--- base_model: GeneZC/MiniChat-1.5-3B inference: false language: - en - zh library_name: transformers license: apache-2.0 model_creator: GeneZC model_name: MiniChat-1.5-3B pipeline_tag: text-generation quantized_by: afrideva tags: - gguf - ggml - quantized - q2_k - q3_k_m - q4_k_m - q5_k_m - q6_k - q8_0 widget: - text: " [|User|] Hi \U0001F44B [|Assistant|]" --- # GeneZC/MiniChat-1.5-3B-GGUF Quantized GGUF model files for [MiniChat-1.5-3B](https://huggingface.co/GeneZC/MiniChat-1.5-3B) from [GeneZC](https://huggingface.co/GeneZC) | Name | Quant method | Size | | ---- | ---- | ---- | | [minichat-1.5-3b.fp16.gguf](https://huggingface.co/afrideva/MiniChat-1.5-3B-GGUF/resolve/main/minichat-1.5-3b.fp16.gguf) | fp16 | 6.04 GB | | [minichat-1.5-3b.q2_k.gguf](https://huggingface.co/afrideva/MiniChat-1.5-3B-GGUF/resolve/main/minichat-1.5-3b.q2_k.gguf) | q2_k | 1.30 GB | | [minichat-1.5-3b.q3_k_m.gguf](https://huggingface.co/afrideva/MiniChat-1.5-3B-GGUF/resolve/main/minichat-1.5-3b.q3_k_m.gguf) | q3_k_m | 1.51 GB | | [minichat-1.5-3b.q4_k_m.gguf](https://huggingface.co/afrideva/MiniChat-1.5-3B-GGUF/resolve/main/minichat-1.5-3b.q4_k_m.gguf) | q4_k_m | 1.85 GB | | [minichat-1.5-3b.q5_k_m.gguf](https://huggingface.co/afrideva/MiniChat-1.5-3B-GGUF/resolve/main/minichat-1.5-3b.q5_k_m.gguf) | q5_k_m | 2.15 GB | | [minichat-1.5-3b.q6_k.gguf](https://huggingface.co/afrideva/MiniChat-1.5-3B-GGUF/resolve/main/minichat-1.5-3b.q6_k.gguf) | q6_k | 2.48 GB | | [minichat-1.5-3b.q8_0.gguf](https://huggingface.co/afrideva/MiniChat-1.5-3B-GGUF/resolve/main/minichat-1.5-3b.q8_0.gguf) | q8_0 | 3.21 GB | ## Original Model Card: ## MiniChat-1.5-3B 📑 [arXiv](https://arxiv.org/abs/2311.07052) | 👻 [GitHub](https://github.com/GeneZC/MiniMA) | 🤗 [HuggingFace-MiniMA](https://huggingface.co/GeneZC/MiniMA-3B) | 🤗 [HuggingFace-MiniChat](https://huggingface.co/GeneZC/MiniChat-3B) | 🤗 [HuggingFace-MiniChat-1.5](https://huggingface.co/GeneZC/MiniChat-1.5-3B) | 🤖 [ModelScope-MiniMA](https://modelscope.cn/models/GeneZC/MiniMA-3B) | 🤖 [ModelScope-MiniChat](https://modelscope.cn/models/GeneZC/MiniChat-3B) 🆕 **Updates from MiniChat-3B**: - better data mixture; - use of [NEFTune](https://arxiv.org/abs/2310.05914); - use of [DPO](https://arxiv.org/abs/2305.18290). ❗ Must comply with LICENSE of LLaMA2 since it is derived from LLaMA2. A language model distilled and finetuned from an adapted version of LLaMA2-7B following "Towards the Law of Capacity Gap in Distilling Language Models". Outperforming a wide range of 3B competitors in GPT4 evaluation and even competing with several 7B chat models. teaser_b The following is an example code snippet to use MiniChat-3B: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer from conversation import get_default_conv_template # MiniChat tokenizer = AutoTokenizer.from_pretrained("GeneZC/MiniChat-3B", use_fast=False) # GPU. model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-3B", use_cache=True, device_map="auto", torch_dtype=torch.float16).eval() # CPU. # model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-3B", use_cache=True, device_map="cpu", torch_dtype=torch.float16).eval() conv = get_default_conv_template("minichat") question = "Implement a program to find the common elements in two arrays without using any extra data structures." conv.append_message(conv.roles[0], question) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer([prompt]).input_ids output_ids = model.generate( torch.as_tensor(input_ids).cuda(), do_sample=True, temperature=0.7, max_new_tokens=1024, ) output_ids = output_ids[0][len(input_ids[0]):] output = tokenizer.decode(output_ids, skip_special_tokens=True).strip() # output: "def common_elements(arr1, arr2):\n if len(arr1) == 0:\n return []\n if len(arr2) == 0:\n return arr1\n\n common_elements = []\n for element in arr1:\n if element in arr2:\n common_elements.append(element)\n\n return common_elements" # Multiturn conversation could be realized by continuously appending questions to `conv`. ``` ## Bibtex ```bibtex @article{zhang2023law, title={Towards the Law of Capacity Gap in Distilling Language Models}, author={Zhang, Chen and Song, Dawei and Ye, Zheyu and Gao, Yan}, year={2023}, url={https://arxiv.org/abs/2311.07052} } ```