h2ovl-mississippi-800m / configuration_h2ovl_chat.py
agh123's picture
change model type to internvl so it is compatible with vllm etc
c913533
import copy
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from transformers import AutoConfig
from transformers.models.auto import CONFIG_MAPPING
logger = logging.get_logger(__name__)
class H2OVLChatConfig(PretrainedConfig):
model_type = 'internvl_chat'
is_composition = True
def __init__(
self,
vision_config=None,
llm_config=None,
use_backbone_lora=0,
use_llm_lora=0,
pad2square=False,
select_layer=-4,
force_image_size=None,
downsample_ratio=0.5,
template=None,
dynamic_image_size=False,
use_thumbnail=False,
ps_version='v1',
min_dynamic_patch=1,
max_dynamic_patch=6,
use_msac=False,
**kwargs):
super().__init__(**kwargs)
if vision_config["model_type"] in CONFIG_MAPPING:
self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
else:
self.vision_config = AutoConfig.from_pretrained(vision_config["_name_or_path"], trust_remote_code=True)
self.vision_config.update(vision_config)
if llm_config["model_type"] in CONFIG_MAPPING:
self.llm_config = CONFIG_MAPPING[llm_config["model_type"]](**llm_config)
else:
self.llm_config = AutoConfig.from_pretrained(llm_config["_name_or_path"], trust_remote_code=True)
self.llm_config.update(llm_config)
self.use_backbone_lora = use_backbone_lora
self.use_llm_lora = use_llm_lora
self.pad2square = pad2square
self.select_layer = select_layer
self.force_image_size = force_image_size
self.downsample_ratio = downsample_ratio
self.template = template
self.dynamic_image_size = dynamic_image_size
self.use_thumbnail = use_thumbnail
self.ps_version = ps_version # pixel shuffle version
self.min_dynamic_patch = min_dynamic_patch
self.max_dynamic_patch = max_dynamic_patch
self.use_msac = use_msac
logger.info(f'vision_select_layer: {self.select_layer}')
logger.info(f'ps_version: {self.ps_version}')
logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output['vision_config'] = self.vision_config.to_dict()
output['llm_config'] = self.llm_config.to_dict()
output['model_type'] = self.__class__.model_type
output['use_backbone_lora'] = self.use_backbone_lora
output['use_llm_lora'] = self.use_llm_lora
output['pad2square'] = self.pad2square
output['select_layer'] = self.select_layer
output['force_image_size'] = self.force_image_size
output['downsample_ratio'] = self.downsample_ratio
output['template'] = self.template
output['dynamic_image_size'] = self.dynamic_image_size
output['use_thumbnail'] = self.use_thumbnail
output['ps_version'] = self.ps_version
output['min_dynamic_patch'] = self.min_dynamic_patch
output['max_dynamic_patch'] = self.max_dynamic_patch
output['use_msac'] = self.use_msac
return output