import copy from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging from transformers import AutoConfig from transformers.models.auto import CONFIG_MAPPING logger = logging.get_logger(__name__) class H2OVLChatConfig(PretrainedConfig): model_type = 'internvl_chat' is_composition = True def __init__( self, vision_config=None, llm_config=None, use_backbone_lora=0, use_llm_lora=0, pad2square=False, select_layer=-4, force_image_size=None, downsample_ratio=0.5, template=None, dynamic_image_size=False, use_thumbnail=False, ps_version='v1', min_dynamic_patch=1, max_dynamic_patch=6, use_msac=False, **kwargs): super().__init__(**kwargs) if vision_config["model_type"] in CONFIG_MAPPING: self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config) else: self.vision_config = AutoConfig.from_pretrained(vision_config["_name_or_path"], trust_remote_code=True) self.vision_config.update(vision_config) if llm_config["model_type"] in CONFIG_MAPPING: self.llm_config = CONFIG_MAPPING[llm_config["model_type"]](**llm_config) else: self.llm_config = AutoConfig.from_pretrained(llm_config["_name_or_path"], trust_remote_code=True) self.llm_config.update(llm_config) self.use_backbone_lora = use_backbone_lora self.use_llm_lora = use_llm_lora self.pad2square = pad2square self.select_layer = select_layer self.force_image_size = force_image_size self.downsample_ratio = downsample_ratio self.template = template self.dynamic_image_size = dynamic_image_size self.use_thumbnail = use_thumbnail self.ps_version = ps_version # pixel shuffle version self.min_dynamic_patch = min_dynamic_patch self.max_dynamic_patch = max_dynamic_patch self.use_msac = use_msac logger.info(f'vision_select_layer: {self.select_layer}') logger.info(f'ps_version: {self.ps_version}') logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}') logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}') def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output['vision_config'] = self.vision_config.to_dict() output['llm_config'] = self.llm_config.to_dict() output['model_type'] = self.__class__.model_type output['use_backbone_lora'] = self.use_backbone_lora output['use_llm_lora'] = self.use_llm_lora output['pad2square'] = self.pad2square output['select_layer'] = self.select_layer output['force_image_size'] = self.force_image_size output['downsample_ratio'] = self.downsample_ratio output['template'] = self.template output['dynamic_image_size'] = self.dynamic_image_size output['use_thumbnail'] = self.use_thumbnail output['ps_version'] = self.ps_version output['min_dynamic_patch'] = self.min_dynamic_patch output['max_dynamic_patch'] = self.max_dynamic_patch output['use_msac'] = self.use_msac return output