--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-eurosat-50 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: Augmented-Final split: train args: Augmented-Final metrics: - name: Accuracy type: accuracy value: 0.9722507708119219 --- # swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-eurosat-50 This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0966 - Accuracy: 0.9723 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.5 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9035 | 1.0 | 61 | 1.8946 | 0.2713 | | 1.4731 | 2.0 | 122 | 1.2931 | 0.5560 | | 0.9549 | 3.0 | 183 | 0.7530 | 0.6999 | | 0.7375 | 4.0 | 244 | 0.4989 | 0.8129 | | 0.615 | 5.0 | 305 | 0.3545 | 0.8746 | | 0.4751 | 6.0 | 366 | 0.2399 | 0.9168 | | 0.3778 | 7.0 | 427 | 0.1628 | 0.9558 | | 0.3054 | 8.0 | 488 | 0.1202 | 0.9620 | | 0.2787 | 9.0 | 549 | 0.0988 | 0.9733 | | 0.253 | 10.0 | 610 | 0.0966 | 0.9723 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3