File size: 6,097 Bytes
556664d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
---
base_model: freecs/phine-2-v0
datasets:
- vicgalle/alpaca-gpt4
inference: false
license: unknown
model_creator: freecs
model_name: phine-2-v0
pipeline_tag: text-generation
quantized_by: afrideva
tags:
- gguf
- ggml
- quantized
- q2_k
- q3_k_m
- q4_k_m
- q5_k_m
- q6_k
- q8_0
---
# freecs/phine-2-v0-GGUF

Quantized GGUF model files for [phine-2-v0](https://huggingface.co/freecs/phine-2-v0) from [freecs](https://huggingface.co/freecs)


| Name | Quant method | Size |
| ---- | ---- | ---- |
| [phine-2-v0.fp16.gguf](https://huggingface.co/afrideva/phine-2-v0-GGUF/resolve/main/phine-2-v0.fp16.gguf) | fp16 | 5.56 GB  |
| [phine-2-v0.q2_k.gguf](https://huggingface.co/afrideva/phine-2-v0-GGUF/resolve/main/phine-2-v0.q2_k.gguf) | q2_k | 1.17 GB  |
| [phine-2-v0.q3_k_m.gguf](https://huggingface.co/afrideva/phine-2-v0-GGUF/resolve/main/phine-2-v0.q3_k_m.gguf) | q3_k_m | 1.48 GB  |
| [phine-2-v0.q4_k_m.gguf](https://huggingface.co/afrideva/phine-2-v0-GGUF/resolve/main/phine-2-v0.q4_k_m.gguf) | q4_k_m | 1.79 GB  |
| [phine-2-v0.q5_k_m.gguf](https://huggingface.co/afrideva/phine-2-v0-GGUF/resolve/main/phine-2-v0.q5_k_m.gguf) | q5_k_m | 2.07 GB  |
| [phine-2-v0.q6_k.gguf](https://huggingface.co/afrideva/phine-2-v0-GGUF/resolve/main/phine-2-v0.q6_k.gguf) | q6_k | 2.29 GB  |
| [phine-2-v0.q8_0.gguf](https://huggingface.co/afrideva/phine-2-v0-GGUF/resolve/main/phine-2-v0.q8_0.gguf) | q8_0 | 2.96 GB  |



## Original Model Card:
---
# Model Card: Phine-2-v0

## Overview

- **Model Name:** Phine-2
- **Base Model:** Phi-2 (Microsoft model)
- **Created By:** [GR](https://twitter.com/gr_username)
- **Donations Link:** [Click Me](https://www.buymeacoffee.com/gr.0)

## Code Usage

To try Phine, use the following Python code snippet:

```python
#######################
'''
Name: Phine Inference
License: MIT
'''
#######################


##### Dependencies

""" IMPORTANT: Uncomment the following line if you are in a Colab/Notebook environment """

#!pip install gradio einops accelerate bitsandbytes transformers

#####

import gradio as gr
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import random
import re

def cut_text_after_last_token(text, token):

    last_occurrence = text.rfind(token)

    if last_occurrence != -1:
        result = text[last_occurrence + len(token):].strip()
        return result
    else:
        return None


class _SentinelTokenStoppingCriteria(transformers.StoppingCriteria):

    def __init__(self, sentinel_token_ids: torch.LongTensor,
                 starting_idx: int):
        transformers.StoppingCriteria.__init__(self)
        self.sentinel_token_ids = sentinel_token_ids
        self.starting_idx = starting_idx

    def __call__(self, input_ids: torch.LongTensor,
                 _scores: torch.FloatTensor) -> bool:
        for sample in input_ids:
            trimmed_sample = sample[self.starting_idx:]

            if trimmed_sample.shape[-1] < self.sentinel_token_ids.shape[-1]:
                continue

            for window in trimmed_sample.unfold(
                    0, self.sentinel_token_ids.shape[-1], 1):
                if torch.all(torch.eq(self.sentinel_token_ids, window)):
                    return True
        return False





model_path = 'freecs/phine-2-v0'

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=False, torch_dtype=torch.float16).to(device) #remove .to() if load_in_4/8bit = True

sys_message = "You are an AI assistant named Phine developed by FreeCS.org. You are polite and smart." #System Message

def phine(message, history, temperature, top_p, top_k, repetition_penalty):



    n = 0
    context = ""
    if history and len(history) > 0:

        for x in history:
          for h in x:
            if n%2 == 0:
              context+=f"""\n<|prompt|>{h}\n"""
            else:
              context+=f"""<|response|>{h}"""
            n+=1
    else:

        context = ""




    prompt = f"""\n<|system|>{sys_message}"""+context+"\n<|prompt|>"+message+"<|endoftext|>\n<|response|>"
    tokenized = tokenizer(prompt, return_tensors="pt").to(device)


    stopping_criteria_list = transformers.StoppingCriteriaList([
        _SentinelTokenStoppingCriteria(
            sentinel_token_ids=tokenizer(
                "<|endoftext|>",
                add_special_tokens=False,
                return_tensors="pt",
            ).input_ids.to(device),
            starting_idx=tokenized.input_ids.shape[-1])
    ])

        
    token = model.generate(**tokenized,
                        stopping_criteria=stopping_criteria_list,
                        do_sample=True,
                        max_length=2048, temperature=temperature, top_p=top_p, top_k = top_k, repetition_penalty = repetition_penalty
                           )

    completion = tokenizer.decode(token[0], skip_special_tokens=False)
    token = "<|response|>"
    res = cut_text_after_last_token(completion, token)
    return res.replace('<|endoftext|>', '')
demo = gr.ChatInterface(phine,
                          additional_inputs=[
                              gr.Slider(0.1, 2.0, label="temperature", value=0.5),
                              gr.Slider(0.1, 2.0, label="Top P", value=0.9),
                              gr.Slider(1, 500, label="Top K", value=50),
                              gr.Slider(0.1, 2.0, label="Repetition Penalty", value=1.15)
                          ]
                          )

if __name__ == "__main__":
    demo.queue().launch(share=True, debug=True) #If debug=True causes problems you can set it to False
```

## Contact

For inquiries, collaboration opportunities, or additional information, reach out to me on Twitter: [gr](https://twitter.com/gr_username).

## Disclaimer

As of now, I have not applied Reinforcement Learning from Human Feedback (RLHF). Due to this, the model may generate unexpected or potentially unethical outputs.

---