File size: 7,523 Bytes
6828d17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
---
base_model: NickyNicky/dolphin-2_6-phi-2_oasst2_chatML_V2
inference: false
language:
- en
- es
- ru
- zh
- de
- fr
- th
- ca
- it
- ja
- pl
- eo
- eu
- vi
- fi
- hu
- ar
- nl
- da
- tr
- ko
- he
- id
- cs
- bn
- sv
model_creator: NickyNicky
model_name: dolphin-2_6-phi-2_oasst2_chatML_V2
pipeline_tag: text-generation
quantized_by: afrideva
tags:
- gguf
- ggml
- quantized
- q2_k
- q3_k_m
- q4_k_m
- q5_k_m
- q6_k
- q8_0
---
# NickyNicky/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF

Quantized GGUF model files for [dolphin-2_6-phi-2_oasst2_chatML_V2](https://huggingface.co/NickyNicky/dolphin-2_6-phi-2_oasst2_chatML_V2) from [NickyNicky](https://huggingface.co/NickyNicky)


| Name | Quant method | Size |
| ---- | ---- | ---- |
| [dolphin-2_6-phi-2_oasst2_chatml_v2.fp16.gguf](https://huggingface.co/afrideva/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF/resolve/main/dolphin-2_6-phi-2_oasst2_chatml_v2.fp16.gguf) | fp16 | 5.56 GB  |
| [dolphin-2_6-phi-2_oasst2_chatml_v2.q2_k.gguf](https://huggingface.co/afrideva/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF/resolve/main/dolphin-2_6-phi-2_oasst2_chatml_v2.q2_k.gguf) | q2_k | 1.09 GB  |
| [dolphin-2_6-phi-2_oasst2_chatml_v2.q3_k_m.gguf](https://huggingface.co/afrideva/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF/resolve/main/dolphin-2_6-phi-2_oasst2_chatml_v2.q3_k_m.gguf) | q3_k_m | 1.49 GB  |
| [dolphin-2_6-phi-2_oasst2_chatml_v2.q4_k_m.gguf](https://huggingface.co/afrideva/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF/resolve/main/dolphin-2_6-phi-2_oasst2_chatml_v2.q4_k_m.gguf) | q4_k_m | 1.79 GB  |
| [dolphin-2_6-phi-2_oasst2_chatml_v2.q5_k_m.gguf](https://huggingface.co/afrideva/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF/resolve/main/dolphin-2_6-phi-2_oasst2_chatml_v2.q5_k_m.gguf) | q5_k_m | 2.07 GB  |
| [dolphin-2_6-phi-2_oasst2_chatml_v2.q6_k.gguf](https://huggingface.co/afrideva/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF/resolve/main/dolphin-2_6-phi-2_oasst2_chatml_v2.q6_k.gguf) | q6_k | 2.29 GB  |
| [dolphin-2_6-phi-2_oasst2_chatml_v2.q8_0.gguf](https://huggingface.co/afrideva/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF/resolve/main/dolphin-2_6-phi-2_oasst2_chatml_v2.q8_0.gguf) | q8_0 | 2.96 GB  |



## Original Model Card:
```
  - model fine tune base: cognitivecomputations/dolphin-2_6-phi-2
  - sft
  - flash-attention 2
  - loss: 0.85
  - steps: 3000
  - max_length: 2028
  - neftune_noise_alpha: 5
```


![image/png](https://cdn-uploads.huggingface.co/production/uploads/641b435ba5f876fe30c5ae0a/wLDT0cPWHzFtv_HHigCH4.png)

Install packages
```Python
!python -m pip install --upgrade pip
!pip install -q datasets trl peft bitsandbytes sentencepiece wandb
!pip install -q accelerate safetensors deepspeed
!pip install -q scipy

!export CUDA_HOME=/usr/local/cuda-11.8
# !pip install ninja
!pip install ninja packaging --upgrade -qqq
!MAX_JOBS=4 pip install flash-attn --no-build-isolation -qqq
!pip install git+"https://github.com/HazyResearch/flash-attention.git#subdirectory=csrc/rotary" -qqq
!python -m pip install optimum -qqq
```

Ioad model and generate text
```Python

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
    TrainingArguments,
    pipeline,
    logging,
    GenerationConfig,
    TextIteratorStreamer,
)
# from attention_sinks import AutoModelForCausalLM

import torch

model_id = "NickyNicky/dolphin-2_6-phi-2_oasst2_chatML_V2"

model = AutoModelForCausalLM.from_pretrained(model_id,
                                             device_map="auto",
                                             trust_remote_code=True,
                                             torch_dtype=torch.bfloat16,
                                             load_in_4bit=True, 
                                             low_cpu_mem_usage= True,
                                             flash_attn=True,
                                             flash_rotary=True, 
                                             fused_dense=True,
                                             )
max_length=2028 
print("max_length",max_length)

tokenizer = AutoTokenizer.from_pretrained(model_id,
                                          use_fast = True,
                                          max_length=max_length,
                                          trust_remote_code=True,)

prompt= """<|im_start|>system
You are a helpful AI assistant.<|im_end|>
<|im_start|>user
tengo hambre que me recomiendas<|im_end|>
<|im_start|>assistant"""

inputs = tokenizer.encode(prompt,
                          return_tensors="pt",
                          add_special_tokens=False).cuda()#.to("cuda") # False # True

generation_config = GenerationConfig(
              max_new_tokens=700,
              temperature=0.5,
              top_p=0.9,
              top_k=45,
              repetition_penalty=1.15, #1.1, # 1.0 means no penalty, > 1.0 means penalty, 1.2 from CTRL paper
              do_sample=True,
              pad_token_id=tokenizer.eos_token_id,
              eos_token_id=tokenizer.eos_token_id,
              # bos_token_id=tokenizer.eos_token_id,
              #  use_cache=True,
              # stopping_criteria= StoppingCriteriaList([stopping_criteria]),
          )

outputs = model.generate(generation_config=generation_config,
                         input_ids=inputs,)
# tokenizer.decode(outputs[0], skip_special_tokens=False) #True
print(tokenizer.decode(outputs[0], skip_special_tokens=False))

'''OUTPUT:
<|im_start|>system
You are a helpful AI assistant.<|im_end|>
<|im_start|>user
tengo hambre que me recomiendas<|im_end|>
<|im_start|>assistant
Hay muchos tipos de alimentos que puedes probar si tienes hambre, pero aquí te muestro una lista ordenada por calor:

1- Frutas y verduras: Estas son buena opción para quitar hambre sin agotar tu cuerpo con grandes cantidades de carbohidratos. Algunas frutas y verduras que podrían ser suficientemente altas en calor durante el día incluyen tomates, plátanos, espinacas, papas, nueces, manzanas, limones, guisantes, cucumbers, zanahorias, etc.
2- Proteínas: Estas son importantes para mantener tu masa muscular y fuerzosa durante el día. Algunas proteínas que podrían ser útiles para quitar hambre durante el día incluyen carne, aceite de oliva, miel, yogur, leche fresca o sopa de gorditas, etc.
3- Carbohidratos: Estas son importantes para energizarte durante el día y mantenerte físico. Algunas frutas y verduras que podrían ser útiles para quitar hambre durante el día incluyen pan, tortillas, roti, arroz, pasta, rice, polenta, cereales, granola, etc.
4- Grains: Estas son importantes para mantenerte satiente durante el día y reducir la frecuencia de comidas rápida. Algunas gromas que podrían ser útiles para quitar hambre durante el día incluyen lentejas, farinas, tortilla, ensalada, etc.
5- Nuts y semolina: Estas son buenas opciones para quitar hambre durante el día sin agotar tu cuerpo con grandes cantidades de azúcar. Algunas frutas y verduras que podrían ser útiles para quitar hambre durante el día incluyen anacardios, almendras, macetas, bocaditos, panquesado, etc.
6- Papel picado: Esta es una opción deliciosa y económica que puedes preparar en caso de quitar hambre durante el día. Para hacer papel picado, primero cortezamos las frutas y verduras que deseas usarlas, y luego cortezamos las frutas y verduras que no deseas usarlas. A continuación, cortezamos las frutas y verduras que deseas usarlas más grandes y que estén más frescas, y luego cortezamos las frutas y verduras
'''
```