Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: BEE-spoke-data/smol_llama-220M-open_instruct
|
3 |
+
datasets:
|
4 |
+
- VMware/open-instruct
|
5 |
+
inference: false
|
6 |
+
license: apache-2.0
|
7 |
+
model_creator: BEE-spoke-data
|
8 |
+
model_name: smol_llama-220M-open_instruct
|
9 |
+
pipeline_tag: text-generation
|
10 |
+
quantized_by: afrideva
|
11 |
+
tags:
|
12 |
+
- gguf
|
13 |
+
- ggml
|
14 |
+
- quantized
|
15 |
+
- q2_k
|
16 |
+
- q3_k_m
|
17 |
+
- q4_k_m
|
18 |
+
- q5_k_m
|
19 |
+
- q6_k
|
20 |
+
- q8_0
|
21 |
+
widget:
|
22 |
+
- example_title: burritos
|
23 |
+
text: "Below is an instruction that describes a task, paired with an input that
|
24 |
+
provides further context. Write a response that appropriately completes the request.
|
25 |
+
\ \n \n### Instruction: \n \nWrite an ode to Chipotle burritos. \n \n###
|
26 |
+
Response: \n"
|
27 |
+
---
|
28 |
+
# BEE-spoke-data/smol_llama-220M-open_instruct-GGUF
|
29 |
+
|
30 |
+
Quantized GGUF model files for [smol_llama-220M-open_instruct](https://huggingface.co/BEE-spoke-data/smol_llama-220M-open_instruct) from [BEE-spoke-data](https://huggingface.co/BEE-spoke-data)
|
31 |
+
|
32 |
+
|
33 |
+
| Name | Quant method | Size |
|
34 |
+
| ---- | ---- | ---- |
|
35 |
+
| [smol_llama-220m-open_instruct.fp16.gguf](https://huggingface.co/afrideva/smol_llama-220M-open_instruct-GGUF/resolve/main/smol_llama-220m-open_instruct.fp16.gguf) | fp16 | 436.50 MB |
|
36 |
+
| [smol_llama-220m-open_instruct.q2_k.gguf](https://huggingface.co/afrideva/smol_llama-220M-open_instruct-GGUF/resolve/main/smol_llama-220m-open_instruct.q2_k.gguf) | q2_k | 94.43 MB |
|
37 |
+
| [smol_llama-220m-open_instruct.q3_k_m.gguf](https://huggingface.co/afrideva/smol_llama-220M-open_instruct-GGUF/resolve/main/smol_llama-220m-open_instruct.q3_k_m.gguf) | q3_k_m | 114.65 MB |
|
38 |
+
| [smol_llama-220m-open_instruct.q4_k_m.gguf](https://huggingface.co/afrideva/smol_llama-220M-open_instruct-GGUF/resolve/main/smol_llama-220m-open_instruct.q4_k_m.gguf) | q4_k_m | 137.58 MB |
|
39 |
+
| [smol_llama-220m-open_instruct.q5_k_m.gguf](https://huggingface.co/afrideva/smol_llama-220M-open_instruct-GGUF/resolve/main/smol_llama-220m-open_instruct.q5_k_m.gguf) | q5_k_m | 157.91 MB |
|
40 |
+
| [smol_llama-220m-open_instruct.q6_k.gguf](https://huggingface.co/afrideva/smol_llama-220M-open_instruct-GGUF/resolve/main/smol_llama-220m-open_instruct.q6_k.gguf) | q6_k | 179.52 MB |
|
41 |
+
| [smol_llama-220m-open_instruct.q8_0.gguf](https://huggingface.co/afrideva/smol_llama-220M-open_instruct-GGUF/resolve/main/smol_llama-220m-open_instruct.q8_0.gguf) | q8_0 | 232.28 MB |
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
## Original Model Card:
|
46 |
+
# BEE-spoke-data/smol_llama-220M-open_instruct
|
47 |
+
|
48 |
+
> Please note that this is an experiment, and the model has limitations because it is smol.
|
49 |
+
|
50 |
+
|
51 |
+
prompt format is alpaca.
|
52 |
+
|
53 |
+
|
54 |
+
```
|
55 |
+
Below is an instruction that describes a task, paired with an input that
|
56 |
+
provides further context. Write a response that appropriately completes
|
57 |
+
the request.
|
58 |
+
|
59 |
+
### Instruction:
|
60 |
+
|
61 |
+
How can I increase my meme production/output? Currently, I only create them in ancient babylonian which is time consuming.
|
62 |
+
|
63 |
+
### Response:
|
64 |
+
```
|
65 |
+
|
66 |
+
This was **not** trained using a separate 'inputs' field (as `VMware/open-instruct` doesn't use one).
|
67 |
+
|
68 |
+
|
69 |
+
## Example
|
70 |
+
|
71 |
+
Output on the text above ^. The inference API is set to sample with low temp so you should see (_at least slightly_) different generations each time.
|
72 |
+
|
73 |
+
|
74 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/60bccec062080d33f875cd0c/MdOB7TD5UosPGZvdZWG0I.png)
|
75 |
+
|
76 |
+
Note that the inference API parameters used here are an initial educated guess, and may be updated over time:
|
77 |
+
|
78 |
+
```yml
|
79 |
+
inference:
|
80 |
+
parameters:
|
81 |
+
do_sample: true
|
82 |
+
renormalize_logits: true
|
83 |
+
temperature: 0.25
|
84 |
+
top_p: 0.95
|
85 |
+
top_k: 50
|
86 |
+
min_new_tokens: 2
|
87 |
+
max_new_tokens: 96
|
88 |
+
repetition_penalty: 1.04
|
89 |
+
no_repeat_ngram_size: 6
|
90 |
+
epsilon_cutoff: 0.0006
|
91 |
+
```
|
92 |
+
|
93 |
+
Feel free to experiment with the parameters using the model in Python and let us know if you have improved results with other params!
|
94 |
+
|
95 |
+
## Data
|
96 |
+
|
97 |
+
This was trained on `VMware/open-instruct` so do whatever you want, provided it falls under the base apache-2.0 license :)
|
98 |
+
|
99 |
+
---
|