--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-Depth-dev/blob/main/LICENSE.md base_model: - black-forest-labs/FLUX.1-dev - black-forest-labs/FLUX.1-Depth-dev pipeline_tag: image-to-image --- # The Flux pipeline for image inpainting using Flux-dev-Depth/Canny ```py import torch from diffusers import DiffusionPipeline, FluxTransformer2DModel from transformers import T5EncoderModel from diffusers.utils import load_image, make_image_grid from image_gen_aux import DepthPreprocessor # https://github.com/huggingface/image_gen_aux from PIL import Image import numpy as np pipe = DiffusionPipeline.from_pretrained( "black-forest-labs/FLUX.1-Depth-dev", torch_dtype=torch.bfloat16, custom_pipeline="afromero/pipeline_flux_control_inpaint", ) transformer = FluxTransformer2DModel.from_pretrained( "sayakpaul/FLUX.1-Depth-dev-nf4", subfolder="transformer", torch_dtype=torch.bfloat16 ) text_encoder_2 = T5EncoderModel.from_pretrained( "sayakpaul/FLUX.1-Depth-dev-nf4", subfolder="text_encoder_2", torch_dtype=torch.bfloat16 ) pipe.transformer = transformer pipe.text_encoder_2 = text_encoder_2 pipe.to("cuda") prompt = "The head of a human in a robot body giving a heated speech" image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png") head_mask = np.ones_like(image)*255 head_mask[65:380,300:642] = 0 mask_image = Image.fromarray(head_mask) processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf") control_image = processor(image)[0].convert("RGB") output = pipe( prompt=prompt, image=image, control_image=control_image, mask_image=mask_image, height=1024, width=1024, num_inference_steps=30, strength=0.9, guidance_scale=10.0, generator=torch.Generator().manual_seed(42), ).images[0] make_image_grid([image, control_image, mask_image, output], rows=1, cols=4).save("output.png") ```