afrideva commited on
Commit
5d19103
1 Parent(s): 849b1fc

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +193 -0
README.md ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: stabilityai/stablelm-2-zephyr-1_6b
3
+ datasets:
4
+ - HuggingFaceH4/ultrachat_200k
5
+ - allenai/ultrafeedback_binarized_cleaned
6
+ - meta-math/MetaMathQA
7
+ - WizardLM/WizardLM_evol_instruct_V2_196k
8
+ - openchat/openchat_sharegpt4_dataset
9
+ - LDJnr/Capybara
10
+ - Intel/orca_dpo_pairs
11
+ - hkust-nlp/deita-10k-v0
12
+ extra_gated_fields:
13
+ Country: text
14
+ Email: text
15
+ I ALLOW Stability AI to email me about new model releases: checkbox
16
+ Name: text
17
+ Organization or Affiliation: text
18
+ inference: false
19
+ language:
20
+ - en
21
+ license: other
22
+ model_creator: stabilityai
23
+ model_name: stablelm-2-zephyr-1_6b
24
+ pipeline_tag: text-generation
25
+ quantized_by: afrideva
26
+ tags:
27
+ - causal-lm
28
+ - gguf
29
+ - ggml
30
+ - quantized
31
+ - q2_k
32
+ - q3_k_xs
33
+ - q3_k_m
34
+ - q4_k_m
35
+ - q5_k_m
36
+ - q6_k
37
+ - q8_0
38
+ ---
39
+ # stabilityai/stablelm-2-zephyr-1_6b-GGUF
40
+
41
+ Quantized GGUF model files for [stablelm-2-zephyr-1_6b](https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b) from [stabilityai](https://huggingface.co/stabilityai)
42
+
43
+
44
+ | Name | Quant method | Size |
45
+ | ---- | ---- | ---- |
46
+ | [stablelm-2-zephyr-1_6b.fp16.gguf](https://huggingface.co/afrideva/stablelm-2-zephyr-1_6b-GGUF/resolve/main/stablelm-2-zephyr-1_6b.fp16.gguf) | fp16 | 3.29 GB |
47
+ | [stablelm-2-zephyr-1_6b.q2_k.gguf](https://huggingface.co/afrideva/stablelm-2-zephyr-1_6b-GGUF/resolve/main/stablelm-2-zephyr-1_6b.q2_k.gguf) | q2_k | 694.16 MB |
48
+ | [stablelm-2-zephyr-1_6b.q3_k_xs.gguf](https://huggingface.co/afrideva/stablelm-2-zephyr-1_6b-GGUF/resolve/main/stablelm-2-zephyr-1_6b.q3_k_xs.gguf) | q3_k_xs | 757.97 MB |
49
+ | [stablelm-2-zephyr-1_6b.q3_k_m.gguf](https://huggingface.co/afrideva/stablelm-2-zephyr-1_6b-GGUF/resolve/main/stablelm-2-zephyr-1_6b.q3_k_m.gguf) | q3_k_m | 857.71 MB |
50
+ | [stablelm-2-zephyr-1_6b.q4_k_m.gguf](https://huggingface.co/afrideva/stablelm-2-zephyr-1_6b-GGUF/resolve/main/stablelm-2-zephyr-1_6b.q4_k_m.gguf) | q4_k_m | 1.03 GB |
51
+ | [stablelm-2-zephyr-1_6b.q5_k_m.gguf](https://huggingface.co/afrideva/stablelm-2-zephyr-1_6b-GGUF/resolve/main/stablelm-2-zephyr-1_6b.q5_k_m.gguf) | q5_k_m | 1.19 GB |
52
+ | [stablelm-2-zephyr-1_6b.q6_k.gguf](https://huggingface.co/afrideva/stablelm-2-zephyr-1_6b-GGUF/resolve/main/stablelm-2-zephyr-1_6b.q6_k.gguf) | q6_k | 1.35 GB |
53
+ | [stablelm-2-zephyr-1_6b.q8_0.gguf](https://huggingface.co/afrideva/stablelm-2-zephyr-1_6b-GGUF/resolve/main/stablelm-2-zephyr-1_6b.q8_0.gguf) | q8_0 | 1.75 GB |
54
+
55
+
56
+
57
+ ## Original Model Card:
58
+ # `StableLM 2 Zephyr 1.6B`
59
+
60
+ ## Model Description
61
+
62
+ `Stable LM 2 Zephyr 1.6B` is a 1.6 billion parameter instruction tuned language model inspired by [HugginFaceH4's Zephyr 7B](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) training pipeline. The model is trained on a mix of publicly available datasets and synthetic datasets, utilizing [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290).
63
+
64
+ ## Usage
65
+
66
+ `StableLM 2 Zephyr 1.6B` uses the following instruction format:
67
+ ```
68
+ <|user|>
69
+ Which famous math number begins with 1.6 ...?<|endoftext|>
70
+ <|assistant|>
71
+ The number you are referring to is 1.618033988749895. This is the famous value known as the golden ratio<|endoftext|>
72
+ ```
73
+
74
+ This format is also available through the tokenizer's `apply_chat_template` method:
75
+
76
+ ```python
77
+ from transformers import AutoModelForCausalLM, AutoTokenizer
78
+
79
+ tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-zephyr-1_6b', trust_remote_code=True)
80
+ model = AutoModelForCausalLM.from_pretrained(
81
+ 'stabilityai/stablelm-2-zephyr-1_6b',
82
+ trust_remote_code=True,
83
+ device_map="auto"
84
+ )
85
+
86
+ prompt = [{'role': 'user', 'content': 'Which famous math number begins with 1.6 ...?'}]
87
+ inputs = tokenizer.apply_chat_template(
88
+ prompt,
89
+ add_generation_prompt=True,
90
+ return_tensors='pt'
91
+ )
92
+
93
+ tokens = model.generate(
94
+ inputs.to(model.device),
95
+ max_new_tokens=1024,
96
+ temperature=0.5,
97
+ do_sample=True
98
+ )
99
+
100
+ print(tokenizer.decode(tokens[0], skip_special_tokens=False))
101
+ ```
102
+
103
+ ## Model Details
104
+
105
+ * **Developed by**: [Stability AI](https://stability.ai/)
106
+ * **Model type**: `StableLM 2 Zephyr 1.6B` model is an auto-regressive language model based on the transformer decoder architecture.
107
+ * **Language(s)**: English
108
+ * **Library**: [Alignment Handbook](https://github.com/huggingface/alignment-handbook.git)
109
+ * **Finetuned from model**: [stabilityai/stablelm-2-zephyr-1_6b](https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b)
110
+ * **License**: [StabilityAI Non-Commercial Research Community License](https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b/blob/main/LICENSE). If you want to use this model for your commercial products or purposes, please contact us [here](https://stability.ai/contact) to learn more.
111
+ * **Contact**: For questions and comments about the model, please email `lm@stability.ai`
112
+
113
+ ### Training Dataset
114
+
115
+ The dataset is comprised of a mixture of open datasets large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets):
116
+ 1. SFT Datasets
117
+ - HuggingFaceH4/ultrachat_200k
118
+ - meta-math/MetaMathQA
119
+ - WizardLM/WizardLM_evol_instruct_V2_196k
120
+ - Open-Orca/SlimOrca
121
+ - openchat/openchat_sharegpt4_dataset
122
+ - LDJnr/Capybara
123
+ - hkust-nlp/deita-10k-v0
124
+
125
+ 2. Preference Datasets:
126
+ - allenai/ultrafeedback_binarized_cleaned
127
+ - Intel/orca_dpo_pairs
128
+
129
+ ## Performance
130
+
131
+ ### MT-Bench
132
+
133
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/61b2bf4f5b1f7cad1799cfbb/QH00HVM3lg-5f17U_py4K.png" alt="mt_bench_plot" width="600"/>
134
+
135
+ | Model | Size | MT-Bench |
136
+ |-------------------------|------|----------|
137
+ | Mistral-7B-Instruct-v0.2| 7B | 7.61 |
138
+ | Llama2-Chat | 70B | 6.86 |
139
+ | stablelm-zephyr-3b | 3B | 6.64 |
140
+ | MPT-30B-Chat | 30B | 6.39 |
141
+ | **stablelm-2-zephyr-1.6b** | 1.6B | 5.42 |
142
+ | Falcon-40B-Instruct | 40B | 5.17 |
143
+ | Qwen-1.8B-Chat | 1.8B | 4.95 |
144
+ | dolphin-2.6-phi-2 | 2.7B | 4.93 |
145
+ | phi-2 | 2.7B | 4.29 |
146
+ | TinyLlama-1.1B-Chat-v1.0| 1.1B | 3.46 |
147
+
148
+ ### OpenLLM Leaderboard
149
+
150
+ | Model | Size | Average | ARC Challenge (acc_norm) | HellaSwag (acc_norm) | MMLU (acc_norm) | TruthfulQA (mc2) | Winogrande (acc) | Gsm8k (acc) |
151
+ |----------------------------------------|------|---------|-------------------------|----------------------|-----------------|------------------|------------------|-------------|
152
+ | microsoft/phi-2 | 2.7B | 61.32% | 61.09% | 75.11% | 58.11% | 44.47% | 74.35% | 54.81% |
153
+ | **stabilityai/stablelm-2-zephyr-1_6b** | 1.6B | 49.89% | 43.69% | 69.34% | 41.85% | 45.21% | 64.09% | 35.18% |
154
+ | microsoft/phi-1_5 | 1.3B | 47.69% | 52.90% | 63.79% | 43.89% | 40.89% | 72.22% | 12.43% |
155
+ | stabilityai/stablelm-2-1_6b | 1.6B | 45.54% | 43.43% | 70.49% | 38.93% | 36.65% | 65.90% | 17.82% |
156
+ | mosaicml/mpt-7b | 7B | 44.28% | 47.70% | 77.57% | 30.80% | 33.40% | 72.14% | 4.02% |
157
+ | KnutJaegersberg/Qwen-1_8B-Llamaified* | 1.8B | 44.75% | 37.71% | 58.87% | 46.37% | 39.41% | 61.72% | 24.41% |
158
+ | openlm-research/open_llama_3b_v2 | 3B | 40.28% | 40.27% | 71.60% | 27.12% | 34.78% | 67.01% | 0.91% |
159
+ | iiuae/falcon-rw-1b | 1B | 37.07% | 35.07% | 63.56% | 25.28% | 35.96% | 62.04% | 0.53% |
160
+ | TinyLlama/TinyLlama-1.1B-3T | 1.1B | 36.40% | 33.79% | 60.31% | 26.04% | 37.32% | 59.51% | 1.44% |
161
+
162
+
163
+
164
+ ### Training Infrastructure
165
+
166
+ * **Hardware**: `StableLM 2 Zephyr 1.6B` was trained on the Stability AI cluster across 8 nodes with 8 A100 80GBs GPUs for each nodes.
167
+ * **Code Base**: We use our internal script for SFT steps and used [HuggingFace Alignment Handbook script](https://github.com/huggingface/alignment-handbook) for DPO training.
168
+
169
+ ## Use and Limitations
170
+
171
+ ### Intended Use
172
+
173
+ The model is intended to be used in chat-like applications. Developers must evaluate the model for safety performance in their specific use case. Read more about [safety and limitations](#limitations-and-bias) below.
174
+
175
+ ### Limitations and Bias
176
+
177
+ This model is not trained against adversarial inputs. We strongly recommend pairing this model with an input and output classifier to prevent harmful responses.
178
+
179
+ Through our internal red teaming, we discovered that while the model will not output harmful information if not prompted to do so, it will hallucinate many facts. It is also willing to output potentially harmful outputs or misinformation when the user requests it.
180
+ Using this model will require guardrails around your inputs and outputs to ensure that any outputs returned are not misinformation or harmful.
181
+ Additionally, as each use case is unique, we recommend running your own suite of tests to ensure proper performance of this model.
182
+ Finally, do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others.
183
+
184
+
185
+ ## How to Cite
186
+
187
+ ```bibtex
188
+ @misc{StableLM-2-1.6B,
189
+ url={[https://huggingface.co/stabilityai/stablelm-2-1.6b](https://huggingface.co/stabilityai/stablelm-2-1.6b)},
190
+ title={Stable LM 2 1.6B},
191
+ author={Stability AI Language Team}
192
+ }
193
+ ```