ahmed-masry
commited on
Upload LlavaT5ForConditionalGeneration
Browse files- chartinstruct_flant5_modeling.py +863 -0
- config.json +77 -0
- generation_config.json +7 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +567 -0
chartinstruct_flant5_modeling.py
ADDED
@@ -0,0 +1,863 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple, Union
|
2 |
+
from dataclasses import dataclass
|
3 |
+
import copy, os
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from torch.nn import CrossEntropyLoss
|
7 |
+
from transformers import AutoConfig, AutoModelForSeq2SeqLM, \
|
8 |
+
T5Config, T5Model, T5ForConditionalGeneration
|
9 |
+
|
10 |
+
from transformers.models.t5.modeling_t5 import T5Stack
|
11 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast, Seq2SeqLMOutput, BaseModelOutput
|
12 |
+
from transformers.utils import ModelOutput
|
13 |
+
from transformers import DonutSwinModel, DonutImageProcessor, DonutSwinConfig
|
14 |
+
|
15 |
+
from abc import ABC, abstractmethod
|
16 |
+
import re
|
17 |
+
|
18 |
+
# Model Constants
|
19 |
+
IGNORE_INDEX = -100
|
20 |
+
IMAGE_TOKEN_INDEX = -200
|
21 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
22 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
23 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
24 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
25 |
+
|
26 |
+
class UniChartVisionTower(nn.Module):
|
27 |
+
def __init__(self, vision_tower, args, delay_load=False):
|
28 |
+
super().__init__()
|
29 |
+
|
30 |
+
self.is_loaded = False
|
31 |
+
|
32 |
+
self.vision_tower_name = vision_tower
|
33 |
+
self.select_layer = args.mm_vision_select_layer
|
34 |
+
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')
|
35 |
+
|
36 |
+
if not delay_load:
|
37 |
+
self.load_model()
|
38 |
+
else:
|
39 |
+
self.cfg_only = DonutSwinConfig.from_pretrained(self.vision_tower_name)
|
40 |
+
|
41 |
+
def load_model(self):
|
42 |
+
self.image_processor = DonutImageProcessor.from_pretrained(self.vision_tower_name)
|
43 |
+
self.vision_tower = DonutSwinModel.from_pretrained(self.vision_tower_name)
|
44 |
+
|
45 |
+
# Changed. Check for this variable. It's false by default.
|
46 |
+
if not self.tune_vision_encoder:
|
47 |
+
self.vision_tower.requires_grad_(False)
|
48 |
+
|
49 |
+
self.is_loaded = True
|
50 |
+
|
51 |
+
def feature_select(self, image_forward_outs):
|
52 |
+
image_features = image_forward_outs.hidden_states[self.select_layer]
|
53 |
+
if self.select_feature == 'patch':
|
54 |
+
image_features = image_features[:, 1:]
|
55 |
+
elif self.select_feature == 'cls_patch':
|
56 |
+
image_features = image_features
|
57 |
+
else:
|
58 |
+
raise ValueError(f'Unexpected select feature: {self.select_feature}')
|
59 |
+
return image_features
|
60 |
+
|
61 |
+
@torch.no_grad()
|
62 |
+
def forward(self, images):
|
63 |
+
if type(images) is list:
|
64 |
+
image_features = []
|
65 |
+
for image in images:
|
66 |
+
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
|
67 |
+
image_feature = self.feature_select(image_forward_out).to(image.dtype)
|
68 |
+
image_features.append(image_feature)
|
69 |
+
else:
|
70 |
+
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
|
71 |
+
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
72 |
+
|
73 |
+
return image_features
|
74 |
+
|
75 |
+
@property
|
76 |
+
def dummy_feature(self):
|
77 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
78 |
+
|
79 |
+
@property
|
80 |
+
def dtype(self):
|
81 |
+
return self.vision_tower.dtype
|
82 |
+
|
83 |
+
@property
|
84 |
+
def device(self):
|
85 |
+
return self.vision_tower.device
|
86 |
+
|
87 |
+
@property
|
88 |
+
def config(self):
|
89 |
+
if self.is_loaded:
|
90 |
+
return self.vision_tower.config
|
91 |
+
else:
|
92 |
+
return self.cfg_only
|
93 |
+
|
94 |
+
@property
|
95 |
+
def hidden_size(self):
|
96 |
+
return self.config.hidden_size
|
97 |
+
|
98 |
+
@property
|
99 |
+
def num_patches(self):
|
100 |
+
return (self.config.image_size // self.config.patch_size) ** 2
|
101 |
+
|
102 |
+
def build_vision_tower(vision_tower_cfg, **kwargs):
|
103 |
+
vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None))
|
104 |
+
is_absolute_path_exists = os.path.exists(vision_tower)
|
105 |
+
if is_absolute_path_exists:
|
106 |
+
if 'unichart' in vision_tower:
|
107 |
+
return UniChartVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
|
108 |
+
|
109 |
+
raise ValueError(f'Unknown vision tower: {vision_tower}')
|
110 |
+
|
111 |
+
def build_vision_projector(config, delay_load=False, **kwargs):
|
112 |
+
projector_type = getattr(config, 'mm_projector_type', 'mlp3x_gelu')
|
113 |
+
|
114 |
+
if projector_type == 'linear':
|
115 |
+
return nn.Linear(config.mm_hidden_size, config.hidden_size)
|
116 |
+
|
117 |
+
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
|
118 |
+
if mlp_gelu_match:
|
119 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
120 |
+
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
|
121 |
+
for _ in range(1, mlp_depth):
|
122 |
+
modules.append(nn.GELU())
|
123 |
+
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
124 |
+
return nn.Sequential(*modules)
|
125 |
+
|
126 |
+
raise ValueError(f'Unknown projector type: {projector_type}')
|
127 |
+
|
128 |
+
# Copyright 2023 Haotian Liu
|
129 |
+
#
|
130 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
131 |
+
# you may not use this file except in compliance with the License.
|
132 |
+
# You may obtain a copy of the License at
|
133 |
+
#
|
134 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
135 |
+
#
|
136 |
+
# Unless required by applicable law or agreed to in writing, software
|
137 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
138 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
139 |
+
# See the License for the specific language governing permissions and
|
140 |
+
# limitations under the License.
|
141 |
+
|
142 |
+
|
143 |
+
class LlavaMetaModel:
|
144 |
+
|
145 |
+
def __init__(self, config): #, embed_tokens):
|
146 |
+
super(LlavaMetaModel, self).__init__(config) #, embed_tokens)
|
147 |
+
if hasattr(config, "mm_vision_tower"):
|
148 |
+
self.vision_tower = build_vision_tower(config, delay_load=True)
|
149 |
+
self.mm_projector = build_vision_projector(self.config) #nn.Linear(config.mm_hidden_size, config.hidden_size)
|
150 |
+
|
151 |
+
def get_vision_tower(self):
|
152 |
+
vision_tower = getattr(self, 'vision_tower', None)
|
153 |
+
if type(vision_tower) is list:
|
154 |
+
vision_tower = vision_tower[0]
|
155 |
+
return vision_tower
|
156 |
+
|
157 |
+
def initialize_vision_modules(self, model_args, fsdp=None):
|
158 |
+
vision_tower = model_args.vision_tower
|
159 |
+
mm_vision_select_layer = model_args.mm_vision_select_layer
|
160 |
+
mm_vision_select_feature = model_args.mm_vision_select_feature
|
161 |
+
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
|
162 |
+
|
163 |
+
self.config.mm_vision_tower = vision_tower
|
164 |
+
|
165 |
+
vision_tower = build_vision_tower(model_args)
|
166 |
+
|
167 |
+
if fsdp is not None and len(fsdp) > 0:
|
168 |
+
self.vision_tower = [vision_tower]
|
169 |
+
else:
|
170 |
+
self.vision_tower = vision_tower
|
171 |
+
|
172 |
+
self.config.use_mm_proj = True
|
173 |
+
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
|
174 |
+
self.config.mm_hidden_size = vision_tower.hidden_size
|
175 |
+
self.config.mm_vision_select_layer = mm_vision_select_layer
|
176 |
+
self.config.mm_vision_select_feature = mm_vision_select_feature
|
177 |
+
|
178 |
+
if not hasattr(self, 'mm_projector'):
|
179 |
+
self.mm_projector = build_vision_projector(self.config) #nn.Linear(self.config.mm_hidden_size, self.config.hidden_size)
|
180 |
+
|
181 |
+
if pretrain_mm_mlp_adapter is not None:
|
182 |
+
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
|
183 |
+
def get_w(weights, keyword):
|
184 |
+
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
|
185 |
+
|
186 |
+
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
|
187 |
+
|
188 |
+
|
189 |
+
class LlavaMetaForCausalLM(ABC):
|
190 |
+
|
191 |
+
@abstractmethod
|
192 |
+
def get_model(self):
|
193 |
+
pass
|
194 |
+
|
195 |
+
def get_vision_tower(self):
|
196 |
+
return self.get_model().get_vision_tower()
|
197 |
+
|
198 |
+
def encode_images(self, images):
|
199 |
+
image_features = self.get_model().get_vision_tower()(images)
|
200 |
+
image_features = self.get_model().mm_projector(image_features)
|
201 |
+
return image_features
|
202 |
+
|
203 |
+
def prepare_inputs_labels_for_multimodal(
|
204 |
+
self, input_ids, attention_mask, past_key_values, labels, images
|
205 |
+
):
|
206 |
+
vision_tower = self.get_vision_tower()
|
207 |
+
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
208 |
+
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
|
209 |
+
attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device)
|
210 |
+
return input_ids, attention_mask, past_key_values, None, labels
|
211 |
+
|
212 |
+
if type(images) is list or images.ndim == 5:
|
213 |
+
concat_images = torch.cat([image for image in images], dim=0)
|
214 |
+
image_features = self.encode_images(concat_images)
|
215 |
+
split_sizes = [image.shape[0] for image in images]
|
216 |
+
image_features = torch.split(image_features, split_sizes, dim=0)
|
217 |
+
image_features = [x.flatten(0, 1) for x in image_features]
|
218 |
+
else:
|
219 |
+
image_features = self.encode_images(images)
|
220 |
+
|
221 |
+
new_input_embeds = []
|
222 |
+
new_labels = [] if labels is not None else None
|
223 |
+
cur_image_idx = 0
|
224 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
225 |
+
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:
|
226 |
+
# multimodal LLM, but the current sample is not multimodal
|
227 |
+
cur_input_embeds = self.get_model().embed_tokens(cur_input_ids)
|
228 |
+
cur_input_embeds = cur_input_embeds + (0. * self.get_model().mm_projector(vision_tower.dummy_feature)).sum()
|
229 |
+
new_input_embeds.append(cur_input_embeds)
|
230 |
+
if labels is not None:
|
231 |
+
new_labels.append(labels[batch_idx])
|
232 |
+
cur_image_idx += 1
|
233 |
+
continue
|
234 |
+
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
|
235 |
+
cur_new_input_embeds = []
|
236 |
+
if labels is not None:
|
237 |
+
cur_labels = labels[batch_idx]
|
238 |
+
cur_new_labels = []
|
239 |
+
assert cur_labels.shape == cur_input_ids.shape
|
240 |
+
while image_token_indices.numel() > 0:
|
241 |
+
cur_image_features = image_features[cur_image_idx]
|
242 |
+
image_token_start = image_token_indices[0]
|
243 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
|
244 |
+
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start-1]).detach())
|
245 |
+
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start-1:image_token_start]))
|
246 |
+
cur_new_input_embeds.append(cur_image_features)
|
247 |
+
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start+1:image_token_start+2]))
|
248 |
+
if labels is not None:
|
249 |
+
cur_new_labels.append(cur_labels[:image_token_start])
|
250 |
+
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
|
251 |
+
cur_new_labels.append(cur_labels[image_token_start:image_token_start+1])
|
252 |
+
cur_labels = cur_labels[image_token_start+2:]
|
253 |
+
else:
|
254 |
+
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start]))
|
255 |
+
cur_new_input_embeds.append(cur_image_features)
|
256 |
+
if labels is not None:
|
257 |
+
cur_new_labels.append(cur_labels[:image_token_start])
|
258 |
+
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
|
259 |
+
cur_labels = cur_labels[image_token_start+1:]
|
260 |
+
cur_image_idx += 1
|
261 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
|
262 |
+
cur_input_ids = cur_input_ids[image_token_start+2:]
|
263 |
+
else:
|
264 |
+
cur_input_ids = cur_input_ids[image_token_start+1:]
|
265 |
+
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
|
266 |
+
if cur_input_ids.numel() > 0:
|
267 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
|
268 |
+
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids).detach())
|
269 |
+
else:
|
270 |
+
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids))
|
271 |
+
if labels is not None:
|
272 |
+
cur_new_labels.append(cur_labels)
|
273 |
+
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds]
|
274 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
|
275 |
+
new_input_embeds.append(cur_new_input_embeds)
|
276 |
+
if labels is not None:
|
277 |
+
cur_new_labels = torch.cat(cur_new_labels, dim=0)
|
278 |
+
new_labels.append(cur_new_labels)
|
279 |
+
|
280 |
+
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
|
281 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
282 |
+
|
283 |
+
new_input_embeds_align = []
|
284 |
+
for cur_new_embed in new_input_embeds:
|
285 |
+
cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)
|
286 |
+
new_input_embeds_align.append(cur_new_embed)
|
287 |
+
new_input_embeds = torch.stack(new_input_embeds_align, dim=0)
|
288 |
+
|
289 |
+
if labels is not None:
|
290 |
+
new_labels_align = []
|
291 |
+
_new_labels = new_labels
|
292 |
+
for cur_new_label in new_labels:
|
293 |
+
cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0)
|
294 |
+
new_labels_align.append(cur_new_label)
|
295 |
+
new_labels = torch.stack(new_labels_align, dim=0)
|
296 |
+
|
297 |
+
if attention_mask is not None:
|
298 |
+
new_attention_mask = []
|
299 |
+
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels):
|
300 |
+
new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device)
|
301 |
+
new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device)
|
302 |
+
cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0)
|
303 |
+
new_attention_mask.append(cur_new_attention_mask)
|
304 |
+
attention_mask = torch.stack(new_attention_mask, dim=0)
|
305 |
+
assert attention_mask.shape == new_labels.shape
|
306 |
+
else:
|
307 |
+
new_input_embeds = torch.stack(new_input_embeds, dim=0)
|
308 |
+
if labels is not None:
|
309 |
+
new_labels = torch.stack(new_labels, dim=0)
|
310 |
+
|
311 |
+
if attention_mask is not None:
|
312 |
+
new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device)
|
313 |
+
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)
|
314 |
+
assert attention_mask.shape == new_input_embeds.shape[:2]
|
315 |
+
|
316 |
+
return None, attention_mask, past_key_values, new_input_embeds, new_labels
|
317 |
+
|
318 |
+
def initialize_vision_tokenizer(self, model_args, tokenizer):
|
319 |
+
if model_args.mm_use_im_patch_token:
|
320 |
+
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
321 |
+
self.resize_token_embeddings(len(tokenizer))
|
322 |
+
|
323 |
+
if model_args.mm_use_im_start_end:
|
324 |
+
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
325 |
+
self.resize_token_embeddings(len(tokenizer))
|
326 |
+
|
327 |
+
if num_new_tokens > 0:
|
328 |
+
input_embeddings = self.get_input_embeddings().weight.data
|
329 |
+
output_embeddings = self.get_output_embeddings().weight.data
|
330 |
+
|
331 |
+
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
332 |
+
dim=0, keepdim=True)
|
333 |
+
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
334 |
+
dim=0, keepdim=True)
|
335 |
+
|
336 |
+
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
337 |
+
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
338 |
+
|
339 |
+
if model_args.tune_mm_mlp_adapter:
|
340 |
+
for p in self.get_input_embeddings().parameters():
|
341 |
+
p.requires_grad = True
|
342 |
+
for p in self.get_output_embeddings().parameters():
|
343 |
+
p.requires_grad = False
|
344 |
+
|
345 |
+
if model_args.pretrain_mm_mlp_adapter:
|
346 |
+
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
|
347 |
+
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
|
348 |
+
assert num_new_tokens == 2
|
349 |
+
if input_embeddings.shape == embed_tokens_weight.shape:
|
350 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
|
351 |
+
elif embed_tokens_weight.shape[0] == num_new_tokens:
|
352 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight
|
353 |
+
else:
|
354 |
+
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
|
355 |
+
elif model_args.mm_use_im_patch_token:
|
356 |
+
if model_args.tune_mm_mlp_adapter:
|
357 |
+
for p in self.get_input_embeddings().parameters():
|
358 |
+
p.requires_grad = False
|
359 |
+
for p in self.get_output_embeddings().parameters():
|
360 |
+
p.requires_grad = False
|
361 |
+
|
362 |
+
|
363 |
+
|
364 |
+
class LlavaMetaForConditionalGeneration(ABC):
|
365 |
+
|
366 |
+
def get_vision_tower(self):
|
367 |
+
return self.get_encoder().get_vision_tower()
|
368 |
+
|
369 |
+
def encode_images(self, images):
|
370 |
+
image_features = self.get_encoder().get_vision_tower()(images)
|
371 |
+
image_features = self.get_encoder().mm_projector(image_features)
|
372 |
+
return image_features
|
373 |
+
|
374 |
+
def prepare_inputs_labels_for_multimodal(
|
375 |
+
self, input_ids, attention_mask, labels, images
|
376 |
+
):
|
377 |
+
vision_tower = self.get_vision_tower()
|
378 |
+
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
379 |
+
return input_ids, attention_mask, None
|
380 |
+
|
381 |
+
if type(images) is list or images.ndim == 5:
|
382 |
+
concat_images = torch.cat([image for image in images], dim=0)
|
383 |
+
image_features = self.encode_images(concat_images)
|
384 |
+
split_sizes = [image.shape[0] for image in images]
|
385 |
+
image_features = torch.split(image_features, split_sizes, dim=0)
|
386 |
+
image_features = [x.flatten(0, 1) for x in image_features]
|
387 |
+
else:
|
388 |
+
image_features = self.encode_images(images)
|
389 |
+
|
390 |
+
# TODO: double check.
|
391 |
+
if labels is None:
|
392 |
+
labels = torch.full_like(input_ids, IGNORE_INDEX)
|
393 |
+
######
|
394 |
+
|
395 |
+
new_input_embeds = []
|
396 |
+
new_labels = [] if labels is not None else None
|
397 |
+
cur_image_idx = 0
|
398 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
399 |
+
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:
|
400 |
+
# multimodal LLM, but the current sample is not multimodal
|
401 |
+
cur_input_embeds = self.get_encoder().embed_tokens(cur_input_ids)
|
402 |
+
cur_input_embeds = cur_input_embeds + (0. * self.get_encoder().mm_projector(vision_tower.dummy_feature)).sum()
|
403 |
+
new_input_embeds.append(cur_input_embeds)
|
404 |
+
if labels is not None:
|
405 |
+
new_labels.append(labels[batch_idx])
|
406 |
+
cur_image_idx += 1
|
407 |
+
continue
|
408 |
+
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
|
409 |
+
cur_new_input_embeds = []
|
410 |
+
if labels is not None:
|
411 |
+
cur_labels = labels[batch_idx]
|
412 |
+
cur_new_labels = []
|
413 |
+
assert cur_labels.shape == cur_input_ids.shape
|
414 |
+
while image_token_indices.numel() > 0:
|
415 |
+
cur_image_features = image_features[cur_image_idx]
|
416 |
+
image_token_start = image_token_indices[0]
|
417 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
|
418 |
+
cur_new_input_embeds.append(self.get_encoder().embed_tokens(cur_input_ids[:image_token_start-1]).detach())
|
419 |
+
cur_new_input_embeds.append(self.get_encoder().embed_tokens(cur_input_ids[image_token_start-1:image_token_start]))
|
420 |
+
cur_new_input_embeds.append(cur_image_features)
|
421 |
+
cur_new_input_embeds.append(self.get_encoder().embed_tokens(cur_input_ids[image_token_start+1:image_token_start+2]))
|
422 |
+
if labels is not None:
|
423 |
+
cur_new_labels.append(cur_labels[:image_token_start])
|
424 |
+
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
|
425 |
+
cur_new_labels.append(cur_labels[image_token_start:image_token_start+1])
|
426 |
+
cur_labels = cur_labels[image_token_start+2:]
|
427 |
+
else:
|
428 |
+
cur_new_input_embeds.append(self.get_encoder().embed_tokens(cur_input_ids[:image_token_start]))
|
429 |
+
cur_new_input_embeds.append(cur_image_features)
|
430 |
+
if labels is not None:
|
431 |
+
cur_new_labels.append(cur_labels[:image_token_start])
|
432 |
+
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
|
433 |
+
cur_labels = cur_labels[image_token_start+1:]
|
434 |
+
cur_image_idx += 1
|
435 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
|
436 |
+
cur_input_ids = cur_input_ids[image_token_start+2:]
|
437 |
+
else:
|
438 |
+
cur_input_ids = cur_input_ids[image_token_start+1:]
|
439 |
+
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
|
440 |
+
if cur_input_ids.numel() > 0:
|
441 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
|
442 |
+
cur_new_input_embeds.append(self.get_encoder().embed_tokens(cur_input_ids).detach())
|
443 |
+
else:
|
444 |
+
cur_new_input_embeds.append(self.get_encoder().embed_tokens(cur_input_ids))
|
445 |
+
if labels is not None:
|
446 |
+
cur_new_labels.append(cur_labels)
|
447 |
+
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds]
|
448 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
|
449 |
+
new_input_embeds.append(cur_new_input_embeds)
|
450 |
+
if labels is not None:
|
451 |
+
cur_new_labels = torch.cat(cur_new_labels, dim=0)
|
452 |
+
new_labels.append(cur_new_labels)
|
453 |
+
|
454 |
+
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
|
455 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
456 |
+
|
457 |
+
new_input_embeds_align = []
|
458 |
+
for cur_new_embed in new_input_embeds:
|
459 |
+
cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)
|
460 |
+
new_input_embeds_align.append(cur_new_embed)
|
461 |
+
new_input_embeds = torch.stack(new_input_embeds_align, dim=0)
|
462 |
+
|
463 |
+
if labels is not None:
|
464 |
+
new_labels_align = []
|
465 |
+
_new_labels = new_labels
|
466 |
+
for cur_new_label in new_labels:
|
467 |
+
cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0)
|
468 |
+
new_labels_align.append(cur_new_label)
|
469 |
+
new_labels = torch.stack(new_labels_align, dim=0)
|
470 |
+
|
471 |
+
if attention_mask is not None:
|
472 |
+
new_attention_mask = []
|
473 |
+
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels):
|
474 |
+
new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device)
|
475 |
+
new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device)
|
476 |
+
cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0)
|
477 |
+
new_attention_mask.append(cur_new_attention_mask)
|
478 |
+
attention_mask = torch.stack(new_attention_mask, dim=0)
|
479 |
+
assert attention_mask.shape == new_labels.shape
|
480 |
+
else:
|
481 |
+
new_input_embeds = torch.stack(new_input_embeds, dim=0)
|
482 |
+
if labels is not None:
|
483 |
+
new_labels = torch.stack(new_labels, dim=0)
|
484 |
+
|
485 |
+
if attention_mask is not None:
|
486 |
+
new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device)
|
487 |
+
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)
|
488 |
+
assert attention_mask.shape == new_input_embeds.shape[:2]
|
489 |
+
|
490 |
+
return None, attention_mask, new_input_embeds, new_labels
|
491 |
+
|
492 |
+
def initialize_vision_tokenizer(self, model_args, tokenizer):
|
493 |
+
if model_args.mm_use_im_patch_token:
|
494 |
+
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
495 |
+
self.resize_token_embeddings(len(tokenizer))
|
496 |
+
|
497 |
+
if model_args.mm_use_im_start_end:
|
498 |
+
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
499 |
+
self.resize_token_embeddings(len(tokenizer))
|
500 |
+
|
501 |
+
if num_new_tokens > 0:
|
502 |
+
input_embeddings = self.get_input_embeddings().weight.data
|
503 |
+
output_embeddings = self.get_output_embeddings().weight.data
|
504 |
+
|
505 |
+
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
506 |
+
dim=0, keepdim=True)
|
507 |
+
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
508 |
+
dim=0, keepdim=True)
|
509 |
+
|
510 |
+
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
511 |
+
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
512 |
+
|
513 |
+
if model_args.tune_mm_mlp_adapter:
|
514 |
+
for p in self.get_input_embeddings().parameters():
|
515 |
+
p.requires_grad = True
|
516 |
+
for p in self.get_output_embeddings().parameters():
|
517 |
+
p.requires_grad = False
|
518 |
+
|
519 |
+
if model_args.pretrain_mm_mlp_adapter:
|
520 |
+
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
|
521 |
+
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
|
522 |
+
assert num_new_tokens == 2
|
523 |
+
if input_embeddings.shape == embed_tokens_weight.shape:
|
524 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
|
525 |
+
elif embed_tokens_weight.shape[0] == num_new_tokens:
|
526 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight
|
527 |
+
else:
|
528 |
+
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
|
529 |
+
elif model_args.mm_use_im_patch_token:
|
530 |
+
if model_args.tune_mm_mlp_adapter:
|
531 |
+
for p in self.get_input_embeddings().parameters():
|
532 |
+
p.requires_grad = False
|
533 |
+
for p in self.get_output_embeddings().parameters():
|
534 |
+
p.requires_grad = False
|
535 |
+
|
536 |
+
class LlavaMetaT5Model:
|
537 |
+
|
538 |
+
def __init__(self, config, embed_tokens):
|
539 |
+
super(LlavaMetaT5Model, self).__init__(config, embed_tokens)
|
540 |
+
if hasattr(config, "mm_vision_tower"):
|
541 |
+
self.vision_tower = build_vision_tower(config, delay_load=True)
|
542 |
+
self.mm_projector = nn.Linear(config.mm_hidden_size, config.hidden_size)
|
543 |
+
|
544 |
+
def get_vision_tower(self):
|
545 |
+
vision_tower = getattr(self, 'vision_tower', None)
|
546 |
+
if type(vision_tower) is list:
|
547 |
+
vision_tower = vision_tower[0]
|
548 |
+
return vision_tower
|
549 |
+
|
550 |
+
def initialize_vision_modules(self, model_args, fsdp=None):
|
551 |
+
vision_tower = model_args.vision_tower
|
552 |
+
mm_vision_select_layer = model_args.mm_vision_select_layer
|
553 |
+
mm_vision_select_feature = model_args.mm_vision_select_feature
|
554 |
+
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
|
555 |
+
|
556 |
+
self.config.mm_vision_tower = vision_tower
|
557 |
+
|
558 |
+
vision_tower = build_vision_tower(model_args)
|
559 |
+
|
560 |
+
if fsdp is not None and len(fsdp) > 0:
|
561 |
+
self.vision_tower = [vision_tower]
|
562 |
+
else:
|
563 |
+
self.vision_tower = vision_tower
|
564 |
+
|
565 |
+
self.config.use_mm_proj = True
|
566 |
+
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
|
567 |
+
self.config.mm_hidden_size = vision_tower.hidden_size
|
568 |
+
self.config.mm_vision_select_layer = mm_vision_select_layer
|
569 |
+
self.config.mm_vision_select_feature = mm_vision_select_feature
|
570 |
+
|
571 |
+
if not hasattr(self, 'mm_projector'):
|
572 |
+
self.mm_projector = build_vision_projector(self.config) #nn.Linear(self.config.mm_hidden_size, self.config.hidden_size)
|
573 |
+
|
574 |
+
if pretrain_mm_mlp_adapter is not None:
|
575 |
+
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
|
576 |
+
def get_w(weights, keyword):
|
577 |
+
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
|
578 |
+
|
579 |
+
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
|
580 |
+
|
581 |
+
|
582 |
+
|
583 |
+
# Copyright 2023 Haotian Liu
|
584 |
+
#
|
585 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
586 |
+
# you may not use this file except in compliance with the License.
|
587 |
+
# You may obtain a copy of the License at
|
588 |
+
#
|
589 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
590 |
+
#
|
591 |
+
# Unless required by applicable law or agreed to in writing, software
|
592 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
593 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
594 |
+
# See the License for the specific language governing permissions and
|
595 |
+
# limitations under the License.
|
596 |
+
|
597 |
+
|
598 |
+
|
599 |
+
@dataclass
|
600 |
+
class BaseModelOutputWithPastAndCrossAttentionsWithAttentionMask(ModelOutput):
|
601 |
+
"""
|
602 |
+
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
|
603 |
+
|
604 |
+
Args:
|
605 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
606 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
607 |
+
|
608 |
+
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
|
609 |
+
hidden_size)` is output.
|
610 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
611 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
612 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
|
613 |
+
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
|
614 |
+
encoder_sequence_length, embed_size_per_head)`.
|
615 |
+
|
616 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
|
617 |
+
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
|
618 |
+
input) to speed up sequential decoding.
|
619 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
620 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
621 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
622 |
+
|
623 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
624 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
625 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
626 |
+
sequence_length)`.
|
627 |
+
|
628 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
629 |
+
heads.
|
630 |
+
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
|
631 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
632 |
+
sequence_length)`.
|
633 |
+
|
634 |
+
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
|
635 |
+
weighted average in the cross-attention heads.
|
636 |
+
"""
|
637 |
+
|
638 |
+
last_hidden_state: torch.FloatTensor = None
|
639 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
640 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
641 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
642 |
+
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
643 |
+
attention_mask: Optional[torch.LongTensor] = None
|
644 |
+
|
645 |
+
class LlavaT5Config(T5Config):
|
646 |
+
model_type = "llava_t5"
|
647 |
+
|
648 |
+
class LlavaT5Stack(LlavaMetaT5Model, T5Stack):
|
649 |
+
config_class = LlavaT5Config
|
650 |
+
|
651 |
+
def __init__(self, config: T5Config, embed_tokens=None):
|
652 |
+
super(LlavaT5Stack, self).__init__(config, embed_tokens)
|
653 |
+
|
654 |
+
|
655 |
+
class LlavaT5ForConditionalGeneration(T5ForConditionalGeneration, LlavaMetaForConditionalGeneration):
|
656 |
+
config_class = LlavaT5Config
|
657 |
+
|
658 |
+
def __init__(self, config):
|
659 |
+
super(T5ForConditionalGeneration, self).__init__(config)
|
660 |
+
|
661 |
+
self.model_dim = config.d_model
|
662 |
+
|
663 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
664 |
+
|
665 |
+
encoder_config = copy.deepcopy(config)
|
666 |
+
encoder_config.is_decoder = False
|
667 |
+
encoder_config.use_cache = False
|
668 |
+
encoder_config.is_encoder_decoder = False
|
669 |
+
self.encoder = LlavaT5Stack(encoder_config, self.shared)
|
670 |
+
|
671 |
+
decoder_config = copy.deepcopy(config)
|
672 |
+
decoder_config.is_decoder = True
|
673 |
+
decoder_config.is_encoder_decoder = False
|
674 |
+
decoder_config.num_layers = config.num_decoder_layers
|
675 |
+
self.decoder = T5Stack(decoder_config, self.shared)
|
676 |
+
|
677 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
678 |
+
|
679 |
+
# Initialize weights and apply final processing
|
680 |
+
self.post_init()
|
681 |
+
|
682 |
+
# Model parallel
|
683 |
+
self.model_parallel = False
|
684 |
+
self.device_map = None
|
685 |
+
|
686 |
+
def get_model(self):
|
687 |
+
return self.encoder
|
688 |
+
def get_encoder(self):
|
689 |
+
return self.encoder
|
690 |
+
def get_decoder(self):
|
691 |
+
return self.decoder
|
692 |
+
|
693 |
+
def forward(
|
694 |
+
self,
|
695 |
+
input_ids: torch.LongTensor = None,
|
696 |
+
attention_mask: Optional[torch.Tensor] = None,
|
697 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
698 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
699 |
+
labels: Optional[torch.LongTensor] = None,
|
700 |
+
use_cache: Optional[bool] = None,
|
701 |
+
output_attentions: Optional[bool] = None,
|
702 |
+
output_hidden_states: Optional[bool] = None,
|
703 |
+
images: Optional[torch.FloatTensor] = None,
|
704 |
+
return_dict: Optional[bool] = None,
|
705 |
+
|
706 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
707 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
708 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
709 |
+
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
710 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
711 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
712 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
713 |
+
|
714 |
+
) -> Union[Tuple, Seq2SeqLMOutput]:
|
715 |
+
|
716 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
717 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
718 |
+
|
719 |
+
|
720 |
+
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
721 |
+
if head_mask is not None and decoder_head_mask is None:
|
722 |
+
if self.config.num_layers == self.config.num_decoder_layers:
|
723 |
+
#warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
|
724 |
+
decoder_head_mask = head_mask
|
725 |
+
|
726 |
+
# Encode if needed (training, first prediction pass)
|
727 |
+
if encoder_outputs is None:
|
728 |
+
input_ids, attention_mask, inputs_embeds, _ = self.prepare_inputs_labels_for_multimodal(input_ids,
|
729 |
+
attention_mask,
|
730 |
+
None, # Important: keep it None
|
731 |
+
images
|
732 |
+
)
|
733 |
+
# Convert encoder inputs in embeddings if needed
|
734 |
+
encoder_outputs = self.encoder(
|
735 |
+
input_ids=input_ids,
|
736 |
+
attention_mask=attention_mask,
|
737 |
+
inputs_embeds=inputs_embeds,
|
738 |
+
head_mask=head_mask,
|
739 |
+
output_attentions=output_attentions,
|
740 |
+
output_hidden_states=output_hidden_states,
|
741 |
+
return_dict=return_dict,
|
742 |
+
)
|
743 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
744 |
+
encoder_outputs = BaseModelOutput(
|
745 |
+
last_hidden_state=encoder_outputs[0],
|
746 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
747 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
748 |
+
)
|
749 |
+
|
750 |
+
hidden_states = encoder_outputs[0]
|
751 |
+
|
752 |
+
if self.model_parallel:
|
753 |
+
torch.cuda.set_device(self.decoder.first_device)
|
754 |
+
|
755 |
+
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
|
756 |
+
# get decoder inputs from shifting lm labels to the right
|
757 |
+
decoder_input_ids = self._shift_right(labels)
|
758 |
+
|
759 |
+
# Set device for model parallelism
|
760 |
+
if self.model_parallel:
|
761 |
+
torch.cuda.set_device(self.decoder.first_device)
|
762 |
+
hidden_states = hidden_states.to(self.decoder.first_device)
|
763 |
+
if decoder_input_ids is not None:
|
764 |
+
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
|
765 |
+
if attention_mask is not None:
|
766 |
+
attention_mask = attention_mask.to(self.decoder.first_device)
|
767 |
+
if decoder_attention_mask is not None:
|
768 |
+
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
|
769 |
+
|
770 |
+
|
771 |
+
# Decode
|
772 |
+
decoder_outputs = self.decoder(
|
773 |
+
input_ids=decoder_input_ids,
|
774 |
+
attention_mask=decoder_attention_mask,
|
775 |
+
inputs_embeds=decoder_inputs_embeds,
|
776 |
+
past_key_values=past_key_values,
|
777 |
+
encoder_hidden_states=hidden_states,
|
778 |
+
encoder_attention_mask=attention_mask,
|
779 |
+
head_mask=decoder_head_mask,
|
780 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
781 |
+
use_cache=use_cache,
|
782 |
+
output_attentions=output_attentions,
|
783 |
+
output_hidden_states=output_hidden_states,
|
784 |
+
return_dict=return_dict,
|
785 |
+
)
|
786 |
+
sequence_output = decoder_outputs[0]
|
787 |
+
|
788 |
+
# Set device for model parallelism
|
789 |
+
if self.model_parallel:
|
790 |
+
torch.cuda.set_device(self.encoder.first_device)
|
791 |
+
self.lm_head = self.lm_head.to(self.encoder.first_device)
|
792 |
+
sequence_output = sequence_output.to(self.lm_head.weight.device)
|
793 |
+
|
794 |
+
if self.config.tie_word_embeddings:
|
795 |
+
# Rescale output before projecting on vocab
|
796 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
|
797 |
+
sequence_output = sequence_output * (self.model_dim**-0.5)
|
798 |
+
|
799 |
+
lm_logits = self.lm_head(sequence_output)
|
800 |
+
|
801 |
+
loss = None
|
802 |
+
if labels is not None:
|
803 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
804 |
+
# move labels to correct device to enable PP
|
805 |
+
labels = labels.to(lm_logits.device)
|
806 |
+
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
|
807 |
+
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
|
808 |
+
|
809 |
+
if not return_dict:
|
810 |
+
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
|
811 |
+
return ((loss,) + output) if loss is not None else output
|
812 |
+
|
813 |
+
return Seq2SeqLMOutput(
|
814 |
+
loss=loss,
|
815 |
+
logits=lm_logits,
|
816 |
+
past_key_values=decoder_outputs.past_key_values,
|
817 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
818 |
+
decoder_attentions=decoder_outputs.attentions,
|
819 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
820 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
821 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
822 |
+
encoder_attentions=encoder_outputs.attentions,
|
823 |
+
)
|
824 |
+
|
825 |
+
def prepare_inputs_for_generation(
|
826 |
+
self,
|
827 |
+
input_ids,
|
828 |
+
past_key_values=None,
|
829 |
+
attention_mask=None,
|
830 |
+
head_mask=None,
|
831 |
+
decoder_head_mask=None,
|
832 |
+
decoder_attention_mask=None,
|
833 |
+
cross_attn_head_mask=None,
|
834 |
+
use_cache=None,
|
835 |
+
encoder_outputs=None,
|
836 |
+
**kwargs,
|
837 |
+
):
|
838 |
+
# cut decoder_input_ids if past_key_values is used
|
839 |
+
if past_key_values is not None:
|
840 |
+
past_length = past_key_values[0][0].shape[2]
|
841 |
+
|
842 |
+
# Some generation methods already pass only the last input ID
|
843 |
+
if input_ids.shape[1] > past_length:
|
844 |
+
remove_prefix_length = past_length
|
845 |
+
else:
|
846 |
+
# Default to old behavior: keep only final ID
|
847 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
848 |
+
|
849 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
850 |
+
|
851 |
+
return {
|
852 |
+
"decoder_input_ids": input_ids,
|
853 |
+
"past_key_values": past_key_values,
|
854 |
+
"encoder_outputs": encoder_outputs,
|
855 |
+
"attention_mask": attention_mask,
|
856 |
+
"head_mask": head_mask,
|
857 |
+
"decoder_head_mask": decoder_head_mask,
|
858 |
+
"decoder_attention_mask": decoder_attention_mask,
|
859 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
860 |
+
"use_cache": use_cache,
|
861 |
+
"images": kwargs.get("images", None),
|
862 |
+
}
|
863 |
+
|
config.json
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/content/flant5",
|
3 |
+
"architectures": [
|
4 |
+
"LlavaT5ForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "chartinstruct_flant5_modeling.LlavaT5Config",
|
8 |
+
"AutoModelForSeq2SeqLM": "chartinstruct_flant5_modeling.LlavaT5ForConditionalGeneration"
|
9 |
+
},
|
10 |
+
"classifier_dropout": 0.0,
|
11 |
+
"d_ff": 5120,
|
12 |
+
"d_kv": 64,
|
13 |
+
"d_model": 2048,
|
14 |
+
"decoder_start_token_id": 0,
|
15 |
+
"dense_act_fn": "gelu_new",
|
16 |
+
"dropout_rate": 0.1,
|
17 |
+
"eos_token_id": 1,
|
18 |
+
"feed_forward_proj": "gated-gelu",
|
19 |
+
"freeze_mm_mlp_adapter": false,
|
20 |
+
"image_aspect_ratio": "square",
|
21 |
+
"image_grid_pinpoints": null,
|
22 |
+
"initializer_factor": 1.0,
|
23 |
+
"is_encoder_decoder": true,
|
24 |
+
"is_gated_act": true,
|
25 |
+
"layer_norm_epsilon": 1e-06,
|
26 |
+
"mm_hidden_size": 1024,
|
27 |
+
"mm_use_im_patch_token": false,
|
28 |
+
"mm_use_im_start_end": false,
|
29 |
+
"mm_vision_select_feature": "patch",
|
30 |
+
"mm_vision_select_layer": -1,
|
31 |
+
"mm_vision_tower": "/content/unichart-encoder-512",
|
32 |
+
"model_type": "llava_t5",
|
33 |
+
"n_positions": 512,
|
34 |
+
"num_decoder_layers": 24,
|
35 |
+
"num_heads": 32,
|
36 |
+
"num_layers": 24,
|
37 |
+
"output_past": true,
|
38 |
+
"pad_token_id": 0,
|
39 |
+
"relative_attention_max_distance": 128,
|
40 |
+
"relative_attention_num_buckets": 32,
|
41 |
+
"task_specific_params": {
|
42 |
+
"summarization": {
|
43 |
+
"early_stopping": true,
|
44 |
+
"length_penalty": 2.0,
|
45 |
+
"max_length": 200,
|
46 |
+
"min_length": 30,
|
47 |
+
"no_repeat_ngram_size": 3,
|
48 |
+
"num_beams": 4,
|
49 |
+
"prefix": "summarize: "
|
50 |
+
},
|
51 |
+
"translation_en_to_de": {
|
52 |
+
"early_stopping": true,
|
53 |
+
"max_length": 300,
|
54 |
+
"num_beams": 4,
|
55 |
+
"prefix": "translate English to German: "
|
56 |
+
},
|
57 |
+
"translation_en_to_fr": {
|
58 |
+
"early_stopping": true,
|
59 |
+
"max_length": 300,
|
60 |
+
"num_beams": 4,
|
61 |
+
"prefix": "translate English to French: "
|
62 |
+
},
|
63 |
+
"translation_en_to_ro": {
|
64 |
+
"early_stopping": true,
|
65 |
+
"max_length": 300,
|
66 |
+
"num_beams": 4,
|
67 |
+
"prefix": "translate English to Romanian: "
|
68 |
+
}
|
69 |
+
},
|
70 |
+
"tie_word_embeddings": false,
|
71 |
+
"torch_dtype": "float32",
|
72 |
+
"transformers_version": "4.41.2",
|
73 |
+
"tune_mm_mlp_adapter": false,
|
74 |
+
"use_cache": false,
|
75 |
+
"use_mm_proj": true,
|
76 |
+
"vocab_size": 32128
|
77 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"decoder_start_token_id": 0,
|
4 |
+
"eos_token_id": 1,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.41.2"
|
7 |
+
}
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:719f6af29df4fe3cae844752de131258afdebe6bad05a513533d654a7f3a2ad9
|
3 |
+
size 4986432872
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71428b8d193b4234668328861cd30d0abd6ce25bccdaa12de5ce0aa90fde81e9
|
3 |
+
size 4991730200
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0059c19a7881bdff91877bedc0b46cd6d2cc6ee1b3ab6ea0581fa41604e6aaa
|
3 |
+
size 1429331352
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,567 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 11407425536
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"decoder.block.0.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
7 |
+
"decoder.block.0.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"decoder.block.0.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"decoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"decoder.block.0.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"decoder.block.0.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"decoder.block.0.layer.1.EncDecAttention.k.weight": "model-00002-of-00003.safetensors",
|
13 |
+
"decoder.block.0.layer.1.EncDecAttention.o.weight": "model-00002-of-00003.safetensors",
|
14 |
+
"decoder.block.0.layer.1.EncDecAttention.q.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"decoder.block.0.layer.1.EncDecAttention.v.weight": "model-00002-of-00003.safetensors",
|
16 |
+
"decoder.block.0.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
17 |
+
"decoder.block.0.layer.2.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
18 |
+
"decoder.block.0.layer.2.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
19 |
+
"decoder.block.0.layer.2.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
20 |
+
"decoder.block.0.layer.2.layer_norm.weight": "model-00002-of-00003.safetensors",
|
21 |
+
"decoder.block.1.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
22 |
+
"decoder.block.1.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
23 |
+
"decoder.block.1.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
24 |
+
"decoder.block.1.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
25 |
+
"decoder.block.1.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
26 |
+
"decoder.block.1.layer.1.EncDecAttention.k.weight": "model-00002-of-00003.safetensors",
|
27 |
+
"decoder.block.1.layer.1.EncDecAttention.o.weight": "model-00002-of-00003.safetensors",
|
28 |
+
"decoder.block.1.layer.1.EncDecAttention.q.weight": "model-00002-of-00003.safetensors",
|
29 |
+
"decoder.block.1.layer.1.EncDecAttention.v.weight": "model-00002-of-00003.safetensors",
|
30 |
+
"decoder.block.1.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
31 |
+
"decoder.block.1.layer.2.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
32 |
+
"decoder.block.1.layer.2.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
33 |
+
"decoder.block.1.layer.2.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
34 |
+
"decoder.block.1.layer.2.layer_norm.weight": "model-00002-of-00003.safetensors",
|
35 |
+
"decoder.block.10.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
36 |
+
"decoder.block.10.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
37 |
+
"decoder.block.10.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
38 |
+
"decoder.block.10.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
39 |
+
"decoder.block.10.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
40 |
+
"decoder.block.10.layer.1.EncDecAttention.k.weight": "model-00002-of-00003.safetensors",
|
41 |
+
"decoder.block.10.layer.1.EncDecAttention.o.weight": "model-00002-of-00003.safetensors",
|
42 |
+
"decoder.block.10.layer.1.EncDecAttention.q.weight": "model-00002-of-00003.safetensors",
|
43 |
+
"decoder.block.10.layer.1.EncDecAttention.v.weight": "model-00002-of-00003.safetensors",
|
44 |
+
"decoder.block.10.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
45 |
+
"decoder.block.10.layer.2.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"decoder.block.10.layer.2.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
47 |
+
"decoder.block.10.layer.2.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
48 |
+
"decoder.block.10.layer.2.layer_norm.weight": "model-00002-of-00003.safetensors",
|
49 |
+
"decoder.block.11.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
50 |
+
"decoder.block.11.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"decoder.block.11.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
52 |
+
"decoder.block.11.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"decoder.block.11.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"decoder.block.11.layer.1.EncDecAttention.k.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"decoder.block.11.layer.1.EncDecAttention.o.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"decoder.block.11.layer.1.EncDecAttention.q.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"decoder.block.11.layer.1.EncDecAttention.v.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"decoder.block.11.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"decoder.block.11.layer.2.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"decoder.block.11.layer.2.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"decoder.block.11.layer.2.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
62 |
+
"decoder.block.11.layer.2.layer_norm.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"decoder.block.12.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"decoder.block.12.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"decoder.block.12.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"decoder.block.12.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"decoder.block.12.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"decoder.block.12.layer.1.EncDecAttention.k.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"decoder.block.12.layer.1.EncDecAttention.o.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"decoder.block.12.layer.1.EncDecAttention.q.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"decoder.block.12.layer.1.EncDecAttention.v.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"decoder.block.12.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
73 |
+
"decoder.block.12.layer.2.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"decoder.block.12.layer.2.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"decoder.block.12.layer.2.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"decoder.block.12.layer.2.layer_norm.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"decoder.block.13.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"decoder.block.13.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"decoder.block.13.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"decoder.block.13.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"decoder.block.13.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"decoder.block.13.layer.1.EncDecAttention.k.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"decoder.block.13.layer.1.EncDecAttention.o.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"decoder.block.13.layer.1.EncDecAttention.q.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"decoder.block.13.layer.1.EncDecAttention.v.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"decoder.block.13.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"decoder.block.13.layer.2.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"decoder.block.13.layer.2.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"decoder.block.13.layer.2.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
90 |
+
"decoder.block.13.layer.2.layer_norm.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"decoder.block.14.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"decoder.block.14.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"decoder.block.14.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"decoder.block.14.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"decoder.block.14.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"decoder.block.14.layer.1.EncDecAttention.k.weight": "model-00002-of-00003.safetensors",
|
97 |
+
"decoder.block.14.layer.1.EncDecAttention.o.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"decoder.block.14.layer.1.EncDecAttention.q.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"decoder.block.14.layer.1.EncDecAttention.v.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"decoder.block.14.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"decoder.block.14.layer.2.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"decoder.block.14.layer.2.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"decoder.block.14.layer.2.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"decoder.block.14.layer.2.layer_norm.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"decoder.block.15.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"decoder.block.15.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"decoder.block.15.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"decoder.block.15.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
109 |
+
"decoder.block.15.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"decoder.block.15.layer.1.EncDecAttention.k.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"decoder.block.15.layer.1.EncDecAttention.o.weight": "model-00002-of-00003.safetensors",
|
112 |
+
"decoder.block.15.layer.1.EncDecAttention.q.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"decoder.block.15.layer.1.EncDecAttention.v.weight": "model-00002-of-00003.safetensors",
|
114 |
+
"decoder.block.15.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"decoder.block.15.layer.2.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"decoder.block.15.layer.2.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
117 |
+
"decoder.block.15.layer.2.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
118 |
+
"decoder.block.15.layer.2.layer_norm.weight": "model-00002-of-00003.safetensors",
|
119 |
+
"decoder.block.16.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
120 |
+
"decoder.block.16.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
121 |
+
"decoder.block.16.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
122 |
+
"decoder.block.16.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
123 |
+
"decoder.block.16.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
124 |
+
"decoder.block.16.layer.1.EncDecAttention.k.weight": "model-00002-of-00003.safetensors",
|
125 |
+
"decoder.block.16.layer.1.EncDecAttention.o.weight": "model-00002-of-00003.safetensors",
|
126 |
+
"decoder.block.16.layer.1.EncDecAttention.q.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"decoder.block.16.layer.1.EncDecAttention.v.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"decoder.block.16.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"decoder.block.16.layer.2.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"decoder.block.16.layer.2.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"decoder.block.16.layer.2.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
132 |
+
"decoder.block.16.layer.2.layer_norm.weight": "model-00002-of-00003.safetensors",
|
133 |
+
"decoder.block.17.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
134 |
+
"decoder.block.17.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
135 |
+
"decoder.block.17.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
136 |
+
"decoder.block.17.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
137 |
+
"decoder.block.17.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
138 |
+
"decoder.block.17.layer.1.EncDecAttention.k.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"decoder.block.17.layer.1.EncDecAttention.o.weight": "model-00002-of-00003.safetensors",
|
140 |
+
"decoder.block.17.layer.1.EncDecAttention.q.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"decoder.block.17.layer.1.EncDecAttention.v.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"decoder.block.17.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
143 |
+
"decoder.block.17.layer.2.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
144 |
+
"decoder.block.17.layer.2.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
145 |
+
"decoder.block.17.layer.2.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
146 |
+
"decoder.block.17.layer.2.layer_norm.weight": "model-00002-of-00003.safetensors",
|
147 |
+
"decoder.block.18.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
148 |
+
"decoder.block.18.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
149 |
+
"decoder.block.18.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
150 |
+
"decoder.block.18.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"decoder.block.18.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
152 |
+
"decoder.block.18.layer.1.EncDecAttention.k.weight": "model-00002-of-00003.safetensors",
|
153 |
+
"decoder.block.18.layer.1.EncDecAttention.o.weight": "model-00002-of-00003.safetensors",
|
154 |
+
"decoder.block.18.layer.1.EncDecAttention.q.weight": "model-00002-of-00003.safetensors",
|
155 |
+
"decoder.block.18.layer.1.EncDecAttention.v.weight": "model-00002-of-00003.safetensors",
|
156 |
+
"decoder.block.18.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
157 |
+
"decoder.block.18.layer.2.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
158 |
+
"decoder.block.18.layer.2.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
159 |
+
"decoder.block.18.layer.2.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
160 |
+
"decoder.block.18.layer.2.layer_norm.weight": "model-00002-of-00003.safetensors",
|
161 |
+
"decoder.block.19.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
162 |
+
"decoder.block.19.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
163 |
+
"decoder.block.19.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
164 |
+
"decoder.block.19.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
165 |
+
"decoder.block.19.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
166 |
+
"decoder.block.19.layer.1.EncDecAttention.k.weight": "model-00002-of-00003.safetensors",
|
167 |
+
"decoder.block.19.layer.1.EncDecAttention.o.weight": "model-00002-of-00003.safetensors",
|
168 |
+
"decoder.block.19.layer.1.EncDecAttention.q.weight": "model-00002-of-00003.safetensors",
|
169 |
+
"decoder.block.19.layer.1.EncDecAttention.v.weight": "model-00002-of-00003.safetensors",
|
170 |
+
"decoder.block.19.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
171 |
+
"decoder.block.19.layer.2.DenseReluDense.wi_0.weight": "model-00003-of-00003.safetensors",
|
172 |
+
"decoder.block.19.layer.2.DenseReluDense.wi_1.weight": "model-00003-of-00003.safetensors",
|
173 |
+
"decoder.block.19.layer.2.DenseReluDense.wo.weight": "model-00003-of-00003.safetensors",
|
174 |
+
"decoder.block.19.layer.2.layer_norm.weight": "model-00003-of-00003.safetensors",
|
175 |
+
"decoder.block.2.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
176 |
+
"decoder.block.2.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
177 |
+
"decoder.block.2.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
178 |
+
"decoder.block.2.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
179 |
+
"decoder.block.2.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
180 |
+
"decoder.block.2.layer.1.EncDecAttention.k.weight": "model-00002-of-00003.safetensors",
|
181 |
+
"decoder.block.2.layer.1.EncDecAttention.o.weight": "model-00002-of-00003.safetensors",
|
182 |
+
"decoder.block.2.layer.1.EncDecAttention.q.weight": "model-00002-of-00003.safetensors",
|
183 |
+
"decoder.block.2.layer.1.EncDecAttention.v.weight": "model-00002-of-00003.safetensors",
|
184 |
+
"decoder.block.2.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
185 |
+
"decoder.block.2.layer.2.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
186 |
+
"decoder.block.2.layer.2.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
187 |
+
"decoder.block.2.layer.2.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
188 |
+
"decoder.block.2.layer.2.layer_norm.weight": "model-00002-of-00003.safetensors",
|
189 |
+
"decoder.block.20.layer.0.SelfAttention.k.weight": "model-00003-of-00003.safetensors",
|
190 |
+
"decoder.block.20.layer.0.SelfAttention.o.weight": "model-00003-of-00003.safetensors",
|
191 |
+
"decoder.block.20.layer.0.SelfAttention.q.weight": "model-00003-of-00003.safetensors",
|
192 |
+
"decoder.block.20.layer.0.SelfAttention.v.weight": "model-00003-of-00003.safetensors",
|
193 |
+
"decoder.block.20.layer.0.layer_norm.weight": "model-00003-of-00003.safetensors",
|
194 |
+
"decoder.block.20.layer.1.EncDecAttention.k.weight": "model-00003-of-00003.safetensors",
|
195 |
+
"decoder.block.20.layer.1.EncDecAttention.o.weight": "model-00003-of-00003.safetensors",
|
196 |
+
"decoder.block.20.layer.1.EncDecAttention.q.weight": "model-00003-of-00003.safetensors",
|
197 |
+
"decoder.block.20.layer.1.EncDecAttention.v.weight": "model-00003-of-00003.safetensors",
|
198 |
+
"decoder.block.20.layer.1.layer_norm.weight": "model-00003-of-00003.safetensors",
|
199 |
+
"decoder.block.20.layer.2.DenseReluDense.wi_0.weight": "model-00003-of-00003.safetensors",
|
200 |
+
"decoder.block.20.layer.2.DenseReluDense.wi_1.weight": "model-00003-of-00003.safetensors",
|
201 |
+
"decoder.block.20.layer.2.DenseReluDense.wo.weight": "model-00003-of-00003.safetensors",
|
202 |
+
"decoder.block.20.layer.2.layer_norm.weight": "model-00003-of-00003.safetensors",
|
203 |
+
"decoder.block.21.layer.0.SelfAttention.k.weight": "model-00003-of-00003.safetensors",
|
204 |
+
"decoder.block.21.layer.0.SelfAttention.o.weight": "model-00003-of-00003.safetensors",
|
205 |
+
"decoder.block.21.layer.0.SelfAttention.q.weight": "model-00003-of-00003.safetensors",
|
206 |
+
"decoder.block.21.layer.0.SelfAttention.v.weight": "model-00003-of-00003.safetensors",
|
207 |
+
"decoder.block.21.layer.0.layer_norm.weight": "model-00003-of-00003.safetensors",
|
208 |
+
"decoder.block.21.layer.1.EncDecAttention.k.weight": "model-00003-of-00003.safetensors",
|
209 |
+
"decoder.block.21.layer.1.EncDecAttention.o.weight": "model-00003-of-00003.safetensors",
|
210 |
+
"decoder.block.21.layer.1.EncDecAttention.q.weight": "model-00003-of-00003.safetensors",
|
211 |
+
"decoder.block.21.layer.1.EncDecAttention.v.weight": "model-00003-of-00003.safetensors",
|
212 |
+
"decoder.block.21.layer.1.layer_norm.weight": "model-00003-of-00003.safetensors",
|
213 |
+
"decoder.block.21.layer.2.DenseReluDense.wi_0.weight": "model-00003-of-00003.safetensors",
|
214 |
+
"decoder.block.21.layer.2.DenseReluDense.wi_1.weight": "model-00003-of-00003.safetensors",
|
215 |
+
"decoder.block.21.layer.2.DenseReluDense.wo.weight": "model-00003-of-00003.safetensors",
|
216 |
+
"decoder.block.21.layer.2.layer_norm.weight": "model-00003-of-00003.safetensors",
|
217 |
+
"decoder.block.22.layer.0.SelfAttention.k.weight": "model-00003-of-00003.safetensors",
|
218 |
+
"decoder.block.22.layer.0.SelfAttention.o.weight": "model-00003-of-00003.safetensors",
|
219 |
+
"decoder.block.22.layer.0.SelfAttention.q.weight": "model-00003-of-00003.safetensors",
|
220 |
+
"decoder.block.22.layer.0.SelfAttention.v.weight": "model-00003-of-00003.safetensors",
|
221 |
+
"decoder.block.22.layer.0.layer_norm.weight": "model-00003-of-00003.safetensors",
|
222 |
+
"decoder.block.22.layer.1.EncDecAttention.k.weight": "model-00003-of-00003.safetensors",
|
223 |
+
"decoder.block.22.layer.1.EncDecAttention.o.weight": "model-00003-of-00003.safetensors",
|
224 |
+
"decoder.block.22.layer.1.EncDecAttention.q.weight": "model-00003-of-00003.safetensors",
|
225 |
+
"decoder.block.22.layer.1.EncDecAttention.v.weight": "model-00003-of-00003.safetensors",
|
226 |
+
"decoder.block.22.layer.1.layer_norm.weight": "model-00003-of-00003.safetensors",
|
227 |
+
"decoder.block.22.layer.2.DenseReluDense.wi_0.weight": "model-00003-of-00003.safetensors",
|
228 |
+
"decoder.block.22.layer.2.DenseReluDense.wi_1.weight": "model-00003-of-00003.safetensors",
|
229 |
+
"decoder.block.22.layer.2.DenseReluDense.wo.weight": "model-00003-of-00003.safetensors",
|
230 |
+
"decoder.block.22.layer.2.layer_norm.weight": "model-00003-of-00003.safetensors",
|
231 |
+
"decoder.block.23.layer.0.SelfAttention.k.weight": "model-00003-of-00003.safetensors",
|
232 |
+
"decoder.block.23.layer.0.SelfAttention.o.weight": "model-00003-of-00003.safetensors",
|
233 |
+
"decoder.block.23.layer.0.SelfAttention.q.weight": "model-00003-of-00003.safetensors",
|
234 |
+
"decoder.block.23.layer.0.SelfAttention.v.weight": "model-00003-of-00003.safetensors",
|
235 |
+
"decoder.block.23.layer.0.layer_norm.weight": "model-00003-of-00003.safetensors",
|
236 |
+
"decoder.block.23.layer.1.EncDecAttention.k.weight": "model-00003-of-00003.safetensors",
|
237 |
+
"decoder.block.23.layer.1.EncDecAttention.o.weight": "model-00003-of-00003.safetensors",
|
238 |
+
"decoder.block.23.layer.1.EncDecAttention.q.weight": "model-00003-of-00003.safetensors",
|
239 |
+
"decoder.block.23.layer.1.EncDecAttention.v.weight": "model-00003-of-00003.safetensors",
|
240 |
+
"decoder.block.23.layer.1.layer_norm.weight": "model-00003-of-00003.safetensors",
|
241 |
+
"decoder.block.23.layer.2.DenseReluDense.wi_0.weight": "model-00003-of-00003.safetensors",
|
242 |
+
"decoder.block.23.layer.2.DenseReluDense.wi_1.weight": "model-00003-of-00003.safetensors",
|
243 |
+
"decoder.block.23.layer.2.DenseReluDense.wo.weight": "model-00003-of-00003.safetensors",
|
244 |
+
"decoder.block.23.layer.2.layer_norm.weight": "model-00003-of-00003.safetensors",
|
245 |
+
"decoder.block.3.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
246 |
+
"decoder.block.3.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
247 |
+
"decoder.block.3.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
248 |
+
"decoder.block.3.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
249 |
+
"decoder.block.3.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
250 |
+
"decoder.block.3.layer.1.EncDecAttention.k.weight": "model-00002-of-00003.safetensors",
|
251 |
+
"decoder.block.3.layer.1.EncDecAttention.o.weight": "model-00002-of-00003.safetensors",
|
252 |
+
"decoder.block.3.layer.1.EncDecAttention.q.weight": "model-00002-of-00003.safetensors",
|
253 |
+
"decoder.block.3.layer.1.EncDecAttention.v.weight": "model-00002-of-00003.safetensors",
|
254 |
+
"decoder.block.3.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
255 |
+
"decoder.block.3.layer.2.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
256 |
+
"decoder.block.3.layer.2.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
257 |
+
"decoder.block.3.layer.2.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
258 |
+
"decoder.block.3.layer.2.layer_norm.weight": "model-00002-of-00003.safetensors",
|
259 |
+
"decoder.block.4.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
260 |
+
"decoder.block.4.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
261 |
+
"decoder.block.4.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
262 |
+
"decoder.block.4.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
263 |
+
"decoder.block.4.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
264 |
+
"decoder.block.4.layer.1.EncDecAttention.k.weight": "model-00002-of-00003.safetensors",
|
265 |
+
"decoder.block.4.layer.1.EncDecAttention.o.weight": "model-00002-of-00003.safetensors",
|
266 |
+
"decoder.block.4.layer.1.EncDecAttention.q.weight": "model-00002-of-00003.safetensors",
|
267 |
+
"decoder.block.4.layer.1.EncDecAttention.v.weight": "model-00002-of-00003.safetensors",
|
268 |
+
"decoder.block.4.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
269 |
+
"decoder.block.4.layer.2.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
270 |
+
"decoder.block.4.layer.2.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
271 |
+
"decoder.block.4.layer.2.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
272 |
+
"decoder.block.4.layer.2.layer_norm.weight": "model-00002-of-00003.safetensors",
|
273 |
+
"decoder.block.5.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
274 |
+
"decoder.block.5.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
275 |
+
"decoder.block.5.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
276 |
+
"decoder.block.5.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
277 |
+
"decoder.block.5.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
278 |
+
"decoder.block.5.layer.1.EncDecAttention.k.weight": "model-00002-of-00003.safetensors",
|
279 |
+
"decoder.block.5.layer.1.EncDecAttention.o.weight": "model-00002-of-00003.safetensors",
|
280 |
+
"decoder.block.5.layer.1.EncDecAttention.q.weight": "model-00002-of-00003.safetensors",
|
281 |
+
"decoder.block.5.layer.1.EncDecAttention.v.weight": "model-00002-of-00003.safetensors",
|
282 |
+
"decoder.block.5.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
283 |
+
"decoder.block.5.layer.2.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
284 |
+
"decoder.block.5.layer.2.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
285 |
+
"decoder.block.5.layer.2.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
286 |
+
"decoder.block.5.layer.2.layer_norm.weight": "model-00002-of-00003.safetensors",
|
287 |
+
"decoder.block.6.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
288 |
+
"decoder.block.6.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
289 |
+
"decoder.block.6.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
290 |
+
"decoder.block.6.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
291 |
+
"decoder.block.6.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
292 |
+
"decoder.block.6.layer.1.EncDecAttention.k.weight": "model-00002-of-00003.safetensors",
|
293 |
+
"decoder.block.6.layer.1.EncDecAttention.o.weight": "model-00002-of-00003.safetensors",
|
294 |
+
"decoder.block.6.layer.1.EncDecAttention.q.weight": "model-00002-of-00003.safetensors",
|
295 |
+
"decoder.block.6.layer.1.EncDecAttention.v.weight": "model-00002-of-00003.safetensors",
|
296 |
+
"decoder.block.6.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
297 |
+
"decoder.block.6.layer.2.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
298 |
+
"decoder.block.6.layer.2.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
299 |
+
"decoder.block.6.layer.2.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
300 |
+
"decoder.block.6.layer.2.layer_norm.weight": "model-00002-of-00003.safetensors",
|
301 |
+
"decoder.block.7.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
302 |
+
"decoder.block.7.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
303 |
+
"decoder.block.7.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
304 |
+
"decoder.block.7.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
305 |
+
"decoder.block.7.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
306 |
+
"decoder.block.7.layer.1.EncDecAttention.k.weight": "model-00002-of-00003.safetensors",
|
307 |
+
"decoder.block.7.layer.1.EncDecAttention.o.weight": "model-00002-of-00003.safetensors",
|
308 |
+
"decoder.block.7.layer.1.EncDecAttention.q.weight": "model-00002-of-00003.safetensors",
|
309 |
+
"decoder.block.7.layer.1.EncDecAttention.v.weight": "model-00002-of-00003.safetensors",
|
310 |
+
"decoder.block.7.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
311 |
+
"decoder.block.7.layer.2.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
312 |
+
"decoder.block.7.layer.2.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
313 |
+
"decoder.block.7.layer.2.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
314 |
+
"decoder.block.7.layer.2.layer_norm.weight": "model-00002-of-00003.safetensors",
|
315 |
+
"decoder.block.8.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
316 |
+
"decoder.block.8.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
317 |
+
"decoder.block.8.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
318 |
+
"decoder.block.8.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
319 |
+
"decoder.block.8.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
320 |
+
"decoder.block.8.layer.1.EncDecAttention.k.weight": "model-00002-of-00003.safetensors",
|
321 |
+
"decoder.block.8.layer.1.EncDecAttention.o.weight": "model-00002-of-00003.safetensors",
|
322 |
+
"decoder.block.8.layer.1.EncDecAttention.q.weight": "model-00002-of-00003.safetensors",
|
323 |
+
"decoder.block.8.layer.1.EncDecAttention.v.weight": "model-00002-of-00003.safetensors",
|
324 |
+
"decoder.block.8.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
325 |
+
"decoder.block.8.layer.2.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
326 |
+
"decoder.block.8.layer.2.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
327 |
+
"decoder.block.8.layer.2.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
328 |
+
"decoder.block.8.layer.2.layer_norm.weight": "model-00002-of-00003.safetensors",
|
329 |
+
"decoder.block.9.layer.0.SelfAttention.k.weight": "model-00002-of-00003.safetensors",
|
330 |
+
"decoder.block.9.layer.0.SelfAttention.o.weight": "model-00002-of-00003.safetensors",
|
331 |
+
"decoder.block.9.layer.0.SelfAttention.q.weight": "model-00002-of-00003.safetensors",
|
332 |
+
"decoder.block.9.layer.0.SelfAttention.v.weight": "model-00002-of-00003.safetensors",
|
333 |
+
"decoder.block.9.layer.0.layer_norm.weight": "model-00002-of-00003.safetensors",
|
334 |
+
"decoder.block.9.layer.1.EncDecAttention.k.weight": "model-00002-of-00003.safetensors",
|
335 |
+
"decoder.block.9.layer.1.EncDecAttention.o.weight": "model-00002-of-00003.safetensors",
|
336 |
+
"decoder.block.9.layer.1.EncDecAttention.q.weight": "model-00002-of-00003.safetensors",
|
337 |
+
"decoder.block.9.layer.1.EncDecAttention.v.weight": "model-00002-of-00003.safetensors",
|
338 |
+
"decoder.block.9.layer.1.layer_norm.weight": "model-00002-of-00003.safetensors",
|
339 |
+
"decoder.block.9.layer.2.DenseReluDense.wi_0.weight": "model-00002-of-00003.safetensors",
|
340 |
+
"decoder.block.9.layer.2.DenseReluDense.wi_1.weight": "model-00002-of-00003.safetensors",
|
341 |
+
"decoder.block.9.layer.2.DenseReluDense.wo.weight": "model-00002-of-00003.safetensors",
|
342 |
+
"decoder.block.9.layer.2.layer_norm.weight": "model-00002-of-00003.safetensors",
|
343 |
+
"decoder.final_layer_norm.weight": "model-00003-of-00003.safetensors",
|
344 |
+
"encoder.block.0.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
345 |
+
"encoder.block.0.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
346 |
+
"encoder.block.0.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
347 |
+
"encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight": "model-00001-of-00003.safetensors",
|
348 |
+
"encoder.block.0.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
349 |
+
"encoder.block.0.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
350 |
+
"encoder.block.0.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
351 |
+
"encoder.block.0.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
352 |
+
"encoder.block.0.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
353 |
+
"encoder.block.0.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
354 |
+
"encoder.block.1.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
355 |
+
"encoder.block.1.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
356 |
+
"encoder.block.1.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
357 |
+
"encoder.block.1.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
358 |
+
"encoder.block.1.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
359 |
+
"encoder.block.1.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
360 |
+
"encoder.block.1.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
361 |
+
"encoder.block.1.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
362 |
+
"encoder.block.1.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
363 |
+
"encoder.block.10.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
364 |
+
"encoder.block.10.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
365 |
+
"encoder.block.10.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
366 |
+
"encoder.block.10.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
367 |
+
"encoder.block.10.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
368 |
+
"encoder.block.10.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
369 |
+
"encoder.block.10.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
370 |
+
"encoder.block.10.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
371 |
+
"encoder.block.10.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
372 |
+
"encoder.block.11.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
373 |
+
"encoder.block.11.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
374 |
+
"encoder.block.11.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
375 |
+
"encoder.block.11.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
376 |
+
"encoder.block.11.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
377 |
+
"encoder.block.11.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
378 |
+
"encoder.block.11.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
379 |
+
"encoder.block.11.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
380 |
+
"encoder.block.11.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
381 |
+
"encoder.block.12.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
382 |
+
"encoder.block.12.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
383 |
+
"encoder.block.12.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
384 |
+
"encoder.block.12.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
385 |
+
"encoder.block.12.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
386 |
+
"encoder.block.12.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
387 |
+
"encoder.block.12.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
388 |
+
"encoder.block.12.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
389 |
+
"encoder.block.12.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
390 |
+
"encoder.block.13.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
391 |
+
"encoder.block.13.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
392 |
+
"encoder.block.13.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
393 |
+
"encoder.block.13.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
394 |
+
"encoder.block.13.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
395 |
+
"encoder.block.13.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
396 |
+
"encoder.block.13.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
397 |
+
"encoder.block.13.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
398 |
+
"encoder.block.13.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
399 |
+
"encoder.block.14.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
400 |
+
"encoder.block.14.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
401 |
+
"encoder.block.14.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
402 |
+
"encoder.block.14.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
403 |
+
"encoder.block.14.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
404 |
+
"encoder.block.14.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
405 |
+
"encoder.block.14.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
406 |
+
"encoder.block.14.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
407 |
+
"encoder.block.14.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
408 |
+
"encoder.block.15.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
409 |
+
"encoder.block.15.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
410 |
+
"encoder.block.15.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
411 |
+
"encoder.block.15.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
412 |
+
"encoder.block.15.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
413 |
+
"encoder.block.15.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
414 |
+
"encoder.block.15.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
415 |
+
"encoder.block.15.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
416 |
+
"encoder.block.15.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
417 |
+
"encoder.block.16.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
418 |
+
"encoder.block.16.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
419 |
+
"encoder.block.16.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
420 |
+
"encoder.block.16.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
421 |
+
"encoder.block.16.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
422 |
+
"encoder.block.16.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
423 |
+
"encoder.block.16.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
424 |
+
"encoder.block.16.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
425 |
+
"encoder.block.16.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
426 |
+
"encoder.block.17.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
427 |
+
"encoder.block.17.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
428 |
+
"encoder.block.17.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
429 |
+
"encoder.block.17.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
430 |
+
"encoder.block.17.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
431 |
+
"encoder.block.17.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
432 |
+
"encoder.block.17.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
433 |
+
"encoder.block.17.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
434 |
+
"encoder.block.17.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
435 |
+
"encoder.block.18.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
436 |
+
"encoder.block.18.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
437 |
+
"encoder.block.18.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
438 |
+
"encoder.block.18.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
439 |
+
"encoder.block.18.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
440 |
+
"encoder.block.18.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
441 |
+
"encoder.block.18.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
442 |
+
"encoder.block.18.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
443 |
+
"encoder.block.18.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
444 |
+
"encoder.block.19.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
445 |
+
"encoder.block.19.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
446 |
+
"encoder.block.19.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
447 |
+
"encoder.block.19.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
448 |
+
"encoder.block.19.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
449 |
+
"encoder.block.19.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
450 |
+
"encoder.block.19.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
451 |
+
"encoder.block.19.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
452 |
+
"encoder.block.19.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
453 |
+
"encoder.block.2.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
454 |
+
"encoder.block.2.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
455 |
+
"encoder.block.2.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
456 |
+
"encoder.block.2.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
457 |
+
"encoder.block.2.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
458 |
+
"encoder.block.2.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
459 |
+
"encoder.block.2.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
460 |
+
"encoder.block.2.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
461 |
+
"encoder.block.2.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
462 |
+
"encoder.block.20.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
463 |
+
"encoder.block.20.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
464 |
+
"encoder.block.20.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
465 |
+
"encoder.block.20.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
466 |
+
"encoder.block.20.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
467 |
+
"encoder.block.20.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
468 |
+
"encoder.block.20.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
469 |
+
"encoder.block.20.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
470 |
+
"encoder.block.20.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
471 |
+
"encoder.block.21.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
472 |
+
"encoder.block.21.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
473 |
+
"encoder.block.21.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
474 |
+
"encoder.block.21.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
475 |
+
"encoder.block.21.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
476 |
+
"encoder.block.21.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
477 |
+
"encoder.block.21.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
478 |
+
"encoder.block.21.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
479 |
+
"encoder.block.21.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
480 |
+
"encoder.block.22.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
481 |
+
"encoder.block.22.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
482 |
+
"encoder.block.22.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
483 |
+
"encoder.block.22.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
484 |
+
"encoder.block.22.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
485 |
+
"encoder.block.22.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
486 |
+
"encoder.block.22.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
487 |
+
"encoder.block.22.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
488 |
+
"encoder.block.22.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
489 |
+
"encoder.block.23.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
490 |
+
"encoder.block.23.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
491 |
+
"encoder.block.23.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
492 |
+
"encoder.block.23.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
493 |
+
"encoder.block.23.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
494 |
+
"encoder.block.23.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
495 |
+
"encoder.block.23.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
496 |
+
"encoder.block.23.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
497 |
+
"encoder.block.23.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
498 |
+
"encoder.block.3.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
499 |
+
"encoder.block.3.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
500 |
+
"encoder.block.3.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
501 |
+
"encoder.block.3.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
502 |
+
"encoder.block.3.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
503 |
+
"encoder.block.3.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
504 |
+
"encoder.block.3.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
505 |
+
"encoder.block.3.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
506 |
+
"encoder.block.3.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
507 |
+
"encoder.block.4.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
508 |
+
"encoder.block.4.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
509 |
+
"encoder.block.4.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
510 |
+
"encoder.block.4.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
511 |
+
"encoder.block.4.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
512 |
+
"encoder.block.4.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
513 |
+
"encoder.block.4.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
514 |
+
"encoder.block.4.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
515 |
+
"encoder.block.4.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
516 |
+
"encoder.block.5.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
517 |
+
"encoder.block.5.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
518 |
+
"encoder.block.5.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
519 |
+
"encoder.block.5.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
520 |
+
"encoder.block.5.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
521 |
+
"encoder.block.5.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
522 |
+
"encoder.block.5.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
523 |
+
"encoder.block.5.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
524 |
+
"encoder.block.5.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
525 |
+
"encoder.block.6.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
526 |
+
"encoder.block.6.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
527 |
+
"encoder.block.6.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
528 |
+
"encoder.block.6.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
529 |
+
"encoder.block.6.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
530 |
+
"encoder.block.6.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
531 |
+
"encoder.block.6.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
532 |
+
"encoder.block.6.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
533 |
+
"encoder.block.6.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
534 |
+
"encoder.block.7.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
535 |
+
"encoder.block.7.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
536 |
+
"encoder.block.7.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
537 |
+
"encoder.block.7.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
538 |
+
"encoder.block.7.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
539 |
+
"encoder.block.7.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
540 |
+
"encoder.block.7.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
541 |
+
"encoder.block.7.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
542 |
+
"encoder.block.7.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
543 |
+
"encoder.block.8.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
544 |
+
"encoder.block.8.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
545 |
+
"encoder.block.8.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
546 |
+
"encoder.block.8.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
547 |
+
"encoder.block.8.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
548 |
+
"encoder.block.8.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
549 |
+
"encoder.block.8.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
550 |
+
"encoder.block.8.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
551 |
+
"encoder.block.8.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
552 |
+
"encoder.block.9.layer.0.SelfAttention.k.weight": "model-00001-of-00003.safetensors",
|
553 |
+
"encoder.block.9.layer.0.SelfAttention.o.weight": "model-00001-of-00003.safetensors",
|
554 |
+
"encoder.block.9.layer.0.SelfAttention.q.weight": "model-00001-of-00003.safetensors",
|
555 |
+
"encoder.block.9.layer.0.SelfAttention.v.weight": "model-00001-of-00003.safetensors",
|
556 |
+
"encoder.block.9.layer.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
557 |
+
"encoder.block.9.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00003.safetensors",
|
558 |
+
"encoder.block.9.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00003.safetensors",
|
559 |
+
"encoder.block.9.layer.1.DenseReluDense.wo.weight": "model-00001-of-00003.safetensors",
|
560 |
+
"encoder.block.9.layer.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
561 |
+
"encoder.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
562 |
+
"encoder.mm_projector.bias": "model-00001-of-00003.safetensors",
|
563 |
+
"encoder.mm_projector.weight": "model-00001-of-00003.safetensors",
|
564 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
565 |
+
"shared.weight": "model-00001-of-00003.safetensors"
|
566 |
+
}
|
567 |
+
}
|