.799
1689
+ - type: precision_at_1000
1690
+ value: 2.059
1691
+ - type: precision_at_3
1692
+ value: 34.675
1693
+ - type: precision_at_5
1694
+ value: 30.154999999999998
1695
+ - type: recall_at_1
1696
+ value: 4.968
1697
+ - type: recall_at_10
1698
+ value: 15.104999999999999
1699
+ - type: recall_at_100
1700
+ value: 30.741000000000003
1701
+ - type: recall_at_1000
1702
+ value: 61.182
1703
+ - type: recall_at_3
1704
+ value: 9.338000000000001
1705
+ - type: recall_at_5
1706
+ value: 11.484
1707
+ task:
1708
+ type: Retrieval
1709
+ - dataset:
1710
+ config: default
1711
+ name: MTEB NQ
1712
+ revision: None
1713
+ split: test
1714
+ type: nq
1715
+ metrics:
1716
+ - type: map_at_1
1717
+ value: 23.716
1718
+ - type: map_at_10
1719
+ value: 38.32
1720
+ - type: map_at_100
1721
+ value: 39.565
1722
+ - type: map_at_1000
1723
+ value: 39.602
1724
+ - type: map_at_3
1725
+ value: 33.848
1726
+ - type: map_at_5
1727
+ value: 36.471
1728
+ - type: mrr_at_1
1729
+ value: 26.912000000000003
1730
+ - type: mrr_at_10
1731
+ value: 40.607
1732
+ - type: mrr_at_100
1733
+ value: 41.589
1734
+ - type: mrr_at_1000
1735
+ value: 41.614000000000004
1736
+ - type: mrr_at_3
1737
+ value: 36.684
1738
+ - type: mrr_at_5
1739
+ value: 39.036
1740
+ - type: ndcg_at_1
1741
+ value: 26.883000000000003
1742
+ - type: ndcg_at_10
1743
+ value: 46.096
1744
+ - type: ndcg_at_100
1745
+ value: 51.513
1746
+ - type: ndcg_at_1000
1747
+ value: 52.366
1748
+ - type: ndcg_at_3
1749
+ value: 37.549
1750
+ - type: ndcg_at_5
1751
+ value: 41.971000000000004
1752
+ - type: precision_at_1
1753
+ value: 26.883000000000003
1754
+ - type: precision_at_10
1755
+ value: 8.004
1756
+ - type: precision_at_100
1757
+ value: 1.107
1758
+ - type: precision_at_1000
1759
+ value: 0.11900000000000001
1760
+ - type: precision_at_3
1761
+ value: 17.516000000000002
1762
+ - type: precision_at_5
1763
+ value: 13.019
1764
+ - type: recall_at_1
1765
+ value: 23.716
1766
+ - type: recall_at_10
1767
+ value: 67.656
1768
+ - type: recall_at_100
1769
+ value: 91.413
1770
+ - type: recall_at_1000
1771
+ value: 97.714
1772
+ - type: recall_at_3
1773
+ value: 45.449
1774
+ - type: recall_at_5
1775
+ value: 55.598000000000006
1776
+ task:
1777
+ type: Retrieval
1778
+ - dataset:
1779
+ config: default
1780
+ name: MTEB QuoraRetrieval
1781
+ revision: None
1782
+ split: test
1783
+ type: quora
1784
+ metrics:
1785
+ - type: map_at_1
1786
+ value: 70.486
1787
+ - type: map_at_10
1788
+ value: 84.292
1789
+ - type: map_at_100
1790
+ value: 84.954
1791
+ - type: map_at_1000
1792
+ value: 84.969
1793
+ - type: map_at_3
1794
+ value: 81.295
1795
+ - type: map_at_5
1796
+ value: 83.165
1797
+ - type: mrr_at_1
1798
+ value: 81.16
1799
+ - type: mrr_at_10
1800
+ value: 87.31
1801
+ - type: mrr_at_100
1802
+ value: 87.423
1803
+ - type: mrr_at_1000
1804
+ value: 87.423
1805
+ - type: mrr_at_3
1806
+ value: 86.348
1807
+ - type: mrr_at_5
1808
+ value: 86.991
1809
+ - type: ndcg_at_1
1810
+ value: 81.17
1811
+ - type: ndcg_at_10
1812
+ value: 88.067
1813
+ - type: ndcg_at_100
1814
+ value: 89.34
1815
+ - type: ndcg_at_1000
1816
+ value: 89.43900000000001
1817
+ - type: ndcg_at_3
1818
+ value: 85.162
1819
+ - type: ndcg_at_5
1820
+ value: 86.752
1821
+ - type: precision_at_1
1822
+ value: 81.17
1823
+ - type: precision_at_10
1824
+ value: 13.394
1825
+ - type: precision_at_100
1826
+ value: 1.5310000000000001
1827
+ - type: precision_at_1000
1828
+ value: 0.157
1829
+ - type: precision_at_3
1830
+ value: 37.193
1831
+ - type: precision_at_5
1832
+ value: 24.482
1833
+ - type: recall_at_1
1834
+ value: 70.486
1835
+ - type: recall_at_10
1836
+ value: 95.184
1837
+ - type: recall_at_100
1838
+ value: 99.53999999999999
1839
+ - type: recall_at_1000
1840
+ value: 99.98700000000001
1841
+ - type: recall_at_3
1842
+ value: 86.89
1843
+ - type: recall_at_5
1844
+ value: 91.365
1845
+ task:
1846
+ type: Retrieval
1847
+ - dataset:
1848
+ config: default
1849
+ name: MTEB RedditClustering
1850
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1851
+ split: test
1852
+ type: mteb/reddit-clustering
1853
+ metrics:
1854
+ - type: v_measure
1855
+ value: 44.118229475102154
1856
+ task:
1857
+ type: Clustering
1858
+ - dataset:
1859
+ config: default
1860
+ name: MTEB RedditClusteringP2P
1861
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1862
+ split: test
1863
+ type: mteb/reddit-clustering-p2p
1864
+ metrics:
1865
+ - type: v_measure
1866
+ value: 48.68049097629063
1867
+ task:
1868
+ type: Clustering
1869
+ - dataset:
1870
+ config: default
1871
+ name: MTEB SCIDOCS
1872
+ revision: None
1873
+ split: test
1874
+ type: scidocs
1875
+ metrics:
1876
+ - type: map_at_1
1877
+ value: 4.888
1878
+ - type: map_at_10
1879
+ value: 12.770999999999999
1880
+ - type: map_at_100
1881
+ value: 15.238
1882
+ - type: map_at_1000
1883
+ value: 15.616
1884
+ - type: map_at_3
1885
+ value: 8.952
1886
+ - type: map_at_5
1887
+ value: 10.639999999999999
1888
+ - type: mrr_at_1
1889
+ value: 24.099999999999998
1890
+ - type: mrr_at_10
1891
+ value: 35.375
1892
+ - type: mrr_at_100
1893
+ value: 36.442
1894
+ - type: mrr_at_1000
1895
+ value: 36.488
1896
+ - type: mrr_at_3
1897
+ value: 31.717000000000002
1898
+ - type: mrr_at_5
1899
+ value: 33.722
1900
+ - type: ndcg_at_1
1901
+ value: 24.099999999999998
1902
+ - type: ndcg_at_10
1903
+ value: 21.438
1904
+ - type: ndcg_at_100
1905
+ value: 30.601
1906
+ - type: ndcg_at_1000
1907
+ value: 36.678
1908
+ - type: ndcg_at_3
1909
+ value: 19.861
1910
+ - type: ndcg_at_5
1911
+ value: 17.263
1912
+ - type: precision_at_1
1913
+ value: 24.099999999999998
1914
+ - type: precision_at_10
1915
+ value: 11.4
1916
+ - type: precision_at_100
1917
+ value: 2.465
1918
+ - type: precision_at_1000
1919
+ value: 0.392
1920
+ - type: precision_at_3
1921
+ value: 18.733
1922
+ - type: precision_at_5
1923
+ value: 15.22
1924
+ - type: recall_at_1
1925
+ value: 4.888
1926
+ - type: recall_at_10
1927
+ value: 23.118
1928
+ - type: recall_at_100
1929
+ value: 49.995
1930
+ - type: recall_at_1000
1931
+ value: 79.577
1932
+ - type: recall_at_3
1933
+ value: 11.398
1934
+ - type: recall_at_5
1935
+ value: 15.428
1936
+ task:
1937
+ type: Retrieval
1938
+ - dataset:
1939
+ config: default
1940
+ name: MTEB SICK-R
1941
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1942
+ split: test
1943
+ type: mteb/sickr-sts
1944
+ metrics:
1945
+ - type: cos_sim_pearson
1946
+ value: 85.33198632617024
1947
+ - type: cos_sim_spearman
1948
+ value: 79.09232997136625
1949
+ - type: euclidean_pearson
1950
+ value: 81.49986011523868
1951
+ - type: euclidean_spearman
1952
+ value: 77.03530620283338
1953
+ - type: manhattan_pearson
1954
+ value: 81.4741227286667
1955
+ - type: manhattan_spearman
1956
+ value: 76.98641133116311
1957
+ task:
1958
+ type: STS
1959
+ - dataset:
1960
+ config: default
1961
+ name: MTEB STS12
1962
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1963
+ split: test
1964
+ type: mteb/sts12-sts
1965
+ metrics:
1966
+ - type: cos_sim_pearson
1967
+ value: 84.60103674582464
1968
+ - type: cos_sim_spearman
1969
+ value: 75.03945035801914
1970
+ - type: euclidean_pearson
1971
+ value: 80.82455267481467
1972
+ - type: euclidean_spearman
1973
+ value: 70.3317366248871
1974
+ - type: manhattan_pearson
1975
+ value: 80.8928091531445
1976
+ - type: manhattan_spearman
1977
+ value: 70.43207370945672
1978
+ task:
1979
+ type: STS
1980
+ - dataset:
1981
+ config: default
1982
+ name: MTEB STS13
1983
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1984
+ split: test
1985
+ type: mteb/sts13-sts
1986
+ metrics:
1987
+ - type: cos_sim_pearson
1988
+ value: 82.52453177109315
1989
+ - type: cos_sim_spearman
1990
+ value: 83.26431569305103
1991
+ - type: euclidean_pearson
1992
+ value: 82.10494657997404
1993
+ - type: euclidean_spearman
1994
+ value: 83.41028425949024
1995
+ - type: manhattan_pearson
1996
+ value: 82.08669822983934
1997
+ - type: manhattan_spearman
1998
+ value: 83.39959776442115
1999
+ task:
2000
+ type: STS
2001
+ - dataset:
2002
+ config: default
2003
+ name: MTEB STS14
2004
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2005
+ split: test
2006
+ type: mteb/sts14-sts
2007
+ metrics:
2008
+ - type: cos_sim_pearson
2009
+ value: 82.67472020277681
2010
+ - type: cos_sim_spearman
2011
+ value: 78.61877889763109
2012
+ - type: euclidean_pearson
2013
+ value: 80.07878012437722
2014
+ - type: euclidean_spearman
2015
+ value: 77.44374494215397
2016
+ - type: manhattan_pearson
2017
+ value: 79.95988483102258
2018
+ - type: manhattan_spearman
2019
+ value: 77.36018101061366
2020
+ task:
2021
+ type: STS
2022
+ - dataset:
2023
+ config: default
2024
+ name: MTEB STS15
2025
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2026
+ split: test
2027
+ type: mteb/sts15-sts
2028
+ metrics:
2029
+ - type: cos_sim_pearson
2030
+ value: 85.55450610494437
2031
+ - type: cos_sim_spearman
2032
+ value: 87.03494331841401
2033
+ - type: euclidean_pearson
2034
+ value: 81.4319784394287
2035
+ - type: euclidean_spearman
2036
+ value: 82.47893040599372
2037
+ - type: manhattan_pearson
2038
+ value: 81.32627203699644
2039
+ - type: manhattan_spearman
2040
+ value: 82.40660565070675
2041
+ task:
2042
+ type: STS
2043
+ - dataset:
2044
+ config: default
2045
+ name: MTEB STS16
2046
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2047
+ split: test
2048
+ type: mteb/sts16-sts
2049
+ metrics:
2050
+ - type: cos_sim_pearson
2051
+ value: 81.51576965454805
2052
+ - type: cos_sim_spearman
2053
+ value: 83.0062959588245
2054
+ - type: euclidean_pearson
2055
+ value: 79.98888882568556
2056
+ - type: euclidean_spearman
2057
+ value: 81.08948911791873
2058
+ - type: manhattan_pearson
2059
+ value: 79.77952719568583
2060
+ - type: manhattan_spearman
2061
+ value: 80.79471040445408
2062
+ task:
2063
+ type: STS
2064
+ - dataset:
2065
+ config: en-en
2066
+ name: MTEB STS17 (en-en)
2067
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2068
+ split: test
2069
+ type: mteb/sts17-crosslingual-sts
2070
+ metrics:
2071
+ - type: cos_sim_pearson
2072
+ value: 87.28313046682885
2073
+ - type: cos_sim_spearman
2074
+ value: 87.35865211085007
2075
+ - type: euclidean_pearson
2076
+ value: 84.11501613667811
2077
+ - type: euclidean_spearman
2078
+ value: 82.82038954956121
2079
+ - type: manhattan_pearson
2080
+ value: 83.891278147302
2081
+ - type: manhattan_spearman
2082
+ value: 82.59947685165902
2083
+ task:
2084
+ type: STS
2085
+ - dataset:
2086
+ config: en
2087
+ name: MTEB STS22 (en)
2088
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2089
+ split: test
2090
+ type: mteb/sts22-crosslingual-sts
2091
+ metrics:
2092
+ - type: cos_sim_pearson
2093
+ value: 67.80653738006102
2094
+ - type: cos_sim_spearman
2095
+ value: 68.11259151179601
2096
+ - type: euclidean_pearson
2097
+ value: 43.16707985094242
2098
+ - type: euclidean_spearman
2099
+ value: 58.96200382968696
2100
+ - type: manhattan_pearson
2101
+ value: 43.84146858566507
2102
+ - type: manhattan_spearman
2103
+ value: 59.05193977207514
2104
+ task:
2105
+ type: STS
2106
+ - dataset:
2107
+ config: default
2108
+ name: MTEB STSBenchmark
2109
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2110
+ split: test
2111
+ type: mteb/stsbenchmark-sts
2112
+ metrics:
2113
+ - type: cos_sim_pearson
2114
+ value: 82.62068205073571
2115
+ - type: cos_sim_spearman
2116
+ value: 84.40071593577095
2117
+ - type: euclidean_pearson
2118
+ value: 80.90824726252514
2119
+ - type: euclidean_spearman
2120
+ value: 80.54974812534094
2121
+ - type: manhattan_pearson
2122
+ value: 80.6759008187939
2123
+ - type: manhattan_spearman
2124
+ value: 80.31149103896973
2125
+ task:
2126
+ type: STS
2127
+ - dataset:
2128
+ config: default
2129
+ name: MTEB SciDocsRR
2130
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2131
+ split: test
2132
+ type: mteb/scidocs-reranking
2133
+ metrics:
2134
+ - type: map
2135
+ value: 87.13774787530915
2136
+ - type: mrr
2137
+ value: 96.22233793802422
2138
+ task:
2139
+ type: Reranking
2140
+ - dataset:
2141
+ config: default
2142
+ name: MTEB SciFact
2143
+ revision: None
2144
+ split: test
2145
+ type: scifact
2146
+ metrics:
2147
+ - type: map_at_1
2148
+ value: 49.167
2149
+ - type: map_at_10
2150
+ value: 59.852000000000004
2151
+ - type: map_at_100
2152
+ value: 60.544
2153
+ - type: map_at_1000
2154
+ value: 60.577000000000005
2155
+ - type: map_at_3
2156
+ value: 57.242000000000004
2157
+ - type: map_at_5
2158
+ value: 58.704
2159
+ - type: mrr_at_1
2160
+ value: 51.0
2161
+ - type: mrr_at_10
2162
+ value: 60.575
2163
+ - type: mrr_at_100
2164
+ value: 61.144
2165
+ - type: mrr_at_1000
2166
+ value: 61.175000000000004
2167
+ - type: mrr_at_3
2168
+ value: 58.667
2169
+ - type: mrr_at_5
2170
+ value: 59.599999999999994
2171
+ - type: ndcg_at_1
2172
+ value: 51.0
2173
+ - type: ndcg_at_10
2174
+ value: 64.398
2175
+ - type: ndcg_at_100
2176
+ value: 67.581
2177
+ - type: ndcg_at_1000
2178
+ value: 68.551
2179
+ - type: ndcg_at_3
2180
+ value: 59.928000000000004
2181
+ - type: ndcg_at_5
2182
+ value: 61.986
2183
+ - type: precision_at_1
2184
+ value: 51.0
2185
+ - type: precision_at_10
2186
+ value: 8.7
2187
+ - type: precision_at_100
2188
+ value: 1.047
2189
+ - type: precision_at_1000
2190
+ value: 0.11299999999999999
2191
+ - type: precision_at_3
2192
+ value: 23.666999999999998
2193
+ - type: precision_at_5
2194
+ value: 15.6
2195
+ - type: recall_at_1
2196
+ value: 49.167
2197
+ - type: recall_at_10
2198
+ value: 77.333
2199
+ - type: recall_at_100
2200
+ value: 91.833
2201
+ - type: recall_at_1000
2202
+ value: 99.667
2203
+ - type: recall_at_3
2204
+ value: 65.594
2205
+ - type: recall_at_5
2206
+ value: 70.52199999999999
2207
+ task:
2208
+ type: Retrieval
2209
+ - dataset:
2210
+ config: default
2211
+ name: MTEB SprintDuplicateQuestions
2212
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2213
+ split: test
2214
+ type: mteb/sprintduplicatequestions-pairclassification
2215
+ metrics:
2216
+ - type: cos_sim_accuracy
2217
+ value: 99.77227722772277
2218
+ - type: cos_sim_ap
2219
+ value: 94.14261011689366
2220
+ - type: cos_sim_f1
2221
+ value: 88.37209302325581
2222
+ - type: cos_sim_precision
2223
+ value: 89.36605316973414
2224
+ - type: cos_sim_recall
2225
+ value: 87.4
2226
+ - type: dot_accuracy
2227
+ value: 99.07128712871287
2228
+ - type: dot_ap
2229
+ value: 27.325649239129486
2230
+ - type: dot_f1
2231
+ value: 33.295838020247466
2232
+ - type: dot_precision
2233
+ value: 38.04627249357326
2234
+ - type: dot_recall
2235
+ value: 29.599999999999998
2236
+ - type: euclidean_accuracy
2237
+ value: 99.74158415841585
2238
+ - type: euclidean_ap
2239
+ value: 92.32695359979576
2240
+ - type: euclidean_f1
2241
+ value: 86.90534575772439
2242
+ - type: euclidean_precision
2243
+ value: 85.27430221366699
2244
+ - type: euclidean_recall
2245
+ value: 88.6
2246
+ - type: manhattan_accuracy
2247
+ value: 99.74257425742574
2248
+ - type: manhattan_ap
2249
+ value: 92.40335687760499
2250
+ - type: manhattan_f1
2251
+ value: 86.96507624200687
2252
+ - type: manhattan_precision
2253
+ value: 85.57599225556632
2254
+ - type: manhattan_recall
2255
+ value: 88.4
2256
+ - type: max_accuracy
2257
+ value: 99.77227722772277
2258
+ - type: max_ap
2259
+ value: 94.14261011689366
2260
+ - type: max_f1
2261
+ value: 88.37209302325581
2262
+ task:
2263
+ type: PairClassification
2264
+ - dataset:
2265
+ config: default
2266
+ name: MTEB StackExchangeClustering
2267
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2268
+ split: test
2269
+ type: mteb/stackexchange-clustering
2270
+ metrics:
2271
+ - type: v_measure
2272
+ value: 53.113809982945035
2273
+ task:
2274
+ type: Clustering
2275
+ - dataset:
2276
+ config: default
2277
+ name: MTEB StackExchangeClusteringP2P
2278
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2279
+ split: test
2280
+ type: mteb/stackexchange-clustering-p2p
2281
+ metrics:
2282
+ - type: v_measure
2283
+ value: 33.90915908471812
2284
+ task:
2285
+ type: Clustering
2286
+ - dataset:
2287
+ config: default
2288
+ name: MTEB StackOverflowDupQuestions
2289
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2290
+ split: test
2291
+ type: mteb/stackoverflowdupquestions-reranking
2292
+ metrics:
2293
+ - type: map
2294
+ value: 50.36481271702464
2295
+ - type: mrr
2296
+ value: 51.05628236142942
2297
+ task:
2298
+ type: Reranking
2299
+ - dataset:
2300
+ config: default
2301
+ name: MTEB SummEval
2302
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2303
+ split: test
2304
+ type: mteb/summeval
2305
+ metrics:
2306
+ - type: cos_sim_pearson
2307
+ value: 30.311305530381826
2308
+ - type: cos_sim_spearman
2309
+ value: 31.22029657606254
2310
+ - type: dot_pearson
2311
+ value: 12.157032445910177
2312
+ - type: dot_spearman
2313
+ value: 13.275185888551805
2314
+ task:
2315
+ type: Summarization
2316
+ - dataset:
2317
+ config: default
2318
+ name: MTEB TRECCOVID
2319
+ revision: None
2320
+ split: test
2321
+ type: trec-covid
2322
+ metrics:
2323
+ - type: map_at_1
2324
+ value: 0.167
2325
+ - type: map_at_10
2326
+ value: 1.113
2327
+ - type: map_at_100
2328
+ value: 5.926
2329
+ - type: map_at_1000
2330
+ value: 15.25
2331
+ - type: map_at_3
2332
+ value: 0.414
2333
+ - type: map_at_5
2334
+ value: 0.633
2335
+ - type: mrr_at_1
2336
+ value: 64.0
2337
+ - type: mrr_at_10
2338
+ value: 74.444
2339
+ - type: mrr_at_100
2340
+ value: 74.667
2341
+ - type: mrr_at_1000
2342
+ value: 74.679
2343
+ - type: mrr_at_3
2344
+ value: 72.0
2345
+ - type: mrr_at_5
2346
+ value: 74.0
2347
+ - type: ndcg_at_1
2348
+ value: 59.0
2349
+ - type: ndcg_at_10
2350
+ value: 51.468
2351
+ - type: ndcg_at_100
2352
+ value: 38.135000000000005
2353
+ - type: ndcg_at_1000
2354
+ value: 36.946
2355
+ - type: ndcg_at_3
2356
+ value: 55.827000000000005
2357
+ - type: ndcg_at_5
2358
+ value: 53.555
2359
+ - type: precision_at_1
2360
+ value: 64.0
2361
+ - type: precision_at_10
2362
+ value: 54.400000000000006
2363
+ - type: precision_at_100
2364
+ value: 39.08
2365
+ - type: precision_at_1000
2366
+ value: 16.618
2367
+ - type: precision_at_3
2368
+ value: 58.667
2369
+ - type: precision_at_5
2370
+ value: 56.8
2371
+ - type: recall_at_1
2372
+ value: 0.167
2373
+ - type: recall_at_10
2374
+ value: 1.38
2375
+ - type: recall_at_100
2376
+ value: 9.189
2377
+ - type: recall_at_1000
2378
+ value: 35.737
2379
+ - type: recall_at_3
2380
+ value: 0.455
2381
+ - type: recall_at_5
2382
+ value: 0.73
2383
+ task:
2384
+ type: Retrieval
2385
+ - dataset:
2386
+ config: default
2387
+ name: MTEB Touche2020
2388
+ revision: None
2389
+ split: test
2390
+ type: webis-touche2020
2391
+ metrics:
2392
+ - type: map_at_1
2393
+ value: 2.4299999999999997
2394
+ - type: map_at_10
2395
+ value: 8.539
2396
+ - type: map_at_100
2397
+ value: 14.155999999999999
2398
+ - type: map_at_1000
2399
+ value: 15.684999999999999
2400
+ - type: map_at_3
2401
+ value: 3.857
2402
+ - type: map_at_5
2403
+ value: 5.583
2404
+ - type: mrr_at_1
2405
+ value: 26.531
2406
+ - type: mrr_at_10
2407
+ value: 40.489999999999995
2408
+ - type: mrr_at_100
2409
+ value: 41.772999999999996
2410
+ - type: mrr_at_1000
2411
+ value: 41.772999999999996
2412
+ - type: mrr_at_3
2413
+ value: 35.034
2414
+ - type: mrr_at_5
2415
+ value: 38.81
2416
+ - type: ndcg_at_1
2417
+ value: 21.429000000000002
2418
+ - type: ndcg_at_10
2419
+ value: 20.787
2420
+ - type: ndcg_at_100
2421
+ value: 33.202
2422
+ - type: ndcg_at_1000
2423
+ value: 45.167
2424
+ - type: ndcg_at_3
2425
+ value: 18.233
2426
+ - type: ndcg_at_5
2427
+ value: 19.887
2428
+ - type: precision_at_1
2429
+ value: 26.531
2430
+ - type: precision_at_10
2431
+ value: 19.796
2432
+ - type: precision_at_100
2433
+ value: 7.4079999999999995
2434
+ - type: precision_at_1000
2435
+ value: 1.5310000000000001
2436
+ - type: precision_at_3
2437
+ value: 19.728
2438
+ - type: precision_at_5
2439
+ value: 21.633
2440
+ - type: recall_at_1
2441
+ value: 2.4299999999999997
2442
+ - type: recall_at_10
2443
+ value: 14.901
2444
+ - type: recall_at_100
2445
+ value: 46.422000000000004
2446
+ - type: recall_at_1000
2447
+ value: 82.83500000000001
2448
+ - type: recall_at_3
2449
+ value: 4.655
2450
+ - type: recall_at_5
2451
+ value: 8.092
2452
+ task:
2453
+ type: Retrieval
2454
+ - dataset:
2455
+ config: default
2456
+ name: MTEB ToxicConversationsClassification
2457
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2458
+ split: test
2459
+ type: mteb/toxic_conversations_50k
2460
+ metrics:
2461
+ - type: accuracy
2462
+ value: 72.90140000000001
2463
+ - type: ap
2464
+ value: 15.138716624430662
2465
+ - type: f1
2466
+ value: 56.08803013269606
2467
+ task:
2468
+ type: Classification
2469
+ - dataset:
2470
+ config: default
2471
+ name: MTEB TweetSentimentExtractionClassification
2472
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2473
+ split: test
2474
+ type: mteb/tweet_sentiment_extraction
2475
+ metrics:
2476
+ - type: accuracy
2477
+ value: 59.85285795132994
2478
+ - type: f1
2479
+ value: 60.17575819903709
2480
+ task:
2481
+ type: Classification
2482
+ - dataset:
2483
+ config: default
2484
+ name: MTEB TwentyNewsgroupsClustering
2485
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2486
+ split: test
2487
+ type: mteb/twentynewsgroups-clustering
2488
+ metrics:
2489
+ - type: v_measure
2490
+ value: 41.125150148437065
2491
+ task:
2492
+ type: Clustering
2493
+ - dataset:
2494
+ config: default
2495
+ name: MTEB TwitterSemEval2015
2496
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2497
+ split: test
2498
+ type: mteb/twittersemeval2015-pairclassification
2499
+ metrics:
2500
+ - type: cos_sim_accuracy
2501
+ value: 84.96751505036657
2502
+ - type: cos_sim_ap
2503
+ value: 70.45642872444971
2504
+ - type: cos_sim_f1
2505
+ value: 65.75274793133259
2506
+ - type: cos_sim_precision
2507
+ value: 61.806361736707686
2508
+ - type: cos_sim_recall
2509
+ value: 70.23746701846966
2510
+ - type: dot_accuracy
2511
+ value: 77.84466829588126
2512
+ - type: dot_ap
2513
+ value: 32.49904328313596
2514
+ - type: dot_f1
2515
+ value: 37.903122189387126
2516
+ - type: dot_precision
2517
+ value: 25.050951086956523
2518
+ - type: dot_recall
2519
+ value: 77.83641160949868
2520
+ - type: euclidean_accuracy
2521
+ value: 84.5920009536866
2522
+ - type: euclidean_ap
2523
+ value: 68.83700633574043
2524
+ - type: euclidean_f1
2525
+ value: 64.92803542871202
2526
+ - type: euclidean_precision
2527
+ value: 60.820465545056464
2528
+ - type: euclidean_recall
2529
+ value: 69.63060686015831
2530
+ - type: manhattan_accuracy
2531
+ value: 84.52643500029802
2532
+ - type: manhattan_ap
2533
+ value: 68.63286046599892
2534
+ - type: manhattan_f1
2535
+ value: 64.7476540705047
2536
+ - type: manhattan_precision
2537
+ value: 62.3291015625
2538
+ - type: manhattan_recall
2539
+ value: 67.36147757255937
2540
+ - type: max_accuracy
2541
+ value: 84.96751505036657
2542
+ - type: max_ap
2543
+ value: 70.45642872444971
2544
+ - type: max_f1
2545
+ value: 65.75274793133259
2546
+ task:
2547
+ type: PairClassification
2548
+ - dataset:
2549
+ config: default
2550
+ name: MTEB TwitterURLCorpus
2551
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2552
+ split: test
2553
+ type: mteb/twitterurlcorpus-pairclassification
2554
+ metrics:
2555
+ - type: cos_sim_accuracy
2556
+ value: 88.65603291031164
2557
+ - type: cos_sim_ap
2558
+ value: 85.58148320880878
2559
+ - type: cos_sim_f1
2560
+ value: 77.63202920041064
2561
+ - type: cos_sim_precision
2562
+ value: 76.68444377675957
2563
+ - type: cos_sim_recall
2564
+ value: 78.60332614721281
2565
+ - type: dot_accuracy
2566
+ value: 79.71048239996895
2567
+ - type: dot_ap
2568
+ value: 59.31114839296281
2569
+ - type: dot_f1
2570
+ value: 57.13895527483783
2571
+ - type: dot_precision
2572
+ value: 51.331125015335545
2573
+ - type: dot_recall
2574
+ value: 64.4287034185402
2575
+ - type: euclidean_accuracy
2576
+ value: 86.99305312997244
2577
+ - type: euclidean_ap
2578
+ value: 81.87075965254876
2579
+ - type: euclidean_f1
2580
+ value: 73.53543008715421
2581
+ - type: euclidean_precision
2582
+ value: 72.39964184450082
2583
+ - type: euclidean_recall
2584
+ value: 74.70742223591007
2585
+ - type: manhattan_accuracy
2586
+ value: 87.04156479217605
2587
+ - type: manhattan_ap
2588
+ value: 81.7850497283247
2589
+ - type: manhattan_f1
2590
+ value: 73.52951955143475
2591
+ - type: manhattan_precision
2592
+ value: 70.15875236030492
2593
+ - type: manhattan_recall
2594
+ value: 77.2405297197413
2595
+ - type: max_accuracy
2596
+ value: 88.65603291031164
2597
+ - type: max_ap
2598
+ value: 85.58148320880878
2599
+ - type: max_f1
2600
+ value: 77.63202920041064
2601
+ task:
2602
+ type: PairClassification
2603
+ model_creator: avsolatorio
2604
+ model_name: GIST-all-MiniLM-L6-v2
2605
+ pipeline_tag: text-generation
2606
+ quantized_by: afrideva
2607
+ tags:
2608
+ - feature-extraction
2609
+ - mteb
2610
+ - sentence-similarity
2611
+ - sentence-transformers
2612
+ - gguf
2613
+ - ggml
2614
+ - quantized
2615
+ ---
2616
+
2617
+ # GIST-all-MiniLM-L6-v2-GGUF
2618
+
2619
+ Quantized GGUF model files for [GIST-all-MiniLM-L6-v2](https://huggingface.co/avsolatorio/GIST-all-MiniLM-L6-v2) from [avsolatorio](https://huggingface.co/avsolatorio)
2620
+
2621
+ ## Original Model Card:
2622
+
2623
+ <h1 align="center">GIST Embedding v0 - all-MiniLM-L6-v2</h1>
2624
+
2625
+ *GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning*
2626
+
2627
+ The model is fine-tuned on top of the [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) using the [MEDI dataset](https://github.com/xlang-ai/instructor-embedding.git) augmented with mined triplets from the [MTEB Classification](https://huggingface.co/mteb) training dataset (excluding data from the Amazon Polarity Classification task).
2628
+
2629
+ The model does not require any instruction for generating embeddings. This means that queries for retrieval tasks can be directly encoded without crafting instructions.
2630
+
2631
+ Technical paper: [GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning](https://arxiv.org/abs/2402.16829)
2632
+
2633
+
2634
+ # Data
2635
+
2636
+ The dataset used is a compilation of the MEDI and MTEB Classification training datasets. Third-party datasets may be subject to additional terms and conditions under their associated licenses. A HuggingFace Dataset version of the compiled dataset, and the specific revision used to train the model, is available:
2637
+
2638
+ - Dataset: [avsolatorio/medi-data-mteb_avs_triplets](https://huggingface.co/datasets/avsolatorio/medi-data-mteb_avs_triplets)
2639
+ - Revision: 238a0499b6e6b690cc64ea56fde8461daa8341bb
2640
+
2641
+ The dataset contains a `task_type` key, which can be used to select only the mteb classification tasks (prefixed with `mteb_`).
2642
+
2643
+ The **MEDI Dataset** is published in the following paper: [One Embedder, Any Task: Instruction-Finetuned Text Embeddings](https://arxiv.org/abs/2212.09741).
2644
+
2645
+ The MTEB Benchmark results of the GIST embedding model, compared with the base model, suggest that the fine-tuning dataset has perturbed the model considerably, which resulted in significant improvements in certain tasks while adversely degrading performance in some.
2646
+
2647
+ The retrieval performance for the TRECCOVID task is of note. The fine-tuning dataset does not contain significant knowledge about COVID-19, which could have caused the observed performance degradation. We found some evidence, detailed in the paper, that thematic coverage of the fine-tuning data can affect downstream performance.
2648
+
2649
+ # Usage
2650
+
2651
+ The model can be easily loaded using the Sentence Transformers library.
2652
+
2653
+ ```Python
2654
+ import torch.nn.functional as F
2655
+ from sentence_transformers import SentenceTransformer
2656
+
2657
+ revision = None # Replace with the specific revision to ensure reproducibility if the model is updated.
2658
+
2659
+ model = SentenceTransformer("avsolatorio/GIST-all-MiniLM-L6-v2", revision=revision)
2660
+
2661
+ texts = [
2662
+ "Illustration of the REaLTabFormer model. The left block shows the non-relational tabular data model using GPT-2 with a causal LM head. In contrast, the right block shows how a relational dataset's child table is modeled using a sequence-to-sequence (Seq2Seq) model. The Seq2Seq model uses the observations in the parent table to condition the generation of the observations in the child table. The trained GPT-2 model on the parent table, with weights frozen, is also used as the encoder in the Seq2Seq model.",
2663
+ "Predicting human mobility holds significant practical value, with applications ranging from enhancing disaster risk planning to simulating epidemic spread. In this paper, we present the GeoFormer, a decoder-only transformer model adapted from the GPT architecture to forecast human mobility.",
2664
+ "As the economies of Southeast Asia continue adopting digital technologies, policy makers increasingly ask how to prepare the workforce for emerging labor demands. However, little is known about the skills that workers need to adapt to these changes"
2665
+ ]
2666
+
2667
+ # Compute embeddings
2668
+ embeddings = model.encode(texts, convert_to_tensor=True)
2669
+
2670
+ # Compute cosine-similarity for each pair of sentences
2671
+ scores = F.cosine_similarity(embeddings.unsqueeze(1), embeddings.unsqueeze(0), dim=-1)
2672
+
2673
+ print(scores.cpu().numpy())
2674
+ ```
2675
+
2676
+ # Training Parameters
2677
+
2678
+ Below are the training parameters used to fine-tune the model:
2679
+
2680
+ ```
2681
+ Epochs = 40
2682
+ Warmup ratio = 0.1
2683
+ Learning rate = 5e-6
2684
+ Batch size = 16
2685
+ Checkpoint step = 102000
2686
+ Contrastive loss temperature = 0.01
2687
+ ```
2688
+
2689
+
2690
+ # Evaluation
2691
+
2692
+ The model was evaluated using the [MTEB Evaluation](https://huggingface.co/mteb) suite.
2693
+
2694
+
2695
+ # Citation
2696
+
2697
+ Please cite our work if you use GISTEmbed or the datasets we published in your projects or research. 🤗
2698
+
2699
+ ```
2700
+ @article{solatorio2024gistembed,
2701
+ title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
2702
+ author={Aivin V. Solatorio},
2703
+ journal={arXiv preprint arXiv:2402.16829},
2704
+ year={2024},
2705
+ URL={https://arxiv.org/abs/2402.16829}
2706
+ eprint={2402.16829},
2707
+ archivePrefix={arXiv},
2708
+ primaryClass={cs.LG}
2709
+ }
2710
+ ```
2711
+
2712
+ # Acknowledgements
2713
+
2714
+ This work is supported by the "KCP IV - Exploring Data Use in the Development Economics Literature using Large Language Models (AI and LLMs)" project funded by the [Knowledge for Change Program (KCP)](https://www.worldbank.org/en/programs/knowledge-for-change) of the World Bank - RA-P503405-RESE-TF0C3444.
2715
+
2716
+ The findings, interpretations, and conclusions expressed in this material are entirely those of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.