File size: 7,205 Bytes
6cf3386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
---
base_model: PipableAI/pip-code-bandit
inference: true
language:
- en
library_name: transformers
license: apache-2.0
metrics:
- accuracy
model_creator: PipableAI
model_name: pip-code-bandit
pipeline_tag: text-generation
quantized_by: afrideva
tags:
- python
- java
- cpp
- sql
- function calling
- unit tests
- causalLM
- codeLLAMA modified archi
- document
- code
- code2doc
- instruction_tuned
- basemodel
- pytorch
- docstring
- documentation
- text-generation-inference
- plan
- planner
- gguf
- ggml
- quantized
widget:
- example_title: example
  text: '<example_response>--code:def function_divide2(x): return x / 2--question:Document
    the code--doc:Description:This function takes a number and divides it by 2.Parameters:-
    x (numeric): The input value to be divided by 2.Returns:- float: The result of
    x divided by 2.Example:To call the function, use the following code:function_divide2(1.0)</example_response><function_code>def
    _plot_bounding_polygon(polygons_coordinates, output_html_path=bounding_polygon_map.html):map_center
    = [sum([coord[0]for polygon_coords in polygons_coordinatesfor coord in polygon_coords])/
    sum([len(polygon_coords) for polygon_coords in polygons_coordinates]),sum([coord[1]for
    polygon_coords in polygons_coordinatesfor coord in polygon_coords])/ sum([len(polygon_coords)
    for polygon_coords in polygons_coordinates]),]my_map = folium.Map(location=map_center,
    zoom_start=12)for polygon_coords in polygons_coordinates:folium.Polygon(locations=polygon_coords,color=blue,fill=True,fill_color=blue,fill_opacity=0.2,).add_to(my_map)marker_cluster
    = MarkerCluster().add_to(my_map)for polygon_coords in polygons_coordinates:for
    coord in polygon_coords:folium.Marker(location=[coord[0], coord[1]], popup=fCoordinates:
    {coord}).add_to(marker_cluster)draw = Draw(export=True)draw.add_to(my_map)my_map.save(output_html_path)return
    output_html_path</function_code><question>Document the python code above giving
    function description ,parameters and return type and example how to call the function</question><doc>'
---

# pip-code-bandit-GGUF

Quantized GGUF model files for [pip-code-bandit](https://huggingface.co/PipableAI/pip-code-bandit) from [PipableAI](https://huggingface.co/PipableAI)

## Original Model Card:

# pip-code-bandit

[PipableAI](https://www.pipable.ai/)

[colab_notebook](https://colab.research.google.com/drive/10av3SxFf0Psx_IkmZbcUhiVznStV5pVS?usp=sharing)

[pipflow](https://github.com/PipableAI/pipflow)

[linkedin_post](https://www.linkedin.com/posts/pipable%2Eai_releasing-strategy-activity-7195750109886783489-tHrz?utm_source=share&utm_medium=member_desktop)

[reddit_post](https://www.reddit.com/r/LocalLLaMA/comments/1cqxdl9/unveiling_pipcodebandit_empowering_ai_in_agentic/?utm_source=share&utm_medium=web3x&utm_name=web3xcss&utm_term=1&utm_content=share_button)


## Objective


![image/png](https://cdn-uploads.huggingface.co/production/uploads/658d8095a2a6a6e0da8bb8a6/NuTFBTMAsPgFwMxCjdqFv.png)


Given a goal and tools, can AI intelligently use the tools to reach the goal?\
What if it has a meagre 1.3b params/neurons akin to that of an owl? Can it follow instructions and plan to reach a goal?\
It can!\
Releasing **pip-code-bandit** and **pipflow**\
A `model` and a `library` to manage and run goal-oriented agentic system.


## Model attributes

```javascript
-- number of params ~ 1.3b [2.9 Gb GPU memory footprint]
-- sequence length ~ 16.3k [Can go higher but will show performance degradation]
-- license - apache 2.0
-- instruction following , RL tuned.
-- tasks:
1. complex planning(plan) of sequential function calls | a list of callables and goal
2. corrected plan | feedback instructions with error
3. function calling | doc or code and goal
4. code generation | plan and goal
5. code generation | goal
6. doc generation | code
7. code generation | doc
8. file parsed to json | any raw data
9. sql generation | schema, question, instructions and examples

```


## How did we build it?

We used a simulator to simulate environments where the model could play games to achieve goals, given a set of actions available to it. 
All the model could do was find the right action and config to incur a positive reward.
The reward policy is around the concept of a model going to a stable state of zero net sum reward for both good and bad behaviour.
In this setup, the model, which was pre-trained on code, function documentation, and similar OS datasets, was RL-tuned for reliability and instruction-following. 

## License
```bash
complete open-sourced - apache 2.0. License
```

## Usage


### NOTE:


If you wish to try this model without utilizing your GPU, we have hosted the model on our end. To execute the library using the hosted model, initialize the generator as shown below:

```bash
pip3 install git+https://github.com/PipableAI/pipflow.git
```
```python
from pipflow import PipFlow

generator = PipFlow()
```

We have hosted the model at https://playground.pipable.ai/infer. Hence, one can also make a POST request to this endpoint with the following payload:

```json
{
    "model_name": "PipableAI/pip-code-bandit",
    "prompt": "prompt",
    "max_new_tokens": "400"
}
```

```bash
curl -X 'POST' \
  'https://playground.pipable.ai/infer' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/x-www-form-urlencoded' \
  -d 'model_name=PipableAI%2Fpip-code-bandit&prompt="YOUR PROMPT"&max_new_tokens=400'
```

Alternatively, you can directly access the UI endpoint at https://playground.pipable.ai/docs#/default/infer_infer_post.



### Library Usage

To directly use the model's capabilities without putting extra effort into schemas and prompts, try to use [pipflow](https://github.com/PipableAI/pipflow).

For detailed usage, refer to the [colab_notebook](https://colab.research.google.com/drive/10av3SxFf0Psx_IkmZbcUhiVznStV5pVS?usp=sharing)



### Model Usage

```bash
pip install transformers accelerate torch
```

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from accelerate import Accelerator
model =AutoModelForCausalLM.from_pretrained("PipableAI/pip-code-bandit",torch_dtype=torch.bfloat16,device_map="auto")
tokenizer = tokenizer = AutoTokenizer.from_pretrained("PipableAI/pip-code-bandit")
new_tokens = 600
prompt = """
<question>
Generate a python function for adding two numbers.
</question>
<code>
"""
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=new_tokens)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response.split("<code>")[1].split("</code>")[0]

print(response)
```


### Prompt

```python
prompt = f"""<example_response>{--question , --query}</example_response><function_code>{code}</function_code>
<question>Give one line description of the python code above in natural language.</question>
<doc>"""

prompt = f"""<example_response>{example of some  --question: , --query}</example_response><schema>{schema with cols described}</schema>
<question>Write a sql query to ....</question>
<sql>"""
```

### Team

```doc
Avi Kothari, Gyan Ranjan, Pratham Gupta, Ritvik Aryan Kalra, Soham Acharya
```