--- language: - ar license: apache-2.0 base_model: openai/whisper-large-v3 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - ahishamm/QURANICWhisperDataset metrics: - wer model-index: - name: QURANIC Whisper Large V3 - full results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: QURANICWhisperDataset type: ahishamm/QURANICWhisperDataset args: 'config: ar, split: train' metrics: - name: Wer type: wer value: 121.00549461448435 --- # QURANIC Whisper Large V3 - full This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the QURANICWhisperDataset dataset. It achieves the following results on the evaluation set: - Loss: 0.0375 - Wer: 121.0055 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1349 | 0.2 | 1000 | 0.1227 | 256.8256 | | 0.1098 | 0.4 | 2000 | 0.0918 | 438.2193 | | 0.1071 | 0.6 | 3000 | 0.0839 | 286.1663 | | 0.0837 | 0.8 | 4000 | 0.0737 | 295.5091 | | 0.0672 | 1.0 | 5000 | 0.0611 | 293.6147 | | 0.03 | 1.2 | 6000 | 0.0559 | 204.9680 | | 0.0104 | 1.4 | 7000 | 0.0485 | 189.5761 | | 0.0245 | 1.6 | 8000 | 0.0456 | 141.0698 | | 0.0446 | 1.8 | 9000 | 0.0398 | 134.5774 | | 0.0231 | 2.0 | 10000 | 0.0375 | 121.0055 | ### Framework versions - Transformers 4.39.2 - Pytorch 2.2.0 - Datasets 2.18.0 - Tokenizers 0.15.1