Update pipeline.py
Browse files- pipeline.py +9 -7
pipeline.py
CHANGED
@@ -60,8 +60,9 @@ EXAMPLE_DOC_STRING = """
|
|
60 |
import torch
|
61 |
from diffusers import DiffusionPipeline, FluxTransformer2DModel
|
62 |
from transformers import T5EncoderModel
|
63 |
-
from diffusers.utils import load_image
|
64 |
from image_gen_aux import DepthPreprocessor # https://github.com/huggingface/image_gen_aux
|
|
|
65 |
import numpy as np
|
66 |
|
67 |
pipe = DiffusionPipeline.from_pretrained(
|
@@ -81,27 +82,28 @@ EXAMPLE_DOC_STRING = """
|
|
81 |
pipe.to("cuda")
|
82 |
|
83 |
prompt = "The head of a human in a robot body giving a heated speech"
|
84 |
-
|
85 |
|
86 |
-
head_mask = np.ones_like(
|
87 |
head_mask[65:380,300:642] = 0
|
88 |
mask_image = Image.fromarray(head_mask)
|
89 |
|
90 |
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
|
91 |
-
control_image = processor(
|
92 |
|
93 |
-
|
94 |
prompt=prompt,
|
|
|
95 |
control_image=control_image,
|
96 |
mask_image=mask_image,
|
97 |
-
strength=0.9,
|
98 |
height=1024,
|
99 |
width=1024,
|
100 |
num_inference_steps=30,
|
|
|
101 |
guidance_scale=10.0,
|
102 |
generator=torch.Generator().manual_seed(42),
|
103 |
).images[0]
|
104 |
-
image.save("output.png")
|
105 |
|
106 |
```
|
107 |
"""
|
|
|
60 |
import torch
|
61 |
from diffusers import DiffusionPipeline, FluxTransformer2DModel
|
62 |
from transformers import T5EncoderModel
|
63 |
+
from diffusers.utils import load_image, make_image_grid
|
64 |
from image_gen_aux import DepthPreprocessor # https://github.com/huggingface/image_gen_aux
|
65 |
+
from PIL import Image
|
66 |
import numpy as np
|
67 |
|
68 |
pipe = DiffusionPipeline.from_pretrained(
|
|
|
82 |
pipe.to("cuda")
|
83 |
|
84 |
prompt = "The head of a human in a robot body giving a heated speech"
|
85 |
+
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")
|
86 |
|
87 |
+
head_mask = np.ones_like(image)*255
|
88 |
head_mask[65:380,300:642] = 0
|
89 |
mask_image = Image.fromarray(head_mask)
|
90 |
|
91 |
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
|
92 |
+
control_image = processor(image)[0].convert("RGB")
|
93 |
|
94 |
+
output = pipe(
|
95 |
prompt=prompt,
|
96 |
+
image=image,
|
97 |
control_image=control_image,
|
98 |
mask_image=mask_image,
|
|
|
99 |
height=1024,
|
100 |
width=1024,
|
101 |
num_inference_steps=30,
|
102 |
+
strength=0.9,
|
103 |
guidance_scale=10.0,
|
104 |
generator=torch.Generator().manual_seed(42),
|
105 |
).images[0]
|
106 |
+
make_image_grid([image, control_image, mask_image, output], rows=1, cols=4).save("output.png")
|
107 |
|
108 |
```
|
109 |
"""
|