Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mesolitica/malaysian-mistral-1.1B-4096
|
3 |
+
inference: false
|
4 |
+
language:
|
5 |
+
- ms
|
6 |
+
model_creator: mesolitica
|
7 |
+
model_name: malaysian-mistral-1.1B-4096
|
8 |
+
pipeline_tag: text-generation
|
9 |
+
quantized_by: afrideva
|
10 |
+
tags:
|
11 |
+
- gguf
|
12 |
+
- ggml
|
13 |
+
- quantized
|
14 |
+
- q2_k
|
15 |
+
- q3_k_m
|
16 |
+
- q4_k_m
|
17 |
+
- q5_k_m
|
18 |
+
- q6_k
|
19 |
+
- q8_0
|
20 |
+
---
|
21 |
+
# mesolitica/malaysian-mistral-1.1B-4096-GGUF
|
22 |
+
|
23 |
+
Quantized GGUF model files for [malaysian-mistral-1.1B-4096](https://huggingface.co/mesolitica/malaysian-mistral-1.1B-4096) from [mesolitica](https://huggingface.co/mesolitica)
|
24 |
+
|
25 |
+
|
26 |
+
| Name | Quant method | Size |
|
27 |
+
| ---- | ---- | ---- |
|
28 |
+
| [malaysian-mistral-1.1b-4096.fp16.gguf](https://huggingface.co/afrideva/malaysian-mistral-1.1B-4096-GGUF/resolve/main/malaysian-mistral-1.1b-4096.fp16.gguf) | fp16 | 2.25 GB |
|
29 |
+
| [malaysian-mistral-1.1b-4096.q2_k.gguf](https://huggingface.co/afrideva/malaysian-mistral-1.1B-4096-GGUF/resolve/main/malaysian-mistral-1.1b-4096.q2_k.gguf) | q2_k | 491.42 MB |
|
30 |
+
| [malaysian-mistral-1.1b-4096.q3_k_m.gguf](https://huggingface.co/afrideva/malaysian-mistral-1.1B-4096-GGUF/resolve/main/malaysian-mistral-1.1b-4096.q3_k_m.gguf) | q3_k_m | 561.96 MB |
|
31 |
+
| [malaysian-mistral-1.1b-4096.q4_k_m.gguf](https://huggingface.co/afrideva/malaysian-mistral-1.1B-4096-GGUF/resolve/main/malaysian-mistral-1.1b-4096.q4_k_m.gguf) | q4_k_m | 682.68 MB |
|
32 |
+
| [malaysian-mistral-1.1b-4096.q5_k_m.gguf](https://huggingface.co/afrideva/malaysian-mistral-1.1B-4096-GGUF/resolve/main/malaysian-mistral-1.1b-4096.q5_k_m.gguf) | q5_k_m | 799.13 MB |
|
33 |
+
| [malaysian-mistral-1.1b-4096.q6_k.gguf](https://huggingface.co/afrideva/malaysian-mistral-1.1B-4096-GGUF/resolve/main/malaysian-mistral-1.1b-4096.q6_k.gguf) | q6_k | 922.87 MB |
|
34 |
+
| [malaysian-mistral-1.1b-4096.q8_0.gguf](https://huggingface.co/afrideva/malaysian-mistral-1.1B-4096-GGUF/resolve/main/malaysian-mistral-1.1b-4096.q8_0.gguf) | q8_0 | 1.19 GB |
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
## Original Model Card:
|
39 |
+
# Pretrain 1.1B 4096 context length Mistral on Malaysian text
|
40 |
+
|
41 |
+
README at https://github.com/mesolitica/malaya/tree/5.1/pretrained-model/mistral
|
42 |
+
|
43 |
+
- Dataset gathered at https://github.com/malaysia-ai/dedup-text-dataset/tree/main/pretrain-llm
|
44 |
+
- We use Ray cluster to train on 5 nodes of 4x A100 80GB, https://github.com/malaysia-ai/jupyter-gpu/tree/main/ray
|
45 |
+
|
46 |
+
WandB, https://wandb.ai/mesolitica/pretrain-mistral-1.1b?workspace=user-husein-mesolitica
|
47 |
+
|
48 |
+
WandB report, https://wandb.ai/mesolitica/pretrain-mistral-3b/reports/Pretrain-Larger-Malaysian-Mistral--Vmlldzo2MDkyOTgz
|
49 |
+
|
50 |
+
## how-to
|
51 |
+
|
52 |
+
```python
|
53 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
54 |
+
import torch
|
55 |
+
|
56 |
+
TORCH_DTYPE = 'bfloat16'
|
57 |
+
nf4_config = BitsAndBytesConfig(
|
58 |
+
load_in_4bit=True,
|
59 |
+
bnb_4bit_quant_type='nf4',
|
60 |
+
bnb_4bit_use_double_quant=True,
|
61 |
+
bnb_4bit_compute_dtype=getattr(torch, TORCH_DTYPE)
|
62 |
+
)
|
63 |
+
|
64 |
+
tokenizer = AutoTokenizer.from_pretrained('mesolitica/malaysian-mistral-1.1B-4096', model_input_names = ['input_ids'])
|
65 |
+
model = AutoModelForCausalLM.from_pretrained(
|
66 |
+
'mesolitica/malaysian-mistral-1.1B-4096',
|
67 |
+
use_flash_attention_2 = True,
|
68 |
+
quantization_config = nf4_config
|
69 |
+
)
|
70 |
+
prompt = '<s>nama saya'
|
71 |
+
inputs = tokenizer([prompt], return_tensors='pt', add_special_tokens=False).to('cuda')
|
72 |
+
|
73 |
+
generate_kwargs = dict(
|
74 |
+
inputs,
|
75 |
+
max_new_tokens=512,
|
76 |
+
top_p=0.95,
|
77 |
+
top_k=50,
|
78 |
+
temperature=0.9,
|
79 |
+
do_sample=True,
|
80 |
+
num_beams=1,
|
81 |
+
repetition_penalty=1.05,
|
82 |
+
)
|
83 |
+
r = model.generate(**generate_kwargs)
|
84 |
+
```
|