agoor97 commited on
Commit
d1d6a63
·
verified ·
1 Parent(s): b1032a0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -17
README.md CHANGED
@@ -3,36 +3,80 @@ license: apache-2.0
3
  base_model: distilbert-base-uncased
4
  tags:
5
  - generated_from_trainer
 
 
6
  metrics:
7
  - accuracy
8
  - f1
 
 
 
 
 
 
 
9
  model-index:
10
- - name: distilbert-base-uncased-finetuned-depi2-emotion-2
11
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
  should probably proofread and complete it, then remove this comment. -->
16
 
17
- # distilbert-base-uncased-finetuned-depi2-emotion-2
18
 
19
- This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
20
  It achieves the following results on the evaluation set:
21
- - Loss: 0.1739
22
- - Accuracy: 0.9315
23
- - F1: 0.9318
24
 
25
  ## Model description
26
 
27
- More information needed
 
28
 
29
  ## Intended uses & limitations
30
 
31
- More information needed
 
 
 
 
 
 
 
32
 
33
  ## Training and evaluation data
 
34
 
35
- More information needed
 
 
 
 
 
 
36
 
37
  ## Training procedure
38
 
@@ -45,19 +89,27 @@ The following hyperparameters were used during training:
45
  - seed: 42
46
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
  - lr_scheduler_type: linear
48
- - num_epochs: 2
49
 
50
  ### Training results
51
 
52
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
53
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
54
- | 0.6293 | 1.0 | 500 | 0.2308 | 0.919 | 0.9199 |
55
- | 0.1746 | 2.0 | 1000 | 0.1739 | 0.9315 | 0.9318 |
 
 
 
 
 
 
 
 
56
 
57
 
58
  ### Framework versions
59
 
60
- - Transformers 4.44.0
61
- - Pytorch 2.4.0+cu121
62
- - Datasets 2.21.0
63
- - Tokenizers 0.19.1
 
3
  base_model: distilbert-base-uncased
4
  tags:
5
  - generated_from_trainer
6
+ datasets:
7
+ - emotion
8
  metrics:
9
  - accuracy
10
  - f1
11
+ widget:
12
+ - text: on a boat trip to denmark
13
+ example_title: Example 1
14
+ - text: i was feeling listless from the need of new things something different
15
+ example_title: Example 2
16
+ - text: i know im feeling agitated as it is from a side effect of the too high dose
17
+ example_title: Example 3
18
  model-index:
19
+ - name: distilbert-base-uncased-finetuned-emotions-dataset
20
+ results:
21
+ - task:
22
+ name: Text Classification
23
+ type: text-classification
24
+ dataset:
25
+ name: emotion
26
+ type: emotion
27
+ config: split
28
+ split: validation
29
+ args: split
30
+ metrics:
31
+ - name: Accuracy
32
+ type: accuracy
33
+ value: 0.9395
34
+ - name: F1
35
+ type: f1
36
+ value: 0.9396359245863207
37
+ pipeline_tag: text-classification
38
+ language:
39
+ - en
40
+ library_name: transformers
41
  ---
42
 
43
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
44
  should probably proofread and complete it, then remove this comment. -->
45
 
46
+ # distilbert-base-uncased-finetuned-emotions-dataset
47
 
48
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
49
  It achieves the following results on the evaluation set:
50
+ - Loss: 0.2428
51
+ - Accuracy: 0.9395
52
+ - F1: 0.9396
53
 
54
  ## Model description
55
 
56
+ The model has been trained to classify text inputs into distinct emotional categories based on the fine-tuned understanding of the emotions dataset.
57
+ The fine-tuned model has demonstrated high accuracy and F1 scores on the evaluation set.
58
 
59
  ## Intended uses & limitations
60
 
61
+ #### Intended Uses
62
+ - Sentiment analysis
63
+ - Emotional classification in text
64
+ - Emotion-based recommendation systems
65
+
66
+ #### Limitations
67
+ - May show biases based on the training dataset
68
+ - Optimized for emotional classification and may not cover nuanced emotional subtleties
69
 
70
  ## Training and evaluation data
71
+ Emotions dataset with labeled emotional categories [here](https://huggingface.co/datasets/dair-ai/emotion).
72
 
73
+ #### The emotional categories are as follows:
74
+ - LABEL_0: sadness
75
+ - LABEL_1: joy
76
+ - LABEL_2: love
77
+ - LABEL_3: anger
78
+ - LABEL_4: fear
79
+ - LABEL_5: surprise
80
 
81
  ## Training procedure
82
 
 
89
  - seed: 42
90
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
91
  - lr_scheduler_type: linear
92
+ - num_epochs: 10
93
 
94
  ### Training results
95
 
96
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
97
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
98
+ | 0.5929 | 1.0 | 500 | 0.2345 | 0.9185 | 0.9180 |
99
+ | 0.1642 | 2.0 | 1000 | 0.1716 | 0.9335 | 0.9342 |
100
+ | 0.1163 | 3.0 | 1500 | 0.1501 | 0.9405 | 0.9407 |
101
+ | 0.0911 | 4.0 | 2000 | 0.1698 | 0.933 | 0.9331 |
102
+ | 0.0741 | 5.0 | 2500 | 0.1926 | 0.932 | 0.9323 |
103
+ | 0.0559 | 6.0 | 3000 | 0.2033 | 0.935 | 0.9353 |
104
+ | 0.0464 | 7.0 | 3500 | 0.2156 | 0.935 | 0.9353 |
105
+ | 0.0335 | 8.0 | 4000 | 0.2354 | 0.9405 | 0.9408 |
106
+ | 0.0257 | 9.0 | 4500 | 0.2410 | 0.9395 | 0.9396 |
107
+ | 0.0214 | 10.0 | 5000 | 0.2428 | 0.9395 | 0.9396 |
108
 
109
 
110
  ### Framework versions
111
 
112
+ - Transformers 4.35.2
113
+ - Pytorch 2.1.0+cu118
114
+ - Datasets 2.15.0
115
+ - Tokenizers 0.15.0