{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7dbba8fc9480>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dbba8fc9510>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dbba8fc95a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dbba8fc9630>", "_build": "<function ActorCriticPolicy._build at 0x7dbba8fc96c0>", "forward": "<function ActorCriticPolicy.forward at 0x7dbba8fc9750>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7dbba8fc97e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dbba8fc9870>", "_predict": "<function ActorCriticPolicy._predict at 0x7dbba8fc9900>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dbba8fc9990>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dbba8fc9a20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7dbba8fc9ab0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dbba8f65240>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716754504554151437, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMByq71Ib426mlM2uwcdx7aC/a06FXtROgAAAAAAAIA/ALOEPcPHQj0eO309t3Qcvv6yDT0lIZG9AAAAAAAAAABmd6U89vR6ulrX7TreFyU1lJpquq3vB7oAAIA/AACAPzNgAD32eFG6ig7htiI8na/OV3i7Wz4DNgAAgD8AAIA/TZSLPfaIfbr7V4U5dc7GNYSmIDv+j7g0AACAPwAAgD9mBg27j055ui7emTmg0vg06iM9Oza/sbgAAIA/AACAP83n5z0ptWU+XsI1PQHZEL6EhiM90PTpPQAAAAAAAAAAmkFRPPY4c7oL8ZG7RwvsuMyrF7vWSVg4AACAPwAAgD8mA7094fqVuqhAyjoAv681VVcIu+3E6bkAAIA/AACAPwBgt7tIH4a6zjoauHy2ILPYsaa6qzczNwAAgD8AAIA/JhUWPily/z5TTNa7sEQovmsN1z3le9E9AAAAAAAAAADT1zs+vZ8wPGrOFLzBnyi6VgzBPVUcILsAAIA/AACAP8ATBD4K7Ce79vowufajJDb9Fim8st5QOAAAgD8AAIA/pqrgPbjGwbktGVS4/jeIsyklBjywCn83AACAPwAAgD8GOa6+ehRtP7W/2r2rv2u+8mKQvnvftD0AAAAAAAAAAPPLij2ugYm6KeQrug4jgbVTjra6TshGOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF5gCLuQZGeMAWyUTegDjAF0lEdAjT8AEU0vXnV9lChoBkdAWNvHNorWiGgHTegDaAhHQI1IuwFC9h91fZQoaAZHQGCp6w+t8u1oB03oA2gIR0CNVFvMKTjedX2UKGgGR0BkBz28IzFdaAdN6ANoCEdAjVvPJiiItXV9lChoBkdAXDYSZjQRgGgHTegDaAhHQI1cTzK9wm51fZQoaAZHQF7gQHAymANoB03oA2gIR0CNm+IZ62ORdX2UKGgGR0BvEuL5ylvZaAdNtQFoCEdAjZ2SH/Lkj3V9lChoBkdAYcsEW69TP2gHTegDaAhHQI2eYtWdVed1fZQoaAZHQGJzbj1f3N9oB03oA2gIR0CNobohY/3WdX2UKGgGR0Bh/MlC1JDmaAdN6ANoCEdAjaWB8pkPMHV9lChoBkdATfXqeK8+R2gHTegDaAhHQI2nICKaXrt1fZQoaAZHQDUYr4Fiay9oB00ZAWgIR0CNysneBQN1dX2UKGgGR0Bft8R+SbH7aAdN6ANoCEdAjc4qUNayKXV9lChoBkdAYlWSr5qM32gHTegDaAhHQI3VjMqz7dl1fZQoaAZHQGA6YB/7SApoB03oA2gIR0CN2XQ/oq0/dX2UKGgGR0BcXN1EE1VHaAdN6ANoCEdAjdzHXumaY3V9lChoBkdAYasU/OdGzGgHTegDaAhHQI3rWgYgq3F1fZQoaAZHQF0uZYgaFVVoB03oA2gIR0CN7Gois4kvdX2UKGgGR0Bk1zPGACnxaAdN6ANoCEdAjfqsaCL/CXV9lChoBkdAYCZp1RtP6GgHTegDaAhHQI4J87Qswtd1fZQoaAZHQGD1TdcjZ+RoB03oA2gIR0COEip71Iy1dX2UKGgGR0BfTQM6RyOraAdN6ANoCEdAjhKzCtRvWHV9lChoBkdAM5/hddE9dWgHTRwBaAhHQI4jNCHARCh1fZQoaAZHQGBchnSOR1ZoB03oA2gIR0COS0fOlfqpdX2UKGgGR0BlwC+N96ToaAdN6ANoCEdAjkxoouwos3V9lChoBkdAYSSCEHt4RmgHTegDaAhHQI5NGnwXqJN1fZQoaAZHQGOstlyzXz1oB03oA2gIR0COUDx0dRzjdX2UKGgGR0BhcR0fYBeYaAdN6ANoCEdAjlYSgXdj5XV9lChoBkdAYtbWLgn+h2gHTegDaAhHQI5+/eP7vXt1fZQoaAZHQF/7kD6nBLxoB03oA2gIR0COgkZfD1oQdX2UKGgGR0Bf/8Co0hvBaAdN6ANoCEdAjonPYvnKXHV9lChoBkdAXeddu5z5oGgHTegDaAhHQI6N4fGMn7Z1fZQoaAZHQFNXkJKJ2uBoB03oA2gIR0COkTsO5J9RdX2UKGgGR0Bk9iGcnVoYaAdNjQNoCEdAjpPiZOSGJ3V9lChoBkdAYsPjkuHvdGgHTegDaAhHQI6gOLDQ7cR1fZQoaAZHQCTIiml67d1oB00nAWgIR0COpkEJ0GNadX2UKGgGR0BgUO4XoC+2aAdN6ANoCEdAjrYZdGAkLXV9lChoBkdAXKSdK/VRUGgHTegDaAhHQI69mARTS9d1fZQoaAZHQF/UZYPoV21oB03oA2gIR0COvlXUYsNEdX2UKGgGR0BuFoCr92ovaAdNdQNoCEdAjsXNMGorF3V9lChoBkdAW2oVHnU2DWgHTegDaAhHQI7Sat/4Irx1fZQoaAZHQGwXpKaoddVoB03uAWgIR0CO1nI91U2ldX2UKGgGR0BgiCAUcn3MaAdN6ANoCEdAjtg3Jo0yg3V9lChoBkdAX2EPlMh5gWgHTegDaAhHQI78QXVLBbh1fZQoaAZHQGExJV81Gb1oB03oA2gIR0CO/wCSzPa+dX2UKGgGR0BRp7yc0+C9aAdNGQFoCEdAjwCa4Ds+mnV9lChoBkdAZeJY6GQCCGgHTegDaAhHQI8DU2BJ7LN1fZQoaAZHQHBmrtzCDVZoB02bAWgIR0CPE91uBMBZdX2UKGgGR0BssBSUC7sfaAdNuAJoCEdAjxmMERrad3V9lChoBkdAYQdJ9RaX8mgHTegDaAhHQI8jSp71Iy11fZQoaAZHQFpMvStvGZNoB03oA2gIR0CPKvZvDP4VdX2UKGgGR0Bkn4kgOjIraAdN6ANoCEdAjy9I1+AmRnV9lChoBkdAV5Zv1lGwzWgHTegDaAhHQI8zAarFOwh1fZQoaAZHQGHZOdXko4NoB03oA2gIR0CPSuXdj5KwdX2UKGgGR0A4WtfXwsoVaAdNDAFoCEdAj1Sf0Eovz3V9lChoBkdAZFTQN0/4ZmgHTegDaAhHQI9jVPtUn5V1fZQoaAZHQGN92r4nF5xoB03oA2gIR0CPaQ05U96kdX2UKGgGR0BiWZkRSP2gaAdN6ANoCEdAj3K/FJg9eXV9lChoBkdAVSVfAsTWXmgHTegDaAhHQI92WPmxMWZ1fZQoaAZHQGQjO58Sf19oB03oA2gIR0CPeCAT7EYPdX2UKGgGR0BkwCYiPhhqaAdN6ANoCEdAj3i/KISDiHV9lChoBkdAZz962OQyRGgHTegDaAhHQI+kGkFfReF1fZQoaAZHQGScEIPbwjNoB03oA2gIR0CPplDjR2KVdX2UKGgGR0Bhy+16Vt4zaAdN6ANoCEdAj6klxOtW/HV9lChoBkdARC5ZpztCzGgHTQABaAhHQI+pztsvZh91fZQoaAZHQHF6eTq0MPVoB02DAWgIR0CPqwFpPAO8dX2UKGgGR0BhyUkfLcKxaAdN6ANoCEdAj7bekYXO4XV9lChoBkfAAqYTCcf/3mgHTRUBaAhHQI+7odwNsnB1fZQoaAZHQFtnXdTHbRFoB03oA2gIR0CPu9wUg0TDdX2UKGgGR0BgfcKRdQfqaAdN6ANoCEdAj8S3F98Z1nV9lChoBkdAKwjB2wFC9mgHTSQBaAhHQI/FBRAKOT91fZQoaAZHQGB052ZAprloB03oA2gIR0CPyjWilBQfdX2UKGgGR0Bj15RbbDdhaAdN6ANoCEdAj8/UsnRb8nV9lChoBkdAXyTe0ojOcGgHTegDaAhHQI/kSbSZ0CB1fZQoaAZHQE2/AoG6f8NoB005AWgIR0CP6UnLJSzgdX2UKGgGR0BwwlIRRMviaAdNugNoCEdAj/5h9srNGHV9lChoBkdAb5AzBRAKOWgHTVcDaAhHQI//7tTkyUN1fZQoaAZHQGcuM3hn8KpoB02MAmgIR0CQBB5MDfWMdX2UKGgGR0BiKLVx0dR0aAdN6ANoCEdAkAk1V94NZ3V9lChoBkdAYqBP/JeVs2gHTegDaAhHQJALwIRh+fB1fZQoaAZHQGIVg7gbZOBoB03oA2gIR0CQDZg2ZRbbdX2UKGgGR0Bl82Il+mWMaAdN6ANoCEdAkCBYbn5i3HV9lChoBkdAWv2Ae7tiQWgHTegDaAhHQJAiV/jKgZl1fZQoaAZHQGF8X4sVclhoB03oA2gIR0CQIy6K+BYndX2UKGgGR0BkPAOhCdBjaAdN6ANoCEdAkC1qRQrMDHV9lChoBkdAXxiYiPhhpmgHTegDaAhHQJAtipEQXhx1fZQoaAZHQGRtruYx+KFoB03oA2gIR0CQNBXMhX8wdX2UKGgGR0AeNTwUg0TDaAdNRAFoCEdAkDRcmnfl63V9lChoBkdAJ73QMQVbimgHTTgBaAhHQJA3proGIKt1fZQoaAZHQGISX6qKgqVoB03oA2gIR0CQOBGxlg+hdX2UKGgGR0BxoMVIqbz9aAdNXgJoCEdAkDljtb9qDnV9lChoBkdAXu83l0YCQ2gHTegDaAhHQJA7ueK8+Rp1fZQoaAZHQHGODuKGcnVoB03lAWgIR0CQPnMibDuSdX2UKGgGR0BvUKuwHJLeaAdNzAJoCEdAkEL29lEqlXV9lChoBkdAYs+yHEdeY2gHTegDaAhHQJBEyamXPZ91fZQoaAZHQF0JnGbTc7BoB03oA2gIR0CQRvSSNfgKdX2UKGgGR0BwCZlnRLK3aAdNqANoCEdAkEy4KIBRynV9lChoBkdAcVOci4axYGgHTYADaAhHQJBR3BpHqeN1fZQoaAZHQHDr1nmJWNpoB01SAmgIR0CQU5+JgsshdX2UKGgGR0Bh2KfapPykaAdN6ANoCEdAkFuLSmZVn3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 156, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |