afrideva commited on
Commit
b764267
1 Parent(s): 000dbc7

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +99 -0
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BEE-spoke-data/smol_llama-220M-open_instruct
3
+ datasets:
4
+ - VMware/open-instruct
5
+ inference: false
6
+ license: apache-2.0
7
+ model_creator: BEE-spoke-data
8
+ model_name: smol_llama-220M-open_instruct
9
+ pipeline_tag: text-generation
10
+ quantized_by: afrideva
11
+ tags:
12
+ - gguf
13
+ - ggml
14
+ - quantized
15
+ - q2_k
16
+ - q3_k_m
17
+ - q4_k_m
18
+ - q5_k_m
19
+ - q6_k
20
+ - q8_0
21
+ widget:
22
+ - example_title: burritos
23
+ text: "Below is an instruction that describes a task, paired with an input that
24
+ provides further context. Write a response that appropriately completes the request.
25
+ \ \n \n### Instruction: \n \nWrite an ode to Chipotle burritos. \n \n###
26
+ Response: \n"
27
+ ---
28
+ # BEE-spoke-data/smol_llama-220M-open_instruct-GGUF
29
+
30
+ Quantized GGUF model files for [smol_llama-220M-open_instruct](https://huggingface.co/BEE-spoke-data/smol_llama-220M-open_instruct) from [BEE-spoke-data](https://huggingface.co/BEE-spoke-data)
31
+
32
+
33
+ | Name | Quant method | Size |
34
+ | ---- | ---- | ---- |
35
+ | [smol_llama-220m-open_instruct.fp16.gguf](https://huggingface.co/afrideva/smol_llama-220M-open_instruct-GGUF/resolve/main/smol_llama-220m-open_instruct.fp16.gguf) | fp16 | 436.50 MB |
36
+ | [smol_llama-220m-open_instruct.q2_k.gguf](https://huggingface.co/afrideva/smol_llama-220M-open_instruct-GGUF/resolve/main/smol_llama-220m-open_instruct.q2_k.gguf) | q2_k | 94.43 MB |
37
+ | [smol_llama-220m-open_instruct.q3_k_m.gguf](https://huggingface.co/afrideva/smol_llama-220M-open_instruct-GGUF/resolve/main/smol_llama-220m-open_instruct.q3_k_m.gguf) | q3_k_m | 114.65 MB |
38
+ | [smol_llama-220m-open_instruct.q4_k_m.gguf](https://huggingface.co/afrideva/smol_llama-220M-open_instruct-GGUF/resolve/main/smol_llama-220m-open_instruct.q4_k_m.gguf) | q4_k_m | 137.58 MB |
39
+ | [smol_llama-220m-open_instruct.q5_k_m.gguf](https://huggingface.co/afrideva/smol_llama-220M-open_instruct-GGUF/resolve/main/smol_llama-220m-open_instruct.q5_k_m.gguf) | q5_k_m | 157.91 MB |
40
+ | [smol_llama-220m-open_instruct.q6_k.gguf](https://huggingface.co/afrideva/smol_llama-220M-open_instruct-GGUF/resolve/main/smol_llama-220m-open_instruct.q6_k.gguf) | q6_k | 179.52 MB |
41
+ | [smol_llama-220m-open_instruct.q8_0.gguf](https://huggingface.co/afrideva/smol_llama-220M-open_instruct-GGUF/resolve/main/smol_llama-220m-open_instruct.q8_0.gguf) | q8_0 | 232.28 MB |
42
+
43
+
44
+
45
+ ## Original Model Card:
46
+ # BEE-spoke-data/smol_llama-220M-open_instruct
47
+
48
+ > Please note that this is an experiment, and the model has limitations because it is smol.
49
+
50
+
51
+ prompt format is alpaca.
52
+
53
+
54
+ ```
55
+ Below is an instruction that describes a task, paired with an input that
56
+ provides further context. Write a response that appropriately completes
57
+ the request.
58
+
59
+ ### Instruction:
60
+
61
+ How can I increase my meme production/output? Currently, I only create them in ancient babylonian which is time consuming.
62
+
63
+ ### Response:
64
+ ```
65
+
66
+ This was **not** trained using a separate 'inputs' field (as `VMware/open-instruct` doesn't use one).
67
+
68
+
69
+ ## Example
70
+
71
+ Output on the text above ^. The inference API is set to sample with low temp so you should see (_at least slightly_) different generations each time.
72
+
73
+
74
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/60bccec062080d33f875cd0c/MdOB7TD5UosPGZvdZWG0I.png)
75
+
76
+ Note that the inference API parameters used here are an initial educated guess, and may be updated over time:
77
+
78
+ ```yml
79
+ inference:
80
+ parameters:
81
+ do_sample: true
82
+ renormalize_logits: true
83
+ temperature: 0.25
84
+ top_p: 0.95
85
+ top_k: 50
86
+ min_new_tokens: 2
87
+ max_new_tokens: 96
88
+ repetition_penalty: 1.04
89
+ no_repeat_ngram_size: 6
90
+ epsilon_cutoff: 0.0006
91
+ ```
92
+
93
+ Feel free to experiment with the parameters using the model in Python and let us know if you have improved results with other params!
94
+
95
+ ## Data
96
+
97
+ This was trained on `VMware/open-instruct` so do whatever you want, provided it falls under the base apache-2.0 license :)
98
+
99
+ ---