afrideva commited on
Commit
4d4d4af
1 Parent(s): 5267211

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +90 -0
README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BEE-spoke-data/smol_llama-220M-GQA
3
+ datasets:
4
+ - JeanKaddour/minipile
5
+ - pszemraj/simple_wikipedia_LM
6
+ - mattymchen/refinedweb-3m
7
+ - BEE-spoke-data/knowledge-inoc-concat-v1
8
+ inference: false
9
+ language:
10
+ - en
11
+ license: apache-2.0
12
+ model_creator: BEE-spoke-data
13
+ model_name: smol_llama-220M-GQA
14
+ pipeline_tag: text-generation
15
+ quantized_by: afrideva
16
+ tags:
17
+ - smol_llama
18
+ - llama2
19
+ - gguf
20
+ - ggml
21
+ - quantized
22
+ - q2_k
23
+ - q3_k_m
24
+ - q4_k_m
25
+ - q5_k_m
26
+ - q6_k
27
+ - q8_0
28
+ widget:
29
+ - example_title: El Microondas
30
+ text: My name is El Microondas the Wise, and
31
+ - example_title: Kennesaw State University
32
+ text: Kennesaw State University is a public
33
+ - example_title: Bungie
34
+ text: Bungie Studios is an American video game developer. They are most famous for
35
+ developing the award winning Halo series of video games. They also made Destiny.
36
+ The studio was founded
37
+ - example_title: Mona Lisa
38
+ text: The Mona Lisa is a world-renowned painting created by
39
+ - example_title: Harry Potter Series
40
+ text: The Harry Potter series, written by J.K. Rowling, begins with the book titled
41
+ - example_title: Riddle
42
+ text: 'Question: I have cities, but no houses. I have mountains, but no trees. I
43
+ have water, but no fish. What am I?
44
+
45
+ Answer:'
46
+ - example_title: Photosynthesis
47
+ text: The process of photosynthesis involves the conversion of
48
+ - example_title: Story Continuation
49
+ text: Jane went to the store to buy some groceries. She picked up apples, oranges,
50
+ and a loaf of bread. When she got home, she realized she forgot
51
+ - example_title: Math Problem
52
+ text: 'Problem 2: If a train leaves Station A at 9:00 AM and travels at 60 mph,
53
+ and another train leaves Station B at 10:00 AM and travels at 80 mph, when will
54
+ they meet if the distance between the stations is 300 miles?
55
+
56
+ To determine'
57
+ - example_title: Algorithm Definition
58
+ text: In the context of computer programming, an algorithm is
59
+ ---
60
+ # BEE-spoke-data/smol_llama-220M-GQA-GGUF
61
+
62
+ Quantized GGUF model files for [smol_llama-220M-GQA](https://huggingface.co/BEE-spoke-data/smol_llama-220M-GQA) from [BEE-spoke-data](https://huggingface.co/BEE-spoke-data)
63
+
64
+
65
+ | Name | Quant method | Size |
66
+ | ---- | ---- | ---- |
67
+ | [smol_llama-220m-gqa.fp16.gguf](https://huggingface.co/afrideva/smol_llama-220M-GQA-GGUF/resolve/main/smol_llama-220m-gqa.fp16.gguf) | fp16 | 436.50 MB |
68
+ | [smol_llama-220m-gqa.q2_k.gguf](https://huggingface.co/afrideva/smol_llama-220M-GQA-GGUF/resolve/main/smol_llama-220m-gqa.q2_k.gguf) | q2_k | 102.60 MB |
69
+ | [smol_llama-220m-gqa.q3_k_m.gguf](https://huggingface.co/afrideva/smol_llama-220M-GQA-GGUF/resolve/main/smol_llama-220m-gqa.q3_k_m.gguf) | q3_k_m | 115.70 MB |
70
+ | [smol_llama-220m-gqa.q4_k_m.gguf](https://huggingface.co/afrideva/smol_llama-220M-GQA-GGUF/resolve/main/smol_llama-220m-gqa.q4_k_m.gguf) | q4_k_m | 137.58 MB |
71
+ | [smol_llama-220m-gqa.q5_k_m.gguf](https://huggingface.co/afrideva/smol_llama-220M-GQA-GGUF/resolve/main/smol_llama-220m-gqa.q5_k_m.gguf) | q5_k_m | 157.91 MB |
72
+ | [smol_llama-220m-gqa.q6_k.gguf](https://huggingface.co/afrideva/smol_llama-220M-GQA-GGUF/resolve/main/smol_llama-220m-gqa.q6_k.gguf) | q6_k | 179.52 MB |
73
+ | [smol_llama-220m-gqa.q8_0.gguf](https://huggingface.co/afrideva/smol_llama-220M-GQA-GGUF/resolve/main/smol_llama-220m-gqa.q8_0.gguf) | q8_0 | 232.28 MB |
74
+
75
+
76
+
77
+ ## Original Model Card:
78
+ # smol_llama: 220M GQA
79
+
80
+ > model card WIP, more details to come
81
+
82
+
83
+ A small 220M param (total) decoder model. This is the first version of the model.
84
+
85
+ - 1024 hidden size, 10 layers
86
+ - GQA (32 heads, 8 key-value), context length 2048
87
+ - train-from-scratch on one GPU :)
88
+
89
+
90
+ ---